Drugs in R & D

, Volume 7, Issue 1, pp 1–16 | Cite as

Targeting Virulence for Antibacterial Chemotherapy

Identifying and Characterising Virulence Factors for Lead Discovery
  • Andrea MarraEmail author
Review Article


The antibacterial drug discovery industry is fast losing participants; at the same time it is facing the challenge of developing new antibiotics that are effective against frequently occurring and multiply resistant organisms. One intriguing approach is to target bacterial virulence, and the last decade or so has seen a focus on bacterial pathogenesis along with the development of reagents and strategies that could make this possible. Several processes utilised by a range of bacteria to cause infection may be conserved enough to make attractive targets; indeed it is known that mammalian cells can affect bacterial gene expression and vice versa. Interesting targets involving virulence include type III secretion systems, two-component signal transduction systems, quorum sensing, and biofilm formation. In order to better understand these systems and strategies, investigators have developed novel strategies of their own, involving negative selections, surrogate models of infection, and screens for gene induction and antigenicity. Inhibitors of such targets would be unlikely to adversely affect patients, be cross-resistant to existing therapies, or cause resistance themselves. It might be the case that virulence target-based therapies would not be powerful enough to clear an existing infection alone, but if they are instead considered as adjunct therapy to existing antibiotics, or potentiators of the host immune response, they may show efficacy in a non-traditional way.


Virulence Factor Infection Model Gemifloxacin Virulence Target Virulence Factor Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



No funding was received for the preparation of this review.


  1. 1.
    Blasi F, Tarsia P, Cosentini R, et al. Newer antibiotics for the treatment of respiratory tract infections. Curr Opin Pulm Med 2004; 2004 (10): 189–96CrossRefGoogle Scholar
  2. 2.
    Projan SJ. New (and not so new) antibacterial targets -from where and when will the novel drugs come? Curr Opin Pharmacol 2002; 2: 513–22PubMedCrossRefGoogle Scholar
  3. 3.
    Projan SJ, Youngman PJ. Antimicrobials: new solutions badly needed. Curr Opin Microbiol 2002; 5: 463–5PubMedCrossRefGoogle Scholar
  4. 4.
    Williams P. Quorum sensing: an emerging target for antibacterial chemotherapy? Expert Opin Ther Targets 2002; 6 (3): 257–74PubMedCrossRefGoogle Scholar
  5. 5.
    Otto M. Quorum-sensing control in Staphylococci — a target for antimicrobial drug therapy? FEMS Microbiol Lett 2004; 241: 135–41PubMedCrossRefGoogle Scholar
  6. 6.
    Hentzer M, Eberl L, Nielsen J, et al. Quorum sensing: a novel target for the treatment of biofilm infections. Biodrugs 2003; 17 (4): 241–50PubMedCrossRefGoogle Scholar
  7. 7.
    Finch RG, Pritchard DI, Bycroft BW, et al. Quorum sensing: a novel target for anti-infective therapy. J Antimicrob Chemother 1998; 42: 569–71PubMedCrossRefGoogle Scholar
  8. 8.
    Goldschmidt R, Macielag M, Hlasta D, et al. Inhibition of virulence factors in bacteria. Curr Pharm Des 1997; 3: 125–42Google Scholar
  9. 9.
    Alksne LE. Virulence as a target for antimicrobial chemotherapy. Expert Opin Investig Drugs 2002; 11 (8): 1149–59PubMedCrossRefGoogle Scholar
  10. 10.
    Smith RS, Iglewski BH. Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J Clin Invest 2003; 112 (10): 1460–5PubMedGoogle Scholar
  11. 11.
    Muller S, Feldman MF, Cornelis GR. The type III secretion system of Gram-negative bacteria: a potential therapeutic target. Expert Opin Ther Targets 2001; 5 (3): 327–39PubMedCrossRefGoogle Scholar
  12. 12.
    Merrell DS, Falkow S. Frontal and stealth attack strategies in microbial pathogenesis. Nature 2004; 430: 250–6PubMedCrossRefGoogle Scholar
  13. 13.
    Miller V. Tissue-culture invasion: fact or artefact? Trends Microbiol 1995; 3 (2): 69–71PubMedCrossRefGoogle Scholar
  14. 14.
    Cazzola M, Matera MG, Page CP. Novel approaches to the treatment of pneumonia. Trends Pharmacol Sci 2003; 24 (6): 306–14PubMedCrossRefGoogle Scholar
  15. 15.
    Rediers H, Rainey PB, Vanderleyden J, et al. Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Biol Rev 2005; 69 (2): 217–61PubMedCrossRefGoogle Scholar
  16. 16.
    Hensel M, Shea JE, Gleeson C, et al. Simultaneous identification of bacterial virulence genes by negative selection. Science 1995; 269: 400–3PubMedCrossRefGoogle Scholar
  17. 17.
    Perry RD. Signature-tagged mutagenesis and the hunt for virulence factors. Trends Microbiol 1999; 7 (10): 385–8PubMedCrossRefGoogle Scholar
  18. 18.
    Shea JE, Santagelo JD, Feldman RG. Signature-tagged mutagenesis in the identification of virulence genes in pathogens. Curr Opin Microbiol 2000; 3: 451–8PubMedCrossRefGoogle Scholar
  19. 19.
    Mecsas J. Use of signature-tagged mutagenesis in pathogenesis studies. Curr Opin Microbiol 2002; 5: 33–7PubMedCrossRefGoogle Scholar
  20. 20.
    Autret N, Charbit A. Lessons from signature-tagged mutagenesis on the infectious mechanisms of pathogenic bacteria. FEMS Microbiol Rev 2005; 29: 703–17PubMedCrossRefGoogle Scholar
  21. 21.
    Merrell DS, Hava DL, Camilli A. Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol Microbiol 2002; 43 (6): 1471–91PubMedCrossRefGoogle Scholar
  22. 22.
    Lau GW, Haataja S, Lonetto M, et al. A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol Microbiol 2001; 40 (3): 555–71PubMedCrossRefGoogle Scholar
  23. 23.
    Polissi A, Pontiggia A, Feger G, et al. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun 1998; 66 (12): 5620–9PubMedGoogle Scholar
  24. 24.
    Hava DL, Camilli A. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 2002; 45 (5): 1389–405PubMedGoogle Scholar
  25. 25.
    Mei JM, Nourbakhsh F, Ford C, et al. Identification of Staphylococcus aureus virulence genes in a murine model of bacter-aemia using signature-tagged mutagenesis. Mol Microbiol 1997; 26 (2): 399–407PubMedCrossRefGoogle Scholar
  26. 26.
    Dziva F, van Diemen PM, Stevens MP, et al. Identification of Escherichia coli 0157: H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiology 2004; 150 (Pt 11): 3631–45PubMedCrossRefGoogle Scholar
  27. 27.
    Lehoux DE, Sanschagrin F, Levesque RC. Identification of in vivo essential genes from Pseudomonas aeruginosa by PCR-based signature-tagged mutagenesis. FEMS Microbiol Lett 2002; 210 (1): 73–80PubMedCrossRefGoogle Scholar
  28. 28.
    Flashner Y, Mamroud E, Tidhar A, et al. Generation of Yersinia pestis attenuated strains by signature-tagged mutagenesis in search of novel vaccine candidates. Infect Immun 2004; 72 (2): 908–15PubMedCrossRefGoogle Scholar
  29. 29.
    Flashner Y, Mamroud E, Tidhar A, et al. Identification of genes involved in Yersinia pestis virulence by signature-tagged mutagenesis. Adv Exp Med Biol 2003; 529: 31–3PubMedCrossRefGoogle Scholar
  30. 30.
    Leigh SA, Forman S, Perry RD, et al. Unexpected results from the application of signature-tagged mutagenesis to identify Yersinia pestis genes required for adherence and invasion. Microb Pathog 2005; 38 (5–6): 259–66PubMedCrossRefGoogle Scholar
  31. 31.
    Burall LS, Harro JM, Li X, et al. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun 2004; 72 (5): 2922–38PubMedCrossRefGoogle Scholar
  32. 32.
    Maroncle N, Balestrino D, Rich C, et al. Identification of Klebsiella pneumoniae genes involved in intestinal colonization and adhesion using signature-tagged mutagenesis. Infect Immun 2002; 70 (8): 4729–34PubMedCrossRefGoogle Scholar
  33. 33.
    Struve C, Forestier C, Krogfelt KA. Application of a novel multi-screening signature-tagged mutagenesis assay for identification of Klebsiella pneumoniae genes essential in colonization and infection. Microbiology 2003; 149 (Pt 1): 167–76PubMedCrossRefGoogle Scholar
  34. 34.
    Hunt TA, Kooi C, Sokol PA, et al. Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. Infect Immun 2004; 72 (7): 4010–22PubMedCrossRefGoogle Scholar
  35. 35.
    Benton BM, Zhang JP, Bond S, et al. Large-scale identification of genes required for full virulence of Staphylococcus aureus. J Bacteriol 2004; 186 (24): 8478–89PubMedCrossRefGoogle Scholar
  36. 36.
    Coulter SN, Schwan WR, Ng EY, et al. Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol Microbiol 1998; 30 (2): 393–404PubMedCrossRefGoogle Scholar
  37. 37.
    Rankin S, Isberg R. Identification of Legionella pneumophila promoters regulated by the macrophage intracellular environment. Infect Agents Dis 1993; 2 (4): 269–71PubMedGoogle Scholar
  38. 38.
    Mahan MJ, Slauch JM, Mekalanos JJ. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 1993; 259: 686–8PubMedCrossRefGoogle Scholar
  39. 39.
    Camilli A, Beattie DT, Mekalanos JJ. Use of genetic recombination as a reporter of gene expression. Proc Natl Acad Sci U S A 1994; 91: 2634–8PubMedCrossRefGoogle Scholar
  40. 40.
    Camilli A, Mekalanos J. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol Microbiol 1995; 18: 671–83PubMedCrossRefGoogle Scholar
  41. 41.
    Lai Y-C, Peng H-L, Chang H-Y. Identification of genes induced in vivo during Klebsiella pneumoniae CG43 infection. Infect Immun 2001; 69 (11): 7140–5PubMedCrossRefGoogle Scholar
  42. 42.
    Mahan MJ, Tobias JW, Slauch JM, et al. Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Natl Acad Sci U S A 1995; 92: 669–73PubMedCrossRefGoogle Scholar
  43. 43.
    Bartoleschi C, Pardini MC, Scaringi C, et al. Selection of Shigella flexneri candidate virulence genes specifically induced in bacteria resident in host cell cytoplasm. Mol Micro-biol 2002; 4 (9): 613–26Google Scholar
  44. 44.
    Wang J, Mushegian A, Lory S, et al. Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo expression. Proc Natl Acad Sci U S A 1996; 93 (19): 10434–9PubMedCrossRefGoogle Scholar
  45. 45.
    Handfield M, Lehoux DE, Sanschagrin F, et al. In vivo-induced genes in Pseudomonas aeruginosa. Infect Immun 2000; 68 (4): 2359–62PubMedCrossRefGoogle Scholar
  46. 46.
    Lowe AM, Beattie DT, Deresiewicz RL. Identification of novel staphylococcal virulence genes by in vivo expression technology. Mol Microbiol 1998; 27 (5): 967–76PubMedCrossRefGoogle Scholar
  47. 47.
    Valdivia RH, Falkow S. Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol 1996; 22 (2): 367–78PubMedCrossRefGoogle Scholar
  48. 48.
    Schneider WP, Ho SK, Christine J, et al. Virulence gene identification by differential fluorescence induction analysis of Staphylococcus aureus gene expression during infection-simulating culture. Infect Immun 2002; 70 (3): 1326–33PubMedCrossRefGoogle Scholar
  49. 49.
    Marra A, Asundi J, Bartilson M, et al. Differential fluorescence induction analysis of Streptococcus pneumoniae identifies genes involved in pathogenesis. Infect Immun 2002; 70 (3): 1422–33PubMedCrossRefGoogle Scholar
  50. 50.
    Badger J, Wass C, Kim K. Identification of Escherichia coli K1 genes contributing to human brain microvascular endothelial cell invasion by differential fluorescence induction. Mol Microbiol 2000; 36 (1): 174–82PubMedCrossRefGoogle Scholar
  51. 51.
    Rollins SM, Peppercorn A, Hang L, et al. In vivo induced antigen technology (IVIAT). Cell Microbiol 2005; 7 (1): 1–9PubMedCrossRefGoogle Scholar
  52. 52.
    Salim KY, Cvitkovitch DG, Chang P, et al. Identification of group A Streptococcus antigenic determinants upregulated in vivo. Infect Immun 2005; 73 (9): 6026–38PubMedCrossRefGoogle Scholar
  53. 53.
    John M, Kudva IT, Griffin RW, et al. Use of in vivo-induced antigen technology for identification of Escherichia coli 0157: H7 proteins expressed during human infection. Infect Immun 2005; 73 (5): 2665–79PubMedCrossRefGoogle Scholar
  54. 54.
    Li Y, Frey E, Mackenzie AMR, et al. Human response to Escherichia coli 0157: H7 infection: antibodies to secreted virulence factors. Infect Immun 2000; 68 (9): 5090–5PubMedCrossRefGoogle Scholar
  55. 55.
    Deb DK, Dahiya P, Srivastava KK, et al. Selective identification of new therapeutic targets of Mycobacterium tuberculosis by IVIAT approach. Tuberculosis (Edinb) 2002; 82 (4–5): 175–82CrossRefGoogle Scholar
  56. 56.
    Chang B, Kura F, Ameemura-Maekawa J, et al. Identification of a novel adhesion molecule involved in the virulence of Legionella pneumophila. Infect Immun 2005; 73 (7): 4272–80PubMedCrossRefGoogle Scholar
  57. 57.
    Etz H, Minh DB, Henics T, et al. Identification of in vivo expressed vaccine candidate antigens from Staphylococcus aureus. Proc Natl Acad Sci U S A 2002; 99 (10): 6573–8PubMedCrossRefGoogle Scholar
  58. 58.
    Weichhart T, Horky M, Sollner J, et al. Functional selection of vaccine candidate peptides from Staphylococcus aureus whole-genome expression libraries in vitro. Infect Immun 2003; 71 (8): 4633–41PubMedCrossRefGoogle Scholar
  59. 59.
    Hang L, John M, Asaduzzaman M, et al. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc Natl Acad Sci U S A 2003; 100 (14): 8508–13PubMedCrossRefGoogle Scholar
  60. 60.
    Kim YR, Lee SE, Kim CM, et al. Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun 2003; 71 (10): 5461–71PubMedCrossRefGoogle Scholar
  61. 61.
    LaRocque RC, Harris JB, Dziejman M, et al. Transcriptional profiling of Vibrio cholerae recovered directly from patient specimens during early and late stages of human infection. Infect Immun 2005; 73 (8): 4488–93PubMedCrossRefGoogle Scholar
  62. 62.
    Garcia-Suarez Mdel M, Cima-Cabal MD, Florez N, et al. Protection against pneumococcal pneumoniae in mice by monoclonal antibodies to pneumolysin. Infect Immun 2004; 72 (8): 4534–40PubMedCrossRefGoogle Scholar
  63. 63.
    Coats MT, Benjamin WH, Hollingshead SK, et al. Antibodies to the pneumococcal surface protein A, PspA, can be produced in splenectomized mice and can protect splenectomized mice from infection with Streptococcus pneumoniae. Vaccine 2005; 23 (33): 4257–62PubMedCrossRefGoogle Scholar
  64. 64.
    Cote CK, Rossi CA, Kang AS, et al. The detection of protective antigen (PA) associated with spores of Bacillus anthracis and the effects of anti-PA antibodies on spore germination and macrophage interactions. Microb Pathog 2005; 38 (5–6): 209–25PubMedCrossRefGoogle Scholar
  65. 65.
    Sassetti C, Rubin EJ. Genomic analyses of microbial virulence. Curr Opin Microbiol 2002; 5: 27–32PubMedCrossRefGoogle Scholar
  66. 66.
    Opperman T, Ling LL, Moir DT. Microbial pathogen genomesnew strategies for identifying therapeutic and vaccine targets. Expert Opin Ther Targets 2003; 7 (4): 469–73PubMedCrossRefGoogle Scholar
  67. 67.
    Field D, Hughes J, Moxon ER. Genomics, proteomics, and clinical bacteriology: methods and reviews. In: Woodford N, Johnson AP, editors. Methods in molecular biology. Totowa (NJ): Humana Press, 2004: 261–88Google Scholar
  68. 68.
    Polissi A, Soria MR. Functional genomics of bacterial pathogens: from post-genomics to therapeutic targets. Mol Microbiol 2005; 57 (2): 307–12PubMedCrossRefGoogle Scholar
  69. 69.
    Oelschlaeger TA, Hacker J. Impact of pathogenicity islands in bacterial diagnostics. APMIS 2004; 112 (11–12): 930–6PubMedCrossRefGoogle Scholar
  70. 70.
    Orihuela CJ, Radin JN, Sublett JE, et al. Microarray analysis of pneumococcal gene expression during invasive disease. Infect Immun 2004; 72 (10): 5582–96PubMedCrossRefGoogle Scholar
  71. 71.
    Snyder JA, Haugen BJ, Buckles EL, et al. Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun 2004; 72 (11): 6373–81PubMedCrossRefGoogle Scholar
  72. 72.
    Tzou P, de Gregorio E, Lemaitre B. How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr Opin Microbiol 2002; 5: 102–10PubMedCrossRefGoogle Scholar
  73. 73.
    Diehn M, Relman DA. Comparing functional genomic datasets: lessons from DNA microarray analyses of host-pathogen interactions. Curr Opin Microbiol 2001; 4 (1): 95–101PubMedCrossRefGoogle Scholar
  74. 74.
    Pradel E, Ewbank JJ. Genetic models in pathogenesis. Ann Rev Genet 2004; 38: 347–63PubMedCrossRefGoogle Scholar
  75. 75.
    Garcia-Lara J, Needham AJ, Foster SJ. Invertebrates as animal models for Staphylococcus aureus pathogenesis: a window into host-pathogen interaction. FEMS Immunol Med Microbiol 2005; 43: 311–23PubMedCrossRefGoogle Scholar
  76. 76.
    Sifri CD, Begun J, Ausubel FM. The worm has turned -microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol 2005; 13 (3): 119–27PubMedCrossRefGoogle Scholar
  77. 77.
    Mylonakis E, Aballay A. Worms and flies as genetically tractable animal models to study host-pathogen interactions. Infect Immun 2005; 73 (7): 3833–41PubMedCrossRefGoogle Scholar
  78. 78.
    Hamamoto H, Kurokawa K, Kaito C, et al. Quantitative evaluation of the therapeutic effects of antibiotics using silkworms infected with human pathogenic microorganisms. Antimicrob Agents Chemother 2004; 48 (3): 774–9PubMedCrossRefGoogle Scholar
  79. 79.
    Mylonakis E, Ausubel FM, Tang RJ, et al. The art of serendipity: killing of Caenorhabditis elegans by human pathogens as a model of bacterial and fungal pathogenesis. Expert Rev Anti Infect Ther 2003; 1 (1): 167–73PubMedCrossRefGoogle Scholar
  80. 80.
    Sifri CD, Begun J, Ausubel FM, et al. Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 2003; 71 (4): 2208–17PubMedCrossRefGoogle Scholar
  81. 81.
    Bae T, Banger AK, Wallace A, et al. Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci U S A 2004; 101 (33): 12312–7PubMedCrossRefGoogle Scholar
  82. 82.
    Macielag M, Goldschmidt R. Inhibitors of bacterial two-component signalling systems. Expert Opin Investig Drugs 2000; 9 (10): 2351–69PubMedCrossRefGoogle Scholar
  83. 83.
    Throup JP, Koretke KK, Bryant AP, et al. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol Microbiol 2000; 35 (3): 566–76PubMedCrossRefGoogle Scholar
  84. 84.
    Blue CE, Mitchell TJ. Contribution of a response regulator to the virulence of Streptococcus pneumoniae is strain dependent. Infect Immun 2003; 71 (8): 4405–13PubMedCrossRefGoogle Scholar
  85. 85.
    Mandin P, Fsihi H, Dussurget O, et al. Vir®, a response regulator critical for Listeria monocytogenes virulence. Mol Microbiol 2005; 57 (5): 1367–80PubMedCrossRefGoogle Scholar
  86. 86.
    Rickman L, Saldanha JW, Hunt D, et al. A two-component signal transduction system with a PAS domain-containing sensor is required for virulence of Mycobacterium tuberculosis in mice. Biochem Biophys Res Commun 2004; 314: 259–67PubMedCrossRefGoogle Scholar
  87. 87.
    Hueck C. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 1998; 62: 379–433PubMedGoogle Scholar
  88. 88.
    Gauthier A, Thomas NA, Finlay BB. Bacterial injection machines. J Biol Chem 2003; 278 (28): 25273–6PubMedCrossRefGoogle Scholar
  89. 89.
    Gauthier A, Finlay BB. Bacterial pathogenesis: the answer to virulence is in the pore. Curr Biol 2001; 11: R264–7PubMedCrossRefGoogle Scholar
  90. 90.
    Ader F, Le Berre R, Faure K, et al. Alveolar response to Pseudomonas aeruginosa: role of the type III secretion system. Infect Immun 2005; 73 (7): 4263–71PubMedCrossRefGoogle Scholar
  91. 91.
    Kauppi AM, Nordfelth R, Uvell H, et al. Targeting bacterial virulence: inhibitors of type III secretion in Yersinia. Chem Biol 2003; 10: 241–9PubMedCrossRefGoogle Scholar
  92. 92.
    Nordfelth R, Kauppi AM, Norberg HA, et al. Small-molecule inhibitors specifically targeting Type III secretion. Infect Immun 2005; 73 (5): 3104–14PubMedCrossRefGoogle Scholar
  93. 93.
    Hentzer M, Givskov M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 2003; 112: 1300–7PubMedGoogle Scholar
  94. 94.
    Tateda K, Comte R, Pechere J-C, et al. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2001; 45 (6): 1930–3PubMedCrossRefGoogle Scholar
  95. 95.
    Jones MB, Jani R, Ren D, et al. Inhibition of Bacillus anthracis growth and virulence-gene expression by inhibitors of quorum-sensing. J Infect Dis 2005; 191: 1881–9PubMedCrossRefGoogle Scholar
  96. 96.
    Hentzer M, Wu H, Anderson JB, et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 2003; 22 (15): 3803–15PubMedCrossRefGoogle Scholar
  97. 97.
    Wu H, Song Z, Hentzer M, et al. Synthetic furanones inhibit quorum sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 2004; 53 (6): 1054–61PubMedCrossRefGoogle Scholar
  98. 98.
    Rasmussen TB, Bjarnsholt T, Skindersoe ME, et al. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 2005; 187 (5): 1799–814PubMedCrossRefGoogle Scholar
  99. 99.
    Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother 2001; 45 (4): 999–1007PubMedCrossRefGoogle Scholar
  100. 100.
    Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2003; 2: 114–22PubMedCrossRefGoogle Scholar
  101. 101.
    Leid JG, Shirtliff ME, Costerton JW, et al. Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 2002; 70 (11): 6339–45PubMedCrossRefGoogle Scholar
  102. 102.
    Schembri MA, Kjaergaard K, Klemm P. Global gene expression in Escherichia coli biofilms. Mol Microbiol 2003; 48 (1): 253–67PubMedCrossRefGoogle Scholar
  103. 103.
    Tomlin KL, Malott RJ, Ramage G, et al. Quorum-sensing mutations affect attachment and stability of Burkholderia cenocepacia biofilms. Appl Environ Microbiol 2005; 71 (9): 5208–18PubMedCrossRefGoogle Scholar
  104. 104.
    Boles BR, Thoendel M, Singh PK. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 2005; 57 (5): 1210–23PubMedCrossRefGoogle Scholar
  105. 105.
    Hoffman LR, D’Argenio DA, MacCoss MJ, et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005; 436: 1171–5PubMedCrossRefGoogle Scholar
  106. 106.
    Blasi F, Tarsia P, Aliberti S. Strategic targets of essential hostpathogen interactions. Respiration 2005; 72: 9–25PubMedCrossRefGoogle Scholar
  107. 107.
    Chun CK, Ozer EA, Welsh MJ, et al. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Natl Acad Sci U S A 2004; 101 (10): 3587–90PubMedCrossRefGoogle Scholar
  108. 108.
    Weiss G. Modification of iron regulation by the inflammatory response. Best Pract Res Clin Haematol 2005; 18 (2): 183–201PubMedCrossRefGoogle Scholar
  109. 109.
    Lysenko ES, Ratner AJ, Nelson AL, et al. The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLoS Pathog 2005; 1 (1): 1–9CrossRefGoogle Scholar
  110. 110.
    Apidianakis Y, Mindrinos MN, Xiao W, et al. Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc Natl Acad Sci U S A 2005; 102 (7): 2573–8PubMedCrossRefGoogle Scholar
  111. 111.
    Zaharik ML, Vallance BA, Puente JL, et al. Host-pathogen interactions: host resistance factor Nramp1 up-regulates the expression of Salmonella pathogenicity island-2 virulence genes. Proc Natl Acad Sci U S A 2002; 99 (24): 15705–10PubMedCrossRefGoogle Scholar
  112. 112.
    Tateda K, Ishii Y, Matsumoto T, et al. Potential of macrolide antibiotics to inhibit protein synthesis of Pseudomonas aeruginosa: suppression of virulence factors and stress response. J Infect Chemother 2000; 6 (1): 1–7PubMedCrossRefGoogle Scholar
  113. 113.
    Tateda K, Standiford TJ, Pechere JC, et al. Regulatory effects of macrolides on bacterial virulence: potential role as quorumsensing inhibitors. Curr Pharm Des 2004; 10 (25): 3055–65PubMedCrossRefGoogle Scholar
  114. 114.
    Dal Sasso M, Culici M, Bovio C, et al. Gemifloxacin: effects of sub-inhibitory concentrations on various factors affecting bacterial virulence. Int J Antimicrob Agents 2003; 21 (4): 325–33CrossRefGoogle Scholar
  115. 115.
    Gemmell CG, Ford CW. Virulence factor expression by Gram-positive cocci exposed to subinhibitory concentrations of linezolid. J Antimicrob Chemother 2002; 50 (5): 665–72PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  1. 1.Antibacterial DiscoveryPfizer Inc.GrotonUSA

Personalised recommendations