American Journal of Clinical Dermatology

, Volume 3, Issue 5, pp 309–315

Human Herpesvirus 7 in Dermatology

What Role Does it Play?
Leading Article

Abstract

Human herpesvirus 7 (HHV-7) was discovered in 1989 as a new member of the ß-herpesvirus subfamily. Primary infection occurs early in life and manifests as exanthema subitum, or other febrile illnesses mimicking measles and rubella. Thus, HHV-7 has to be considered as a causative agent in a variety of macular-papular rashes in children. In addition, HHV-7 was found in some cases of other inflammatory skin disorders, such as psoriasis. There are controversial data on the detection of HHV-7 in pityriasis rosea, but so far there is not enough evidence for a pathogenetic association of HHV-7 with this exanthematic skin disease. Although HHV-7 can be found in some cases of Hodgkin’s disease, there are no data supporting a direct causative role in this lymphoma type nor in other nodal or primary cutaneous lymphomas. In various epidemiologic forms of Kaposi’s sarcoma, infection of monocytic cells with HHV-7 was demonstrated, which may indirectly influence tumor biology. In the context of immunosuppression, HHV-7 has recently been identified as an emerging pathogen in transplant recipients and may exacerbate graft rejection in renal transplant recipients. The ability of HHV-7 to induce cytokine production in infected cells could make HHV-7 an important pathogenetic co-factor in inflammatory and neoplastic disorders. Moreover, the restricted cellular tropism of HHV-7 may render this virus an interesting vector for gene therapy. Thirteen years after the discovery of HHV-7, there has been considerable progress in characterizing its genetic structure, virus-induced effects on infected host cells and in the development of diagnostic tools. Nevertheless, the role of HHV-7 in various skin diseases and the clinical manifestations of reactivation of HHV-7 infection have still to be defined.

References

  1. 1.
    Black J.B., Pellett P.E. Human herpesvirus 7. Rev Med Virol 1999; 9: 245–262PubMedCrossRefGoogle Scholar
  2. 2.
    Torigoe S., Kumamoto T., Koide W., et al. Clinical manifestations associated with human herpesvirus 7 infection. Arch Dis Child 1995; 72: 518–519PubMedCrossRefGoogle Scholar
  3. 3.
    Black J.B., Durigon E., Kite Powell K., et al. Seroconversion to human herpesvirus 6 and human herpesvirus 7 among Brazilian children with clinical diagnoses of measles or rubella. Clin Infect Dis 1996; 23: 1156–1158PubMedCrossRefGoogle Scholar
  4. 4.
    Caserta M.T., Hall C.B., Schnabel K., et al. Primary human herpesvirus 7 infection: a comparison of human herpesvirus 7 and human herpesvirus 6 infections in children. J Pediatr 1998; 133: 386–389PubMedCrossRefGoogle Scholar
  5. 5.
    Frenkel N., Schirmer E.C., Wyatt L.S., et al. Isolation of a new herpesvirus from human CD4+ T cells. Proc Natl Acad Sci U S A 1990; 87: 748–752PubMedCrossRefGoogle Scholar
  6. 6.
    Berneman Z.N., Ablashi D.V., Li G., et al. Human herpesvirus 7 is a T-lymphotropic virus and is related to, but significantly different from, human herpesvirus 6 and human cytomegalovirus. Proc Natl Acad Sci U S A 1992; 89: 10552–10556PubMedCrossRefGoogle Scholar
  7. 7.
    Nicholas J. Determination and analysis of the complete nucleotide sequence of human herpesvirus. J Virol 1996; 70: 5975–5989PubMedGoogle Scholar
  8. 8.
    Singer O., Frenkel N. Human herpesvirus 7 (HHV-7) DNA: analyses of clones spanning the entire genome. Arch Virol 1997; 142: 287–303PubMedCrossRefGoogle Scholar
  9. 9.
    Berneman Z.N., Gallo R.C., Ablashi D.V., et al. Human herpesvirus 7 (HHV-7) strain JI: independent confirmation of HHV-7. J Infect Dis 1992; 166: 690–691PubMedCrossRefGoogle Scholar
  10. 10.
    Black J.B., Burns D.A., Goldsmith C.S., et al. Biologic properties of human herpesvirus 7 strain SB. Virus Res 1997; 52: 25–41PubMedCrossRefGoogle Scholar
  11. 11.
    Secchiero P., Berneman Z.N., Gallo R.C., et al. Biological and molecular characteristics of human herpesvirus 7: in vitro growth optimization and development of a syncytia inhibition test. Virology 1994; 202: 506–512PubMedCrossRefGoogle Scholar
  12. 12.
    Cermelli C., Pietrosemoli P., Meacci M., et al. SupT-1: a cell system suitable for an efficient propagation of both HHV-7 and HHV-6 variants A and B. New Microbiol 1997; 20: 187–196PubMedGoogle Scholar
  13. 13.
    Lusso P., Secchiero P., Crowley R.W., et al. CD4 is a critical component of the receptor for human herpesvirus 7: interference with human immunodeficiency virus. Proc Natl Acad Sci U S A 1994; 91: 3872–3876PubMedCrossRefGoogle Scholar
  14. 14.
    Furukawa M., Yasukawa M., Yakushijin Y., et al. Distinct effects of human herpesvirus 6 and human herpesvirus 7 on surface molecule expression and function of CD4+ T cells. J Immunol 1994; 152: 5768–5775PubMedGoogle Scholar
  15. 15.
    Crowley R.W., Secchiero P., Zella D., et al. Interference between human herpesvirus 7 and HIV-1 in mononuclear phagocytes. J Immunol 1996; 156: 2004–2008PubMedGoogle Scholar
  16. 16.
    Kempf W., Adams V., Wey N., et al. CD68+ cells of monocyte/macrophage lineage in the environment of AIDS-associated and classic-sporadic Kaposi sarcoma are singly or doubly infected with human herpesviruses 7 and 6B. Proc Natl Acad Sci U S A 1997; 94: 7600–7605PubMedCrossRefGoogle Scholar
  17. 17.
    Wyatt L.S., Frenkel N. Human herpesvirus 7 is a constitutive inhabitant of adult human saliva. J Virol 1992; 66: 3206–3209PubMedGoogle Scholar
  18. 18.
    Hidaka Y., Liu Y., Yamamoto M., et al. Frequent isolation of human herpesvirus 7 from saliva samples. J Med Virol 1993; 40: 343–346PubMedCrossRefGoogle Scholar
  19. 19.
    Fujisaki H., Tanaka Taya K., Tanabe H., et al. Detection of human herpesvirus 7 (HHV- 7) DNA in breast milk by polymerase chain reaction and prevalence of HHV-7 antibody in breast-fed and bottle-fed children. J Med Virol 1998; 56: 275–279PubMedCrossRefGoogle Scholar
  20. 20.
    Takahashi Y., Yamada M., Nakamura J., et al. Transmission of human herpesvirus 7 through multigenerational families in the same household. Pediatr Infect Dis J 1997; 16: 975–978PubMedCrossRefGoogle Scholar
  21. 21.
    Tanaka Taya K., Kondo T., Mukai T., et al. Seroepidemiological study of human herpesvirus-6 and -7 in children of different ages and detection of these two viruses in throat swabs by polymerase chain reaction. J Med Virol 1996; 48: 88–94CrossRefGoogle Scholar
  22. 22.
    Huang L.M., Lee C.Y., Liu M.Y., et al. Primary infections of human herpesvirus-7 and herpesvirus-6: a comparative, longitudinal study up to 6 years of age. Acta Paediatr 1997; 86: 604–608PubMedCrossRefGoogle Scholar
  23. 23.
    Asano Y., Suga S., Yoshikawa T., et al. Clinical features and viral excretion in an infant with primary human herpesvirus 7 infection. Pediatrics 1995; 95: 187–190PubMedGoogle Scholar
  24. 24.
    Katsafanas G.C., Schirmer E.C., Wyatt L.S., et al. In vitro activation of human herpesviruses 6 and 7 from latency. Proc Natl Acad Sci U S A 1996; 93: 9788–9792PubMedCrossRefGoogle Scholar
  25. 25.
    Sada E., Yasukawa M., Ito C., et al. Detection of human herpesvirus 6 and human herpesvirus 7 in the submandibular gland, parotid gland, and lip salivary gland by PCR. J Clin Microbiol 1996; 34: 2320–2321PubMedGoogle Scholar
  26. 26.
    Kempf W., Adams V., Mirandola P., et al. Persistence of human herpesvirus 7 in normal tissues detected by expression of a structural antigen. J Infect Dis 1998; 178: 841–845PubMedCrossRefGoogle Scholar
  27. 27.
    Yasukawa M., Yakushijin Y., Furukawa M., et al. Specificity analysis of human CD4+ T-cell clones directed against human herpesvirus 6 (HHV-6), HHV-7, and human cytomegalovirus. J Virol 1993; 67: 6259–6264PubMedGoogle Scholar
  28. 28.
    Wilborn F., Schmidt C.A., Lorenz F., et al. Human herpesvirus type 7 in blood donors: detection by the polymerase chain reaction. J Med Virol 1995; 47: 65–69PubMedCrossRefGoogle Scholar
  29. 29.
    Kidd I.M., Clark D.A., Ait Khaled M., et al. Measurement of human herpesvirus 7 load in peripheral blood and saliva of healthy subjects by quantitative polymerase chain reaction. J Infect Dis 1996; 174: 396–401PubMedCrossRefGoogle Scholar
  30. 30.
    Black J.B., Schwarz T.F., Patton J.L., et al. Evaluation of immunoassays for detection of antibodies to human herpesvirus 7. Clin Diagn Lab Immunol 1996; 3: 79–83PubMedGoogle Scholar
  31. 31.
    Foa Tomasi L., Avitabile E., Ke L., et al. Polyvalent and monoclonal antibodies identify major immunogenic proteins specific for human herpesvirus 7-infected cells and have weak cross-reactivity with human herpesvirus 6. J Gen Virol 1994; 75: 2719–2727CrossRefGoogle Scholar
  32. 32.
    Foa Tomasi L., Fiorilli M.P., Avitabile E., et al. Identification of an 85 kDa phosphoprotein as an immunodominant protein specific for human herpesvirus 7-infected cells. J Gen Virol 1996; 77: 511–518CrossRefGoogle Scholar
  33. 33.
    Stefan A., Secchiero P., Baechi T., et al. The 85-kilodalton phosphoprotein (pp85) of human herpesvirus 7 is encoded by open reading frame U14 and localizes to a tegument substructure in virion particles. J Virol 1997; 71: 5758–5763PubMedGoogle Scholar
  34. 34.
    Black J.B., Schwarz T.F., Patton J.L., et al. Evaluation of immunoassays for detection of antibodies to human herpesvirus 7. Clin Diagn Lab Immunol 1996; 3: 79–83PubMedGoogle Scholar
  35. 35.
    Stefan A., De Lillo M., Frascaroli G., et al. Development of recombinant diagnostic reagents based on pp85 (U14) and p86(U11) proteins to detect the human immune response to human herpesvirus 7 infection. J Clin Microbiol 1999; 37: 3980–3985PubMedGoogle Scholar
  36. 36.
    Yamanishi K., Okuno T., Shiraki K., et al. Identification of human herpesvirus-6 as a causal agent for exanthema subitum. Lancet 1988; I: 1065–1067CrossRefGoogle Scholar
  37. 37.
    Ueda K., Kusuhara K., Okada K., et al. Primary human herpesvirus 7 infection and exanthema subitum [letter]. Pediatr Infect Dis J 1994; 13: 167–168PubMedGoogle Scholar
  38. 38.
    Frenkel N., Wyatt L.S. HHV-6 and HHV-7 as exogenous agents in human lymphocytes. Dev Biol Stand 1992; 76: 259–265PubMedGoogle Scholar
  39. 39.
    Torigoe S., Koide W., Yamada M., et al. Human herpesvirus 7 infection associated with central nervous system manifestations. J Pediatr 1996; 129: 301–305PubMedCrossRefGoogle Scholar
  40. 40.
    Chan P.K., Peiris J.S., Yuen K.Y., et al. Human herpesvirus-6 and human herpesvirus-7 infections in bone marrow transplant recipients. J Med Virol 1997; 53: 295–305PubMedCrossRefGoogle Scholar
  41. 41.
    Bruns R., Muller C.E., Wiersbitzky S.K., et al. Clinical presentations of infection by the human herpesvirus-7 (HHV-7). Pediatr Hematol Oncol 2000; 17: 247–252PubMedCrossRefGoogle Scholar
  42. 42.
    Chiu H.H., Lee C.Y., Lee P.I., et al. Mononucleosis syndrome and coincidental human herpesvirus-7 and Epstein-Barr virus infection. Arch Dis Child 1998; 78: 479–480PubMedCrossRefGoogle Scholar
  43. 43.
    Kempf W., Burg G. Pityriasis rosea, a virus-induced skin disease: an update. Arch Virol 2000; 145: 1509–1520PubMedCrossRefGoogle Scholar
  44. 44.
    Drago F., Ranieri E., Malaguti F., et al. Human herpesvirus 7 in patients with pityriasis rosea: electron microscopy investigations and polymerase chain reaction in mononuclear cells, plasma and skin. Dermatology 1997; 195: 374–378PubMedCrossRefGoogle Scholar
  45. 45.
    Drago F., Ranieri E., Malaguti F., et al. Human herpesvirus 7 in patients with pityriasis rosea [letter]. Lancet 1997; 349: 1367PubMedCrossRefGoogle Scholar
  46. 46.
    Watanabe T., Sugaya M., Nakamura K., et al. Human herpesvirus 7 and pityriasis rosea. J Invest Dermatol 1999; 113: 288–289PubMedCrossRefGoogle Scholar
  47. 47.
    Yoshida M. Detection of human herpesvirus 7 in patients with pityriasis rosea and healthy individuals. Dermatology 1999; 199: 197–198PubMedCrossRefGoogle Scholar
  48. 48.
    Lebbe C., Agbalika F. Pityriasis rosea and human herpesvirus 7, a true association [letter]? Dermatology 1998; 196: 275PubMedGoogle Scholar
  49. 49.
    Kempf W., Adams V., Kleinhans M., et al. Pityriasis rosea is not associated with human herpesvirus 7. Arch Dermatol 1999; 135: 1070–1072PubMedCrossRefGoogle Scholar
  50. 50.
    Offidani A., Pritelli E., Simonetti O., et al. Pityriasis rosea associated with herpesvirus 7 DNA. J Eur Acad Dermatol Venereol 2000; 14: 313–314PubMedCrossRefGoogle Scholar
  51. 51.
    Wong W.R., Tsai C.Y., Shih S.R., et al. Association of pityriasis rosea with human herpesvirus-6 and human herpesvirus-7 in Taipei. J Formos Med Assoc 2001; 100: 478–483PubMedGoogle Scholar
  52. 52.
    Yasukawa M., Sada E., MacHino H., et al. Reactivation of human herpesvirus 6 in pityriasis rosea. Br J Dermatol 1999; 140: 169–170PubMedCrossRefGoogle Scholar
  53. 53.
    Kosuge H., Tanaka Taya K., Miyoshi H., et al. Epidemiological study of human herpesvirus-6 and human herpesvirus-7 in pityriasis rosea. Br J Dermatol 2000; 143: 795–798PubMedCrossRefGoogle Scholar
  54. 54.
    Chuh A.A., Chiu S.S., Peiris J.S. Human herpesvirus 6 and 7 DNA in peripheral blood leucocytes and plasma in patients with pityriasis rosea by polymerase chain reaction: a prospective case control study. Acta Derm Venereol 2001; 81: 289–290PubMedCrossRefGoogle Scholar
  55. 55.
    Chuh A.A., Peiris J.S. Lack of evidence of active human herpesvirus 7 (HHV-7) infection in three cases of pityriasis rosea in children. Pediatr Dermatol 2001; 18: 381–383PubMedCrossRefGoogle Scholar
  56. 56.
    Ongradi J., Becker K., Horvath A., et al. Simultaneous infection by human herpesvirus 7 and human parvovirus B19 in papular-purpuric gloves-and-socks syndrome [letter]. Arch Dermatol 2000; 136: 672PubMedCrossRefGoogle Scholar
  57. 57.
    Dockrell D.H., Paya C.V. Human herpesvirus-6 and -7 in transplantation. Rev Med Virol 2001; 11: 23–36PubMedCrossRefGoogle Scholar
  58. 58.
    Osman H.K., Peiris J.S., Taylor C.E., et al. ‘Cytomegalovirus disease’ in renal allograft recipients: is human herpesvirus 7 a co-factor for disease progression? J Med Virol 1996; 48: 295–301PubMedCrossRefGoogle Scholar
  59. 59.
    Tong C.Y., Bakran A., Williams H., et al. Association of human herpesvirus 7 with cytomegalovirus disease in renal transplant recipients. Transplantation 2000; 70: 213–216PubMedGoogle Scholar
  60. 60.
    Kidd I.M., Clark D.A., Sabin C.A., et al. Prospective study of human betaherpesviruses after renal transplantation: association of human herpesvirus 7 and cytomegalovirus co-infection with cytomegalovirus disease and increased rejection. Transplantation 2000; 69: 2400–2404PubMedCrossRefGoogle Scholar
  61. 61.
    Chapenko S., Folkmane I., Tomsone V., et al. Co-infection of two beta-herpesviruses (CMV and HHV-7) as an increased risk factor for ‘CMV disease’ in patients undergoing renal transplantation. Clin Transplant 2000; 14: 486–492PubMedCrossRefGoogle Scholar
  62. 62.
    Griffiths P.D., Ait Khaled M., Bearcroft C.P., et al. Human herpesviruses 6 and 7 as potential pathogens after liver transplant: prospective comparison with the effect of cytomegalovirus. J Med Virol 1999; 59: 496–501PubMedCrossRefGoogle Scholar
  63. 63.
    Wang F.Z., Dahl H., Linde A., et al. Lymphotropic herpesviruses in allogeneic bone marrow transplantation. Blood 1996; 88: 3615–3620PubMedGoogle Scholar
  64. 64.
    Kempf W., Muller B., Maurer R., et al. Increased expression of human herpesvirus 7 in lymphoid organs of AIDS patients. J Clin Virol 2000; 16: 193–201PubMedCrossRefGoogle Scholar
  65. 65.
    Di Luca D., Mirandola P., Ravaioli T., et al. Human herpesviruses 6 and 7 in salivary glands and shedding in saliva of healthy and human immunodeficiency virus positive individuals. J Med Virol 1995; 45: 462–468PubMedCrossRefGoogle Scholar
  66. 66.
    Kidd I.M., Clark D.A., Aitkhaled M., et al. Measurement of human herpesvirus 7 load in peripheral blood and saliva of healthy subjects by quantitative polymerase chain reaction. J Infect Dis 1996; 174: 396–401PubMedCrossRefGoogle Scholar
  67. 67.
    Schmidt C.A., Oettle H., Peng R., et al. Presence of human beta- and gamma-herpes virus DNA in Hodgkin’s disease. Leuk Res 2000; 24: 865–870PubMedCrossRefGoogle Scholar
  68. 68.
    Secchiero P., Bonino L.D., Lusso P., et al. Human herpesvirus type 7 in Hodgkin’s disease. Br J Haematol 1998; 101: 492–499PubMedCrossRefGoogle Scholar
  69. 69.
    Berneman Z.N., Torelli G., Luppi M., et al. Absence of a directly causative role for human herpesvirus 7 in human lymphoma and a review of human herpesvirus 6 in human malignancy. Ann Hematol 1998; 77: 275–278PubMedCrossRefGoogle Scholar
  70. 70.
    Nagore E., Ledesma E., Collado C., et al. Detection of Epstein-Barr virus and human herpesvirus 7 and 8 genomes in primary cutaneous T- and B-cell lymphomas. Br J Dermatol 2000; 143: 320–323PubMedCrossRefGoogle Scholar
  71. 71.
    Kempf W., Kadin M.E., Kutzner H., et al. Lymphomatoid papulosis and human herpesviruses: a PCR-based evaluation for the presence of human herpesvirus 6, 7 and 8 related herpesviruses. J Cutan Pathol 2001; 28: 29–33PubMedCrossRefGoogle Scholar
  72. 72.
    Chang Y., Cesarman E., Pessin M.S., et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994; 266: 1865–1869PubMedCrossRefGoogle Scholar
  73. 73.
    Antman K., Chang Y. Kaposi’s sarcoma. N Engl J Med 2000; 342: 1027–1038PubMedCrossRefGoogle Scholar
  74. 74.
    Kempf W., Adams V. Viruses in the pathogenesis of Kaposi’s sarcoma: a review. Biochem Mol Med 1996; 58: 1–12PubMedCrossRefGoogle Scholar
  75. 75.
    Drago F., Raineri E., Rebora A. Non-AIDS-related Kaposi sarcoma tissues do not contain DNA sequences of HHV-6, HHV-7, Epstein-Barr virus, cytomegalovirus and HSV. Acta Derm Venereol 1998; 78: 485PubMedCrossRefGoogle Scholar
  76. 76.
    Atedzoe B.N., Menezes J., D’Addario M., et al. Modulatory effects of human herpes virus-7 on cytokine synthesis and cell proliferation in human peripheral blood mononuclear cell cultures. J Leukoc Biol 1999; 66: 822–828PubMedGoogle Scholar
  77. 77.
    Yoshida M., Yamada M., Tsukazaki T., et al. Comparison of antiviral compounds against human herpesvirus 6 and 7. Antiviral Res 1998; 40: 73–84PubMedCrossRefGoogle Scholar
  78. 78.
    Brennan D.C., Storch G.A., Singer G.G., et al. The prevalence of human herpesvirus-7 in renal transplant recipients is unaffected by oral or intravenous ganciclovir. J Infect Dis 2000; 181: 1557–1561PubMedCrossRefGoogle Scholar
  79. 79.
    Mendez J.C., Dockrell D.H., Espy M.J., et al. Human beta-herpesvirus interactions in solid organ transplant recipients. J Infect Dis 2001; 183: 179–184PubMedCrossRefGoogle Scholar
  80. 80.
    Safrin S., Cherrington J., Jaffe H.S. Clinical use of cidofovir. Rev Med Virol 1997; 7: 73–84CrossRefGoogle Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  1. 1.Department of DermatologyUniversity HospitalZurichSwitzerland

Personalised recommendations