American Journal of Clinical Dermatology

, Volume 3, Issue 4, pp 229–238 | Cite as

Cellular and Molecular Pathophysiology of Cutaneous Drug Reactions

  • Werner J. Pichler
  • Nikhil Yawalkar
  • Markus Britschgi
  • Jan Depta
  • Ingrid Strasser
  • Simone Schmid
  • Petra Kuechler
  • Dean Naisbitt
Leading Article

Abstract

Hypersensitivity reactions to drugs can cause a variety of skin diseases like maculopapular, bullous and pustular eruptions. In recent years increasing evidence indicates the important role of T cells in these drug-induced skin diseases. Analysis of such drug-specific T cell clones has revealed that drugs can be recognized by αβ-T cell receptors, not only if bound covalently to peptides, but also if the drug binds in a rather labile way to the presenting major histocompatibility complex (MHC)-peptide. This presentation is sufficient to stimulate T cells.

In maculopapular exanthema (MPE), histopathological analysis typically shows a dominant T cell infiltration together with a vacuolar interface dermatitis. Immunohistochemical studies demonstrate the presence of cytotoxic CD4+ and to a lesser degree of CD8+ T cells, which contain perforin and granzyme B. They are close to keratinocytes that show signs of cell destruction. Expression of Fas ligand is barely detectable, suggesting that cytotoxic granule exocytosis may be the dominant pathway leading to keratinocyte cell damage. While in MPE, the killing of cells seems to be predominately mediated by CD4+ T cells, patients with bullous skin disease show a strong CD8+ T cell migration to the epidermis. This is probably due to a preferential presentation of the drug by MHC class I molecules, and a more extensive killing of cells that present drugs on MHC class I molecules. This might lead to bullous skin diseases.

In addition to the presence of cytotoxic T cells, drug-specific T cells also orchestrate the inflammatory skin reaction through the release and induction of various cytokines [i.e. interleukin (IL)-5, IL-6, tumor necrosis factor-α and interferon-γ] and chemokines (RANTES, eotaxin or IL-8). The increased expression of these mediators seems to contribute to the generation of tissue and blood eosinophilia, a hallmark of many drug-induced allergic reactions. However, in acute generalized exanthematous pustulosis (a peculiar form of drug allergy), neutrophils represent the predominant cell type within pustules, probably due to their recruitment by IL-8 secreting drug specific T cells and keratinocytes.

References

  1. 1.
    Hunziker T., Kunzi U.P., Braunschweig S., et al. Comprehensive hospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. Allergy 1997; 52: 388–393PubMedCrossRefGoogle Scholar
  2. 2.
    Pichler W.J., Schnyder B., Zanni M., et al. Role of T cells in drug allergies. Allergy 1998; 53: 225–232PubMedCrossRefGoogle Scholar
  3. 3.
    Hertl M., Merk H.F. Lymphocyte activation in cutaneous drug reactions. J Invest Dermatol 1995; 105: 95–98CrossRefGoogle Scholar
  4. 4.
    Hari Y., Frutig K., Hurni M., et al. T cell involvement in cutaneous drug eruptions. Clin Exp Allergy 2001; 31: 1398–403PubMedCrossRefGoogle Scholar
  5. 5.
    Britschgi M., Steiner U., Schmid S., et al. T cell involvement in drug-induced acute generalized exanthematous pustulosis. J Clin Invest 2001; 107: 1433–1441PubMedCrossRefGoogle Scholar
  6. 6.
    Zanni M.P., Mauri-Hellweg D., Brander C., et al. Characterization of lidocaine-specific T cells. J Immunol 1997; 158: 1139–1148PubMedGoogle Scholar
  7. 7.
    Schnyder B., Mauri-Hellweg D., Zanni M., et al. Direct, MHC-dependent presentation of the drug sulfamethoxazole to human T cell clones. J Clin Invest 1997; 100: 136–141PubMedCrossRefGoogle Scholar
  8. 8.
    Zanni M.P., von Greyerz S., Schnyder B., et al. HLA-restricted, processing- and metabolism-independent pathway of drug recognition by human aαβb T lymphocytes. J Clin Invest 1998; 102: 1591–1598PubMedCrossRefGoogle Scholar
  9. 9.
    Schnyder B., Frutig K., Mauri-Hellweg D., et al. T-cell-mediated cytotoxicity against keratinocytes in sulfamethoxazol-induced skin reaction. Clin Exp Allergy 1998; 28: 1412–1417PubMedCrossRefGoogle Scholar
  10. 10.
    Yawalkar N., Egli F., Hari Y., et al. Infiltration of cytotoxic T cells in drug-induced cutaneous eruptions. Clin Exp Allergy 2000; 30: 847–855PubMedCrossRefGoogle Scholar
  11. 11.
    Weltzien H.U., Moulin C., Martin S., et al. T cell immune response to haptens: structural models for allergic and autoimmune reactions. Toxicology 1996; 107: 141–151PubMedCrossRefGoogle Scholar
  12. 12.
    Posadas S.J., Leyva L., Torres M.J., et al. Subjects with allergic reactions to drugs show in vivo polarized patterns of cytokine expression depending on the chronology of the clinical reaction. J Allergy Clin Immunol 2000; 106: 769–776PubMedCrossRefGoogle Scholar
  13. 13.
    Hertl M., Jugert F., Merk H.F. CD8+ dermal T cells from a sulphamethoxazole-induced bullous exanthem proliferate in response to drug-modified liver microsomes. Br J Dermatol 1995; 132: 215–220PubMedCrossRefGoogle Scholar
  14. 14.
    Kalish R.S., Askenase P.W. Molecular mechanisms of CD8+ T cell-mediated delayed hypersensitivity: implications for allergies, asthma and autoimmunity. J Allergy Clin Immunol 1999; 103: 192–199PubMedCrossRefGoogle Scholar
  15. 15.
    Landsteiner K., Jacobs J. Studies on the sensitization of animals with simple chemical compounds. J Exp Med 1935; 61: 643–656PubMedCrossRefGoogle Scholar
  16. 16.
    Park B.K., Pirmohamed M., Kitteringham N.R. Role of drug disposition in drug hypersensitivity: a chemical, molecular, and clinical perspective. Chem Res Toxicol 1998; 11: 969–988PubMedCrossRefGoogle Scholar
  17. 17.
    Padovan E., Bauer T., Tongia M.M., et al. Penicilloyl peptides are recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol 1997; 27: 1303–1307PubMedCrossRefGoogle Scholar
  18. 18.
    Brander C., Mauri-Hellweg D., Bettens F., et al. Heterogeneous T cell responses to beta-lactam-modified self-structures are observed in penicillin-allergic individuals. J Immunol 1995; 55: 2670–2678Google Scholar
  19. 19.
    Griem P., Wulferink M., Sachs B., et al. Allergic and autoimmune reactions to xenobiotics: how do they arise? Immunol Today 1998; 19: 133–141PubMedGoogle Scholar
  20. 20.
    Naisbitt D.J., Gordon S.F., Pirmohamed M., et al. Antigenicity and immunogenicity of sulfamethoxazole: demonstration of metabolism-dependent haptenation and T-cell proliferation in vivo. Br J Pharmacol 2001; 139: 295–305CrossRefGoogle Scholar
  21. 21.
    Merk H.F., Baron J., Kawakubo Y., et al. Metabolites and allergic drug reactions. Clin Exp Allergy 1998; 28: 21–24PubMedCrossRefGoogle Scholar
  22. 22.
    Schneider C.H., de Weck A.L. A new chemical spectrum of penicillin allergy: the direct reaction of penicillin with epsilon-amino-groups. Nature 1965; 208: 57–59PubMedCrossRefGoogle Scholar
  23. 23.
    Cribb A.E., Spielberg S.P. Sulfamethoxazole is metabolized to the hydroxylamine in humans. Clin Pharmacol Ther 1992; 51: 522–526PubMedCrossRefGoogle Scholar
  24. 24.
    Reilly T.P., Lash L.H., Doll M.A., et al. A role for bioactivation and covalent binding within epidermal keratinocytes in sulfonamide-induced cutaneous drug reactions. J Invest Dermatol 2000; 114: 1164–1173PubMedCrossRefGoogle Scholar
  25. 25.
    von Greyerz S., Zanni M., Frutig K., et al. Interaction of sulfonamide-derivatives with the TCR of sulfamethoxazole specific αβ+ T cell clones. J Immunol 1999; 162: 595–602Google Scholar
  26. 26.
    Zanni M.P., von Greyerz S., Schnyder B., et al. HLA-unrestricted presentation of lidocaine by HLA-DR molecules to specific αβ+ T cell clones. Immunol Int 1998; 10: 507–515CrossRefGoogle Scholar
  27. 27.
    Schnyder B., Burkhart C., Schnyder-Frutig K., et al. Recognition of sulfamethoxazole and its reactive metabolites by drug specific T cells from allergic individuals. J Immunol 2000; 164: 6647–6654PubMedGoogle Scholar
  28. 28.
    von Greyerz S, Burkhart C., Pichler W.J. Molecular basis of drug recognition by specific T cell receptors. Int Arch Allergy Immunol 1999; 119: 173–180CrossRefGoogle Scholar
  29. 29.
    Burkhart C., von Greyerz S., Depta J.P., et al. Influence of reduced glutathione on the proliferative response of sulfamethoxazole-specific and sulfamethoxazole-metabolite-specific human CD4+ T-cells. Br J Pharmacol 2001; 132: 623–630PubMedCrossRefGoogle Scholar
  30. 30.
    Pichler W.J. Predictive drug allergy testing, an alternative viewpoint. Toxicology 2001; 158: 31–41PubMedCrossRefGoogle Scholar
  31. 31.
    Heller H.M. Adverse cutaneous drug reactions in patients with human immunodeficiency virus-1 infection. Clin Dermatol 2000; 18: 485–489PubMedCrossRefGoogle Scholar
  32. 32.
    Suzuki Y., Inage R., Aono T., et al. Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch Dermatol 1996; 134: 1108–1112CrossRefGoogle Scholar
  33. 33.
    Antonen J.A., Markula K.P., Pertovaara M.I., et al. Adverse drug reactions in Sjögren syndrome: frequent allergic reactions and a specific trimethoprim-associated systemic reaction. Scand J Rheumatol 1999; 28: 157–159PubMedCrossRefGoogle Scholar
  34. 34.
    Gallucci S., Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol 2001; 13: 114–119PubMedCrossRefGoogle Scholar
  35. 35.
    Crowson A.N., Magro C.M. Recent advances in the pathology of cutaneous drug eruptions. Dermatol Clin 1999; 17: 537–560PubMedCrossRefGoogle Scholar
  36. 36.
    Fellner M.J., Prutkin L. Morbilliform eruptions caused by penicillin: a study by electron microscopy and immunologic tests. J Invest Dermatol 1970; 55: 390–395PubMedCrossRefGoogle Scholar
  37. 37.
    Yawalkar N., Shrikhande M., Hari Y., et al. Evidence for a role for IL-5 and eotaxin in activating and recruiting eosinophils in drug-induced cutaneous eruptions. J Allergy Clin Immunol 2000; 106: 1171–1176PubMedCrossRefGoogle Scholar
  38. 38.
    Carr A., Vasak E., Munro V., et al. Immunohistological assessment of cutaneous drug hypersensitivity in patients with HIV infection. Clin Exp Immunol 1994; 97: 260–265PubMedCrossRefGoogle Scholar
  39. 39.
    Barbaud A.M., Bene M.C., Reichert-Penetrat S., et al. Immunocompetent cells and adhesion molecules in 14 cases of cutaneous drug reactions induced with the use of antibiotics. Arch Dermatol 1998; 134: 1040–1041PubMedCrossRefGoogle Scholar
  40. 40.
    Barbaud A.M., Bene M.C., Schmutz J.L., et al. Role of delayed cellular hypersensitivity and adhesion molecules in amoxicillin-induced morbilliform rashes. Arch Dermatol 1997; 133: 481–486PubMedCrossRefGoogle Scholar
  41. 41.
    Blanca M., Posadas S., Torres M.J., et al. Expression of the skin-homing receptor in peripheral blood lymphocytes from subjects with non immediate cutaneous allergic drug reactions. Allergy 2000; 55: 998–1004PubMedCrossRefGoogle Scholar
  42. 42.
    Stepp S.E., Mathew P.A., Bennett M., et al. Perforin: more than just an effector molecule. Immunol Today 2000; 21: 254–256PubMedCrossRefGoogle Scholar
  43. 43.
    Yawalkar N., Hari Y., Frutig K., et al. T cells isolated from positive epicutaneous test reactions to amoxicillin and ceftriaxone are drug specific and cytotoxic. J Invest Dermatol 2000; 115: 647–652PubMedCrossRefGoogle Scholar
  44. 44.
    Behrendt C., Gollnick H., Bonnekoh B. Up-regulated perforin expression of CD8+ blood lymphocytes in generalized non-anaphylactic drug eruptions and exacerbated psoriasis. Eur J Dermatol 2000; 10: 365–369PubMedGoogle Scholar
  45. 45.
    Viard I., Wehrli P., Bullani R., et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science 1998; 282: 490–493PubMedCrossRefGoogle Scholar
  46. 46.
    Brugnolo F., Annunziato F., Sampognaro S., et al. Highly Th2-skewed cytokine profile of beta-lactam-specific T cells from nonatopic subjects with adverse drug reactions. J Immunol 1999; 163: 1053–1059PubMedGoogle Scholar
  47. 47.
    Hari Y., Urwyler A., Hurni M., et al. Distinct serum cytokine levels in drug or measles induced exanthema. Int Arch Allergy Immunol 1999; 120: 225–229PubMedCrossRefGoogle Scholar
  48. 48.
    Choquet-Kastylevsky G., Intrator L., Chenal C., et al. Increased levels of Interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. Br J Dermatol 1998; 139: 1026–1032PubMedCrossRefGoogle Scholar
  49. 49.
    Osawa J., Kitamura K., Saito S., et al. Immunohistochemical study of graft-versushost reaction (GVHR)-type drug eruptions. J Dermatol 1994; 21: 25–30PubMedGoogle Scholar
  50. 50.
    Gerber B.O., Zanni M.P., Uguccioni M., et al. Functional expression of the eotaxin receptor, CCR3, in T lymphocytes co-localizing with eosinophils. Curr Biol 1997; 7: 836–843PubMedCrossRefGoogle Scholar
  51. 51.
    Garcia-Doval I., LeCleach L., Bocquet H., et al. Toxic epidermal necrolysis and Stevens-Johnson syndrome: does early withdrawal of causative drugs decrease the risk of death? Arch Dermatol 2000; 136: 323–327PubMedCrossRefGoogle Scholar
  52. 52.
    Fam A.G., Dunne S.M., Iazzetta J., et al. Efficacy and safety of desensitization to allopurinol following cutaneous reactions. Arthritis Rheum 2001; 44: 231–238PubMedCrossRefGoogle Scholar
  53. 53.
    Le Cleach L, Delaaire S., Boumsell L., et al. Blister fluid T lymphocytes during toxic epidermal necrolysis are functional cytotoxic cells which express human natural killer (NK) inhibitory receptors. Clin Exp Immunol 2000; 119: 225–230PubMedCrossRefGoogle Scholar
  54. 54.
    Nassif A., Bensussan A., Dorothée G., et al. Drug-specific cytotoxic T lymphocytes in the skin lesions of a patient with toxic epidermal necrolysis [abstract]. Allergologie 2001; 24: 222Google Scholar
  55. 55.
    Ryo K., Kamogawa Y., Ikeda I., et al. Significance of Fas antigen mediated apoptosis in human hepatic failure. Am J Gastroenterol 2000; 95: 2047–2055PubMedCrossRefGoogle Scholar
  56. 56.
    Pereira S., Almeida J., Silva A.O., et al. Fatal liver necrosis due to allopurinol. Acta Med Port 1998; 11: 1141–1144PubMedGoogle Scholar
  57. 57.
    Bachot N., Revuz J., Roujeau J.C. Are intravenous immunoglobulins the treatment of Stevens-Johnson syndrome or toxic epidermal necrolysis? [abstract]. Allergologie 2001; 24: 214Google Scholar
  58. 58.
    Roujeau J., Bioulac-Sage P., Bourseau C. Acute generalized exanthematous pustulosis: analysis of 63 cases. Arch Dermatol 1991; 127: 1333–1338PubMedCrossRefGoogle Scholar
  59. 59.
    Wolkenstein P., Chosidow O., Fléchet M.L., et al. Patch-testing in severe cutaneous adverse drug reactions including Stevens-Johnson syndrome and toxic epidermal necrolysis. Contact Dermatitis 1996; 35: 234–236PubMedCrossRefGoogle Scholar
  60. 60.
    Knowles S.R., Shapiro L.E., Shear N.H. Anticonvulsant hypersensitivity syndrome: incidence, prevention and management. Drug Saf 1999; 21: 489–501PubMedCrossRefGoogle Scholar
  61. 61.
    Mauri-Hellweg D., Bettens F., Mauri D., et al. Activation of drug specific CD4+ and CD8+ T cells in individuals allergic to sulfonamides, phenytoin and carbamazepine. J Immunol 1995; 155: 462–472PubMedGoogle Scholar
  62. 62.
    Pichler W.J., Zanni M., Schnyder B., et al. Characterization of drug-specific T cells. In: Oehling A.K., Huerta Lopez JG, editors. Progress in allergy and clinical immunology. Seattle (WA): Hogrefe & Huber, 1997: 368–371Google Scholar
  63. 63.
    Descamps V., Valance A., Edlinger C., et al. Association of human herpesvirus 6 infection with drug reaction with eosinophilia and systemic symptoms. Arch Dermatol 2001; 137: 301–304PubMedGoogle Scholar
  64. 64.
    Hashimoto K., Toyama M. HHV-6 associated drug eruptions (HADE) [abstract]. Allergologie 2001; 24: 219Google Scholar
  65. 65.
    Arakawa M., Kakuto Y., Ichikawa K., et al. Allopurinol hypersensitivity syndrome associated with systemic cytomegalovirus infection and systemic bacteremia. Intern Med 2001; 40: 331–335PubMedCrossRefGoogle Scholar
  66. 66.
    Pichler W.J. Drug allergy: relationship between immunogenicity and clinical symptoms. Allergy 1999; 54 Suppl. 58: 5–7PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  • Werner J. Pichler
    • 1
  • Nikhil Yawalkar
    • 2
  • Markus Britschgi
    • 1
  • Jan Depta
    • 1
  • Ingrid Strasser
    • 1
  • Simone Schmid
    • 1
  • Petra Kuechler
    • 1
  • Dean Naisbitt
    • 1
  1. 1.Division of Allergology, Clinic for Rheumatology and Clinical Immunology/Allergology, InselspitalUniversity of BernBernSwitzerland
  2. 2.Harvard Skin Disease Research CenterBostonUSA

Personalised recommendations