BioDrugs

, Volume 23, Issue 3, pp 165–174

Pharmaceuticals Targeting Nonsense Mutations in Genetic Diseases

Progress in Development
Drug Development

Abstract

Premature termination codons (PTCs) are a cause of numerous genetic disorders spanning diseases that affect children and adults, and are produced by base pair substitutions that create abnormal stop codons within the open reading frame. Several ribosome-binding drugs, including select aminoglycosides and synthetic novel small molecules, induce ‘translational readthrough’ of PTCs, restoring full-length functional protein in a number of preclinical and clinical settings. In this review, we examine the mechanistic underpinnings of PTC suppression, including the nature of the interactions between agents that suppress PTCs and the eukaryotic ribosome regulation of transcript levels in eukaryotic cells, and the importance of the mRNA context in suppression of PTCs. We also examine results from proof-of-concept studies in preclinical model systems and clinical trials (with a focus on PTC124). Several of the published studies in cystic fibrosis have reported improvements in cystic fibrosis transmembrane conductance regulator (CFTR) biomarkers during short-term evaluation, including topical and systemic aminoglycoside treatment, and oral dosing with PTC124. These results, coupled with our improved understanding of how translation termination is regulated at PTCs, will help guide future directions of research involving this innovative treatment strategy for genetic diseases.

References

  1. 1.
    Kellermayer R. Translational readthrough induction of pathogenic nonsense mutations. Eur J Med Genet 2006 Nov–Dec; 49(6): 445–50PubMedCrossRefGoogle Scholar
  2. 2.
    Linde L, Kerem B. Introducing sense into nonsense in treatments of genetic disease. Trends Genet 2008 Nov; 24(11): 552–63PubMedCrossRefGoogle Scholar
  3. 3.
    Krawczak M, Ball EV, Fenton I, et al. Human gene mutation database: a biomedical information and research resource. Hum Mutat 2000; 15(1): 45–51PubMedCrossRefGoogle Scholar
  4. 4.
    Hermann T. Aminoglycoside antibiotics: old drugs and new therapeutic approaches. Cell Mol Life Sci 2007 Jul; 64(14): 1841–52PubMedCrossRefGoogle Scholar
  5. 5.
    Schatz A, Bugie E, Waksman SA. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria, 1944. Clin Orthop Relat Res 2005 Aug; 437: 3–6PubMedCrossRefGoogle Scholar
  6. 6.
    Jones D, Metzger HJ, Schatz A, et al. Control of Gram-negative bacteria in experimental animals by streptomycin. Science 1944 Aug 4; 100(2588): 103–5PubMedCrossRefGoogle Scholar
  7. 7.
    Moazed D, Noller HF. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 1987 Jun 4–10; 327(6121): 389–94PubMedCrossRefGoogle Scholar
  8. 8.
    Hermann T. Drugs targeting the ribosome. Curr Opin Struct Biol 2005 Jun; 15(3): 355–66PubMedCrossRefGoogle Scholar
  9. 9.
    Ogle JM, Ramakrishnan V. Structural insights into translational fidelity. Annu Rev Biochem 2005; 74: 129–77PubMedCrossRefGoogle Scholar
  10. 10.
    Shandrick S, Zhao Q, Han Q, et al. Monitoring molecular recognition of the ribosomal decoding site. Angew Chem Int Ed Engl 2004 Jun 14; 43(24): 3177–82PubMedCrossRefGoogle Scholar
  11. 11.
    Francois B, Russell RJ, Murray JB, et al. Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding. Nucleic Acids Res 2005; 33(17): 5677–90PubMedCrossRefGoogle Scholar
  12. 12.
    Vakulenko SB, Mobashery S. Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 2003 Jul; 16(3): 430–50PubMedCrossRefGoogle Scholar
  13. 13.
    Mingeot-Leclercq MP, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother 1999 May; 43(5): 1003–12PubMedGoogle Scholar
  14. 14.
    Fischel-Ghodsian N. Genetic factors in aminoglycoside toxicity. Pharmacogenomics 2005 Jan; 6(1): 27–36PubMedCrossRefGoogle Scholar
  15. 15.
    Guan MX, Fischel-Ghodsian N, Attardi G. A biochemical basis for the inherited susceptibility to aminoglycoside ototoxicity. Hum Mol Genet 2000 Jul 22; 9(12): 1787–93PubMedCrossRefGoogle Scholar
  16. 16.
    Kondo J, Urzhumtsev A, Westhof E. Two conformational states in the crystal structure of the Homo sapiens cytoplasmic ribosomal decoding A site. Nucleic Acids Res 2006; 34(2): 676–85PubMedCrossRefGoogle Scholar
  17. 17.
    Kondo J, Francois B, Urzhumtsev A, et al. Crystal structure of the Homo sapiens cytoplasmic ribosomal decoding site complexed with apramycin. Angew Chem Int Ed Engl 2006 May 12; 45(20): 3310–14PubMedCrossRefGoogle Scholar
  18. 18.
    Hermann T, Tereshko V, Skripkin E, et al. Apramycin recognition by the human ribosomal decoding site. Blood Cells Mol Dis 2007 May–Jun; 38(3): 193–8PubMedCrossRefGoogle Scholar
  19. 19.
    Gorini L, Kataja E. Phenotypic repair by streptomycin of defective genotypes in E. coli. Proc Natl Acad Sci U S A 1964 Mar; 51: 487–93PubMedCrossRefGoogle Scholar
  20. 20.
    Bonetti B, Fu L, Moon J, et al. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 1995 Aug 18; 251(3): 334–45PubMedCrossRefGoogle Scholar
  21. 21.
    Brown CM, Stockwell PA, Trotman CN, et al. Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes. Nucleic Acids Res 1990 Nov 11; 18(21): 6339–45PubMedCrossRefGoogle Scholar
  22. 22.
    Keeling KM, Lanier J, Du M, et al. Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA 2004 Apr; 10(4): 691–703PubMedCrossRefGoogle Scholar
  23. 23.
    Bedwell DM, Kaenjak A, Benos DJ, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 1997 Nov; 3(11): 1280–4PubMedCrossRefGoogle Scholar
  24. 24.
    Welch EM, Barton ER, Zhuo J, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007 May 3; 447(7140): 87–91PubMedCrossRefGoogle Scholar
  25. 25.
    Khajavi M, Inoue K, Lupski JR. Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur J Hum Genet 2006 Oct; 14(10): 1074–81PubMedCrossRefGoogle Scholar
  26. 26.
    Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 1996 Apr; 2(4): 467–9PubMedCrossRefGoogle Scholar
  27. 27.
    Keeling KM, Bedwell DM. Clinically relevant aminoglycosides can suppress disease-associated premature stop mutations in the IDUA and P53 cDNAs in a mammalian translation system. J Mol Med 2002 Jun; 80(6): 367–76PubMedCrossRefGoogle Scholar
  28. 28.
    Keeling KM, Brooks DA, Hopwood JJ, et al. Gentamicin-mediated suppression of Hurler syndrome stop mutations restores a low level of alpha-L-iduronidase activity and reduces lysosomal glycosaminoglycan accumulation. Hum Mol Genet 2001 Feb 1; 10(3): 291–9PubMedCrossRefGoogle Scholar
  29. 29.
    Manuvakhova M, Keeling K, Bedwell DM. Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA 2000 Jul; 6(7): 1044–55PubMedCrossRefGoogle Scholar
  30. 30.
    Howard MT, Anderson CB, Fass U, et al. Readthrough of dystrophin stop codon mutations induced by aminoglycosides. Ann Neurol 2004 Mar; 55(3): 422–6PubMedCrossRefGoogle Scholar
  31. 31.
    Howard MT, Shirts BH, Petros LM, et al. Sequence specificity of aminoglycoside-induced stop codon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann Neurol 2000 Aug; 48(2): 164–9PubMedCrossRefGoogle Scholar
  32. 32.
    Bidou L, Hatin I, Perez N, et al. Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Ther 2004 Apr; 11(7): 619–27PubMedCrossRefGoogle Scholar
  33. 33.
    Amrani N, Ganesan R, Kervestin S, et al. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 2004 Nov 4; 432(7013): 112–8PubMedCrossRefGoogle Scholar
  34. 34.
    Wang W, Czaplinski K, Rao Y, et al. The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J 2001 Feb 15; 20(4): 880–90PubMedCrossRefGoogle Scholar
  35. 35.
    Weng Y, Czaplinski K, Peltz SW. Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover. Mol Cell Biol 1996 Oct; 16(10): 5491–506PubMedGoogle Scholar
  36. 36.
    Poole E, Tate W. Release factors and their role as decoding proteins: specificity and fidelity for termination of protein synthesis. Biochim Biophys Acta 2000 Sep 7; 1493(1–2): 1–11PubMedGoogle Scholar
  37. 37.
    Maquat LE. Nonsense-mediated mRNA decay. Curr Biol 2002 Mar 19; 12(6): R196–7PubMedCrossRefGoogle Scholar
  38. 38.
    Schell T, Kulozik AE, Hentze MW. Integration of splicing, transport and translation to achieve mRNA quality control by the nonsense-mediated decay pathway. Genome Biol 2002; 3(3): REVIEWS1006PubMedCrossRefGoogle Scholar
  39. 39.
    Linde L, Boelz S, Nissim-Rafinia M, et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest 2007; 117: 683–97PubMedCrossRefGoogle Scholar
  40. 40.
    Nudelman I, Rebibo-Sabbah A, Shallom-Shezifi D, et al. Redesign of aminoglycosides for treatment of human genetic diseases caused by premature stop mutations. Bioorg Med Chem Lett 2006 Dec 15; 16(24): 6310–5PubMedCrossRefGoogle Scholar
  41. 41.
    Kondo J, Hainrichson M, Nudelman I, et al. Differential selectivity of natural and synthetic aminoglycosides towards the eukaryotic and prokaryotic decoding A sites. Chembiochem 2007 Sep 24; 8(14): 1700–9PubMedCrossRefGoogle Scholar
  42. 42.
    Hainrichson M, Nudelman I, Baasov T. Designer aminoglycosides: the race to develop improved antibiotics and compounds for the treatment of human genetic diseases. Org Biomol Chem 2008 Jan 21; 6(2): 227–39PubMedCrossRefGoogle Scholar
  43. 43.
    Arakawa M, Shiozuka M, Nakayama Y, et al. Negamycin restores dystrophin expression in skeletal and cardiac muscles of mdx mice. J Biochem 2003 Nov; 134(5): 751–8PubMedCrossRefGoogle Scholar
  44. 44.
    Barton-Davis ER, Cordier L, Shoturma DI, et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 1999 Aug; 104(4): 375–81PubMedCrossRefGoogle Scholar
  45. 45.
    Du M, Jones JR, Lanier J, et al. Aminoglycoside suppression of a premature stop mutation in a Cftr-/- mouse carrying a human CFTR-G542X transgene. J Mol Med 2002; 80(9): 595–604PubMedCrossRefGoogle Scholar
  46. 46.
    Du M, Keeling KM, Fan L, et al. Clinical doses of amikacin provide more effective suppression of the human CFTR-G542X stop mutation than gentamicin in a transgenic CF mouse model. J Mol Med 2006 Jul; 84(7): 573–82PubMedCrossRefGoogle Scholar
  47. 47.
    Du M, Liu X, Welch EM, et al. PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc Natl Acad Sci U S A 2008 Feb 12; 105(6): 2064–69PubMedCrossRefGoogle Scholar
  48. 48.
    Wilschanski M, Dupuis A, Ellis L, et al. Mutations in the cystic fibrosis transmembrane regulator gene and in vivo transepithelial potentials. Am J Respir Crit Care Med 2006 Oct 1; 174(7): 787–94PubMedCrossRefGoogle Scholar
  49. 49.
    Wilschanski M, Yahav Y, Yaacov Y, et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 2003 Oct 9; 349(15): 1433–41PubMedCrossRefGoogle Scholar
  50. 50.
    Wilschanski M, Famini C, Blau H, et al. A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutations. Am J Respir Crit Care Med 2000 Mar; 161 (3 Pt 1): 860–5PubMedGoogle Scholar
  51. 51.
    Clancy JP, Bebok Z, Ruiz F, et al. Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am J Respir Crit Care Med 2001 Jun; 163(7): 1683–92PubMedGoogle Scholar
  52. 52.
    Sermet-Gaudelus I, Renouil M, Fajac A, et al. In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis: a pilot study. BMC Med 2007; 5: 5PubMedCrossRefGoogle Scholar
  53. 53.
    Clancy JP, Rowe SM, Bebok Z, et al. No detectable improvements in cystic fibrosis transmembrane conductance regulator by nasal aminoglycosides in patients with cystic fibrosis with stop mutations. Am J Respir Cell Mol Biol 2007 Jul; 37(1): 57–66PubMedCrossRefGoogle Scholar
  54. 54.
    Clancy JP, Konstan MW, Rowe SM, et al. A phase II study of PTC124 in CF patients harboring premature stop mutations [abstract]. Ped Pulmonol Suppl 2006; 41(S29): 269Google Scholar
  55. 55.
    Kerem E, Hirawat S, Armoni S, et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 2008 Aug 30; 372(9640): 719–27PubMedCrossRefGoogle Scholar
  56. 56.
    Politano L, Nigro G, Nigro V, et al. Gentamicin administration in Duchenne patients with premature stop codon: preliminary results. Acta Myol 2003 May; 22(1): 15–21PubMedGoogle Scholar
  57. 57.
    Pinotti M, Rizzotto L, Chuansumrit A, et al. Gentamicin induces subtherapeutic levels of coagulation factor VII in patients with nonsense mutations. J Thromb Haemost 2006 Aug; 4(8): 1828–30PubMedCrossRefGoogle Scholar
  58. 58.
    Kerem E, Hirawat S, Armoni S, et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 2008 Aug 30; 372(9640): 719–27PubMedCrossRefGoogle Scholar
  59. 59.
    Rowe SM, Varga K, Rab A, et al. Restoration of W1282X CFTR activity by enhanced expression. Am J Respir Cell Mol Biol 2007 Sep; 37(3): 347–56Google Scholar
  60. 60.
    Linde L, Boelz S, Nissim-Rafinia M, et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest 2007 Mar; 117(3): 683–92CrossRefGoogle Scholar
  61. 61.
    Rowe SM, Accurso F, Clancy JP. Detection of cystic fibrosis transmembrane conductance regulator activity in early-phase clinical trials. Proc Am Thorac Soc 2007 Aug; 4(4): 387–98PubMedCrossRefGoogle Scholar
  62. 62.
    Pedemonte N, Lukacs GL, Du K, et al. Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest 2005 Sep; 115(9): 2564–71PubMedCrossRefGoogle Scholar
  63. 63.
    VanGoor F, Straley KS, Cao D, et al. Rescue of deltaF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol Lung Cell Mol Physiol 2006 Jun; 290(6): L1117–30PubMedCrossRefGoogle Scholar
  64. 64.
    Sermet-Gaudelus I, DeBoeck C, Casimir G, et al. Children with nonsense-mutation-mediated cystic fibrosis response to investigational treatment with PTC124 [abstract]. Ped Pulmonol Suppl 2008; 31: 294Google Scholar
  65. 65.
    Kerem E, Yaacov Y, Armoni S, et al. PTC124 induces time-dependent improvements in chloride conductance and clinical parameters in patients with nonsense-mutation-mediated cystic fibrosis [abstract]. Ped Pulmonol Suppl 2008; 31: 294Google Scholar
  66. 66.
    Accurso FJ, Rowe SM, Durie PR, et al. Interim results of phase 2A study of VX-770 to evaluate safety, pharmacokinetics, and biomarkers of CFTR activity in cystic fibrosis subjects with G551D [abstract]. Ped Pulmonol Suppl 2008; 31: A267Google Scholar
  67. 67.
    Wilschanski M, Armoni S, Yaacov Y, et al. PTC124 treatment over 3 months improves pharmacodynamic and clinical parameters in patients with nonsense-mutation-mediated CF [abstract]. J Cystic Fibrosis 2008; 7Suppl. 2; S22CrossRefGoogle Scholar
  68. 68.
    Wagner KR, Hamed S, Hadley DW, et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol 2001 Jun; 49(6): 706–11PubMedCrossRefGoogle Scholar
  69. 69.
    PTC Therapeutics. Safety and efficacy study of PTC124 in Duchenne muscular dystrophy [clinicaltrials.gov identifier no. NCT00264888; online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00264888?id=NCT00264888&rank=1 [Accessed 2009 Apr 9]
  70. 70.
    Hein LK, Bawden M, Muller VJ, et al. Alpha-L-iduronidase premature stop codons and potential read-through in mucopolysaccharidosis type I patients. J Mol Biol 2004 Apr 30; 338(3): 453–62PubMedCrossRefGoogle Scholar
  71. 71.
    PTC Therapeutics. Phase 2b study of PTC124 in Duchenne/Becker muscular dystrophy (DMD/BMD) [clinicaltrials.gov identifier no. NCT00592553; online] Available from URL: http://clinicaltrials.gov/ct2/show/NCT00592553?term=NCT+00592553&rank=1 [Accessed 2009 Feb 12]
  72. 72.
    Sleat DE, Sohar I, Gin RM, et al. Aminoglycoside-mediated suppression of nonsense mutations in late infantile neuronal ceroid lipofuscinosis. Eur J Paediatr Neurol 2001; 5Suppl. A: 57–62PubMedCrossRefGoogle Scholar
  73. 73.
    Wolstencroft EC, Mattis V, Bajer AA, et al. A non-sequence-specific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels. Hum Mol Genet 2005 May 1; 14(9): 1199–210PubMedCrossRefGoogle Scholar
  74. 74.
    Schulz A, Sangkuhl K, Lennert T, et al. Aminoglycoside pretreatment partially restores the function of truncated V(2) vasopressin receptors found in patients with nephrogenic diabetes insipidus. J Clin Endocrinol Metab 2002 Nov; 87(11): 5247–57PubMedCrossRefGoogle Scholar
  75. 75.
    Kellermayer R, Szigeti R, Keeling KM, et al. Aminoglycosides as potential pharmacogenetic agents in the treatment of Hailey-Hailey disease. J Invest Dermatol 2006 Jan; 126(1): 229–31PubMedCrossRefGoogle Scholar
  76. 76.
    Helip-Wooley A, Park MA, Lemons RM, et al. Expression of CTNS alleles: subcellular localization and aminoglycoside correction in vitro. Mol Genet Metab 2002 Feb; 75(2): 128–33PubMedCrossRefGoogle Scholar
  77. 77.
    Lai CH, Chun HH, Nahas SA, et al. Correction of ATM gene function by aminoglycoside-induced read-through of premature termination codons. Proc Natl Acad Sci U S A 2004 Nov 2; 101(44): 15676–81PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2009

Authors and Affiliations

  1. 1.Department of MedicineUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of PediatricsUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Department of PhysiologyUniversity of Alabama at BirminghamBirminghamUSA
  4. 4.Gregory Fleming James Cystic Fibrosis Research CenterUniversity of Alabama at BirminghamBirminghamUSA
  5. 5.Pediatric Pulmonary DivisionUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations