American Journal of Clinical Dermatology

, Volume 1, Issue 4, pp 201–209

Is Acne an Infection of Blocked Pilosebaceous Follicles?

Implications for Antimicrobial Treatment
Leading Article

Abstract

A model is proposed which is based on the assumption that acne is due to infection of functionally blocked pilosebaceous follicles by propionibacteria. Noninflamed lesions, which are first visible during the adrenarche in acne-prone individuals, do not contain propionibacteria. Comedogenesis appears to be independent of bacterial infection and may be driven by high levels of bioactive interleukin-1α derived from ductal hyperkeratinocytes. The stimulus which triggers interleukin-1α production is unknown. Formalin killed Propionibacterium acnes failed to stimulate production of the cytokine by cultured human keratinocytes in vitro.

Inflamed lesions are thought to arise from microcomedones, but the initiating events are unknown. Evidence that propionibacteria are involved in the generation of inflammatory lesions is inconclusive. The cellular infiltrate is consistent with a type IV hypersensitivity response to one or more persistent lesional antigens, not necessarily bacterial. The potent adjuvant activity of P. acnes would up-regulate the immune response to any antigen which came into contact with the mononuclear cell infiltrate.

Antibiotics are widely used in the treatment of acne, and their effects in selecting a predominantly resistant commensal population are well recognized. Although they reduce numbers of propionibacteria on the skin, other modes of action may contribute to or explain their therapeutic efficacy. At a time when there is global concern that antibiotic resistance rates in common bacterial pathogens may threaten our future ability to control bacterial infections, practices which promote the spread of antibiotic-resistant bacteria must be fully justified. A thorough reappraisal of the role of propionibacteria in acne is overdue. It is likely that further experimental work is needed to confirm or refute that P. acnes is aptly named.

References

  1. 1.
    Stewart M.E., Downing D.T., Cook J.S., et al. Sebaceous gland activity and serum dehydroepiandrosterone sulphate levels in boys and girls. Arch Dermatol 1992; 128: 1345–1348PubMedCrossRefGoogle Scholar
  2. 2.
    Yamamoto A., Ito M. Sebaceous gland activity and urinary androgen levels in children. J Dermatol Sci 1992; 4: 98–104PubMedCrossRefGoogle Scholar
  3. 3.
    Lavker R.M., Leyden J.J., McGinley K.J. The relationship between bacteria and the abnormal follicular keratinisation in acne vulgaris. J Invest Dermatol 1981; 77: 325–330PubMedCrossRefGoogle Scholar
  4. 4.
    Pierard G.E., Pierard-Franchimont C., Le T. Seborrhoea in acne-prone and acne-free patients. Dermatologica 1987; 175: 5–9PubMedGoogle Scholar
  5. 5.
    Guy R., Kealey T. Modelling the infundibulum in acne. Dermatology 1998; 196: 32–37PubMedCrossRefGoogle Scholar
  6. 6.
    Walters C.E., Ingham E., Eady E.A., et al. In vitro modulation of keratinocyte-derived interleukin-1α (IL-1α) and peripheral blood mononuclear cell-derived IL-ß release in response to cutaneous commensal microorganisms. Infect Immun 1995; 63: 1223–1228PubMedGoogle Scholar
  7. 7.
    Marples R.R., Williamson P. Effects of systemic demethylchlortetracycline on human cutaneous microflora. Appl Microbiol 1969; 18: 228–234PubMedGoogle Scholar
  8. 8.
    Miskin J.E., Farrell A.M., Cunliffe W.J., et al. Propionibacterium acnes, a resident of lipid-rich human skin, produces a 33 kDA extracellular lipase encoded by gehA. Microbiology 1997; 143: 1745–1755PubMedCrossRefGoogle Scholar
  9. 9.
    Fulton J.E., Noble N.L., Bradley S., et al. The glycerol ester hydrolase (EC 3.1.1.3) from Corynebacterium acnes: a serine lipase. Biochemistry 1974; 13: 2320–2327PubMedCrossRefGoogle Scholar
  10. 10.
    Puhvel S.M., Sakamoto M. A reevaluation of fatty acids as inflammatory agents in acne. J Invest Dermatol 1977; 68: 93–97PubMedCrossRefGoogle Scholar
  11. 11.
    Weeks J.G., McCarty L., Fulton J.E. The inability of a bacterial lipase inhibitor to control acne vulgaris. J Invest Dermatol 1977; 69: 236–243PubMedCrossRefGoogle Scholar
  12. 12.
    Leeming J.P., Holland K.T., Cunliffe W.J. The pathological and ecological significance of microorganisms colonising acne vulgaris comedones. J Med Microbiol 1985; 20: 11–16PubMedCrossRefGoogle Scholar
  13. 13.
    Pochi P.E., Strauss J.S., Downing D.T. Skin surface lipid composition, acne, pubertal development and urinary excretion of testosterone and 17-ketosteroids in children. J Invest Dermatol 1977; 69: 485–489PubMedCrossRefGoogle Scholar
  14. 14.
    Lucky A.W., Biro F.M., Huster G.A., et al. Acne vulgaris in early adolescent boys: correlations with pubertal maturation and age. Arch Dermatol 1991; 127: 210–216PubMedCrossRefGoogle Scholar
  15. 15.
    Lucky A.W., Biro F.M., Simbartl L.A., et al. Predictors of severity of acne vulgaris in young adolescent girls: results of a five-year longitudinal study. J Pediatr 1997; 130: 30–39PubMedCrossRefGoogle Scholar
  16. 16.
    Aldana O.L., Holland D.B., Cunliffe W.J. Precomedonal events in acne. J Invest Dermatol 1996; 104: 488Google Scholar
  17. 17.
    Downing D.T., Stewart M.E., Wertz P.W., et al. Essential fatty acids and acne. J Am Acad Dermatol 1986; 14: 221–225PubMedCrossRefGoogle Scholar
  18. 18.
    Bomalaski J.S., Steiner M.R., Simon P.L., et al. IL-1 increases phospholipase A2 activating-protein, and release of linoleic acid from murine T helper cell line EL-4. J Immunol 1992; 148: 15–60Google Scholar
  19. 19.
    Camacho M., Godessart N., Vila L. IL-1 increases the ability of human endothelial cells to transform linoleic acid into monohydroxy-isomers and their incorporation into lipid. Adv Exp Med Biol 1997; 400B: 647–654PubMedGoogle Scholar
  20. 20.
    Baldie G., Kaimakamis D., Rotondo D. Fatty acid modulation of cytokine release from human monocytic cells. Biochim Biophys Acta 1993; 1179: 125–133PubMedCrossRefGoogle Scholar
  21. 21.
    Stewart M.E. Sebaceous gland lipids. Semin Dermatol 1992; 11: 100–105PubMedGoogle Scholar
  22. 22.
    Kirschbaum J.D., Kligman A.M. The pathogenic role of Corynebacterium acnes in acne vulgaris. Arch Dermatol 1963; 88: 832–833PubMedCrossRefGoogle Scholar
  23. 23.
    De Young L.M., Young J.M., Ballaron S.J., et al. Intradermal injection of Propionibacterium acnes: a model of inflammation relevant to acne. J Invest Dermatol 1984; 83: 394–398PubMedCrossRefGoogle Scholar
  24. 24.
    De Young L.M., Spires D.A., Ballaron S.J., et al. Acne-like chronic inflammatory activity of Propionibacterium acnes preparations in an animal model: correlation with ability to stimulate the reticuloendothelial system. J Invest Dermatol 1985; 85: 255–258PubMedCrossRefGoogle Scholar
  25. 25.
    Dalziel K., Dykes P.J., Marks R. Inflammation due to intra-cutaneous implantation of stratum corneum. Br J Exp Pathol 1984; 65: 107–115PubMedGoogle Scholar
  26. 26.
    Dalziel K., Dykes P.J., Marks R. The effect of tetracycline and erythromycin in a model of acne-type inflammation. Br J Exp Pathol 1987; 68: 67–70PubMedGoogle Scholar
  27. 27.
    Norris J.F.B., Cunliffe W.J. A histological and immunocytochemical study of early acne lesions. Br J Dermatol 1988; 118: 651–659PubMedCrossRefGoogle Scholar
  28. 28.
    Layton A.M., Morris C., Cunliffe W.J., et al. Immunohistochemical investigation of evolving inflammation in lesions of acne vulgaris. Exp Dermatol 1998; 7: 191–197PubMedCrossRefGoogle Scholar
  29. 29.
    Roszkowski W., Roszkowski K., Ko H.L., et al. Immunomodulation by propionibacteria. Zentralbl Bakteriol 1990; 274: 289–298PubMedCrossRefGoogle Scholar
  30. 30.
    Webster G.F., Leyden J.J., Musson R.A., et al. Susceptibility of Propionibacterium acnes to killing and degradation by human neutrophils and monocytes in vitro. Infect Immun 1985; 49: 116–121PubMedGoogle Scholar
  31. 31.
    Kersey P., Sussman M., Dahl M. Delayed skin test reactivity to Propionibacterium acnes correlates with severity of inflammation in acne vulgaris. Br J Dermatol 1980; 103: 651–655PubMedCrossRefGoogle Scholar
  32. 32.
    Ingham E. The immunology of Propionibacterium acnes and acne. Curr Opin Infect Dis 1999; 12: 191–197PubMedCrossRefGoogle Scholar
  33. 33.
    Leyden J.J., McGinley K.J., Mills O.H., et al. Age-related changes in the resident bacterial flora of the human face. J Invest Dermatol 1975; 65: 379–381PubMedCrossRefGoogle Scholar
  34. 34.
    Agache P., Blanc D., Barrand C., et al. Sebum levels during the first years of life. Br J Dermatol 1980; 103: 643–649PubMedCrossRefGoogle Scholar
  35. 35.
    Leyden J.J., McGinley K.J., Mills O.H., et al. Propionibacterium levels in patients with and without acne vulgaris. J Invest Dermatol 1975; 65: 382–384PubMedCrossRefGoogle Scholar
  36. 36.
    Pochi P.E., Strauss J.S., Downing D.T. Age-related changes in sebaceous gland activity. J Invest Dermatol 1979; 73: 108–111PubMedCrossRefGoogle Scholar
  37. 37.
    Puhvel S.M., Reisner R.M., Amirian D.A. Quantification of bacteria in isolated pilosebaceous follicles in normal skin. J Invest Dermatol 1975; 65: 525–531PubMedCrossRefGoogle Scholar
  38. 38.
    Leeming J.P., Holland K.T., Cunliffe W.J. The microbial colonisation of inflamed acne vulgaris lesions. Br J Dermatol 1988; 118: 203–208PubMedCrossRefGoogle Scholar
  39. 39.
    Bojar R.A., Cunliffe W.J., Holland K.T. The short-term treatment of acne vulgaris with benzoyl peroxide: effects on the surface and follicular cutaneous microflora. Br J Dermatol 1995; 132: 204–208PubMedCrossRefGoogle Scholar
  40. 40.
    Eady E.A., Cove J.H., Holland K.T., et al. Superior anti-bacterial action and reduced incidence of bacterial resistance in minocycline compared to tetracyclinetreated acne patients. Br J Dermatol 1990; 122: 233–244PubMedCrossRefGoogle Scholar
  41. 41.
    Cove J.H., Cunliffe W.J., Holland K.T. Acne vulgaris: is the bacterial population size significant? Br J Dermatol 1980; 102: 277–280PubMedCrossRefGoogle Scholar
  42. 42.
    Garner S.E., Eady E.A., Popescu C., et al. Minocycline for acne vulgaris: efficacy and safety. Cochrane Database Syst Rev 2000; 2: CD002086PubMedGoogle Scholar
  43. 43.
    Pulverer G., Ko H.L., Beuth J., et al. Tetracycline and 13-cis retinoic acid inhibit production and activity of granulocyte activating factor (GAF) from Propionibacterium acnes. Zentralbl Bakteriol 1990; 273: 362–368PubMedCrossRefGoogle Scholar
  44. 44.
    van Vlem B., Vanholder R., de Paepe P., et al. Immunomodulating effects of antibiotics: literature review. Infection 1996; 24: 275–291PubMedCrossRefGoogle Scholar
  45. 45.
    Humbert P., Treffel P., Chapuis J.F., et al. The tetracyclines in dermatology. J Am Acad Dermatol 1991; 25: 691–697PubMedCrossRefGoogle Scholar
  46. 46.
    Labro M.T. Anti-inflammatory activity of macrolides: a new therapeutic potential? J Antimicrob Chemother 1998; 41 Suppl. B: 37–46PubMedCrossRefGoogle Scholar
  47. 47.
    Webster G.F., Toso S.M., Hegemann L. Inhibition of a model of granuloma formation by tetracyclines and ciprofloxacin. Arch Dermatol 1994; 130: 748–752PubMedCrossRefGoogle Scholar
  48. 48.
    Plewig G., Schöpf E. Anti-inflammatory effects of antimicrobial agents: an in vivo study. J Invest Dermatol 1975; 65: 532–536PubMedCrossRefGoogle Scholar
  49. 49.
    Miyachi Y., Yoshioka A., Imamura S., et al. Effect of antibiotics on the generation of reactive oxygen species. J Invest Dermatol 1986; 86: 449–453PubMedCrossRefGoogle Scholar
  50. 50.
    Golub L.M., Lee H.M., Ryan M.E., et al. Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv Dent Res 1998; 12: 12–26PubMedCrossRefGoogle Scholar
  51. 51.
    Meneguzzi G., Partouche O., Ortonne J.P. Effect of minocycline on proliferation and differentiation of cultured normal human keratinocytes [abstract]. J Invest Dermatol 1997; 108: 377Google Scholar
  52. 52.
    Saint-Marie I., Tenaud I., Jumbou O., et al. Minocycline modulation of alpha-MSH production by keratinocytes in vitro. Arch Dermatol Venereol 1999; 79: 265–267CrossRefGoogle Scholar
  53. 53.
    Eady E.A., Cove J.H., Holland K.T., et al. Erythromycin resistant propionibacteria in antibiotic-treated acne patients: association with therapeutic failure. Br J Dermatol 1989; 121: 51–57PubMedCrossRefGoogle Scholar
  54. 54.
    Leyden J.J., McGinley K.J., Cavalieri S., et al. Propionibacterium acnes resistance to antibiotics in acne patients. J Am Acad Dermatol 1983; 8: 41–45PubMedCrossRefGoogle Scholar
  55. 55.
    Bojar R.A., Eady E.A., Jones C.E., et al. Inhibition of erythromycin-resistant propionibacteria on the skin of acne patients by topical erythromycin with and without zinc. Br J Dermatol 1994; 130: 329–336PubMedCrossRefGoogle Scholar
  56. 56.
    Eady E.A., Bojar R.A., Jones C.E., et al. The effects of acne treatment with a combination of benzoyl peroxide and erythromycin on skin carriage of erythromycin-resistant propionibacteria. Br J Dermatol 1996; 134: 107–113PubMedCrossRefGoogle Scholar
  57. 57.
    Verschoore M., Poncet M., Krebs B., et al. Circadian variations in the number of actively secreting sebaceous follicles and androgen circadian rhythms. Chronobiol Int 1993; 10: 349–359PubMedCrossRefGoogle Scholar
  58. 58.
    McGinley K.J., Webster G.F., Ruggieri M.R., et al. Regional variations in density of cutaneous propionibacteria: correlation of Propionibacterium acnes populations with sebaceous secretion. J Clin Microbiol 1980; 12: 672–675PubMedGoogle Scholar
  59. 59.
    Cove J.H., Holland K.T., Cunliffe W.J. An analysis of sebum excretion rate, bacterial population and the production rate of free fatty acids on human skin. Br J Dermatol 1980; 103: 383–386PubMedCrossRefGoogle Scholar
  60. 60.
    Kearney J.N., Ingham E., Cunliffe W.J., et al. Correlations between human skin bacteria and skin lipids. Br J Dermatol 1984; 110: 593–599PubMedCrossRefGoogle Scholar
  61. 61.
    Stewart M.E., Downing D.T. Measurement of sebum secretion rates in young children. J Invest Dermatol 1985; 84: 59–61PubMedCrossRefGoogle Scholar
  62. 62.
    Green S.C., Stewart M.E., Downing D.T. Variations in sebum fatty acid composition among adult humans. J Invest Dermatol 1984; 83: 114–117PubMedCrossRefGoogle Scholar
  63. 63.
    Williams M., Cunliffe W.J. Explanation for pre-menstrual acne. Lancet 1973; 2 (7837): 1055–1057PubMedCrossRefGoogle Scholar
  64. 64.
    Gardner K.J., Cunliffe W.J., Eady E.A., et al. Variation in comedonal antibiotic concentrations following application of topical tetracycline for acne vulgaris. Br J Dermatol 1994; 131: 649–654PubMedCrossRefGoogle Scholar
  65. 65.
    Guin J.D., Lummis W.L. Comedonal levels of free clindamycin following topical treatment with a 1% solution of clindamycin phosphate. J Am Acad Dermatol 1982; 7: 265–268PubMedCrossRefGoogle Scholar
  66. 66.
    Standing Medical Advisory Committee The path of least resistance: main report. London: Department of Health, 1998Google Scholar

Copyright information

© Adis International Limited 2000

Authors and Affiliations

  1. 1.The Skin Research Centre, Division of MicrobiologySchool of Biochemistry and Molecular Biology, The University of LeedsLeedsEngland

Personalised recommendations