Advertisement

BioDrugs

, Volume 23, Issue 1, pp 25–35 | Cite as

Targeted Therapies for Malignant Glioma

Progress and Potential
  • Ronald W. Mercer
  • Matthew A. Tyler
  • Ilya V. Ulasov
  • Maciej S. Lesniak
Drug Development

Abstract

Malignant gliomas represent one of the most aggressive forms of brain cancer. Recent advances in the understanding of the deregulated molecular pathways of gliomas have brought about targeted therapies that have the ability to increase therapeutic efficacy in tumors while decreasing toxicity. Multi-targeted kinase inhibitors, novel monoclonal antibodies, and new vaccines have been developed. Standard treatments and current development of new therapies for malignant gliomas are reviewed, focusing specifically on growth factors and their receptors (e.g. epidermal growth factor receptor, vascular endothelial growth factor receptor, and platelet-derived growth factor receptor), as well as the intracellular effector molecules that are downstream of these growth factors (e.g. Ras/Raf/mitogen-activated protein kinase, phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin, and protein kinase C). The efficacies of other novel targeted inhibitors such as deacetylase inhibitors and heat shock protein 90 inhibitors in the treatment of gliomas are also discussed, as well as new combination therapies. In order for new agents to increase treatment efficacy, new targets need to be developed, drug delivery efficiency needs to be improved, and new biomarkers need to be discovered. All of these goals can be accomplished with time through innovative experimental designs.

Keywords

Epidermal Growth Factor Receptor Bevacizumab Erlotinib Temozolomide Malignant Glioma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Cancer Institute (R01-CA122930), the National Institute of Neurological Disorders and Stroke (K08-NS046430), the Alliance for Cancer Gene Therapy Young Investigator Award, and the American Cancer Society (RSG-07-276-01-MGO). Dr Maciej Lesniak has received grants from the National Institutes of Health.

References

  1. 1.
    Percy C. Diagnostic techniques and tumor classification [letter]. Hum Pathol 1984 Jun; 15(6): 598PubMedCrossRefGoogle Scholar
  2. 2.
    Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of brain tumours. Brain Pathol 1993 Jul; 3(3): 255–68PubMedCrossRefGoogle Scholar
  3. 3.
    Westphal M, Hilt DC, Bortey E, et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol 2003 Apr; 5(2): 79–88PubMedGoogle Scholar
  4. 4.
    Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005 Mar 10; 352(10): 987–96PubMedCrossRefGoogle Scholar
  5. 5.
    Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005 Mar 10; 352(10): 997–1003PubMedCrossRefGoogle Scholar
  6. 6.
    de Groot JF, Gilbert MR. New molecular targets in malignant gliomas. Curr Opin Neurol 2007 Dec; 20(6): 712–8PubMedCrossRefGoogle Scholar
  7. 7.
    Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 2006 Jul; 7(7): 505–16PubMedCrossRefGoogle Scholar
  8. 8.
    Humphrey PA, Wong AJ, Vogelstein B, et al. Amplification and expression of the epidermal growth factor receptor gene in human glioma xenografts. Cancer Res 1988 Apr 15; 48(8): 2231–8PubMedGoogle Scholar
  9. 9.
    Pelloski CE, Ballman KV, Furth AF, et al. Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J Clin Oncol 2007 Jun 1; 25(16): 2288–94PubMedCrossRefGoogle Scholar
  10. 10.
    Sarkaria JN, Yang L, Grogan PT, et al. Identification of molecular characteristics correlated with glioblastoma sensitivity to EGFR kinase inhibition through use of an intracranial xenograft test panel. Mol Cancer Ther 2007 Mar; 6(3): 1167–74PubMedCrossRefGoogle Scholar
  11. 11.
    Van Den Bent MJ, Brandes A, Rampling R, et al. Randomized phase II trial of erlotinib (E) versus temozolomide (TMZ) or BCNU in recurrent glioblastoma multiforme (GBM): EORTC 26034 [abstract no. 2005]. 2007 Annual Meeting, American Society of Clinical Oncology; 2007 Jun 1–5; Chicago (IL) [online]. Available from URL: http://meeting.ascopubs.org/cgi/content/abstract/25/18_suppl/2005 [Accessed 2009 Feb 5]
  12. 12.
    Lassman AB, Rossi MR, Raizer JJ, et al. Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American Brain Tumor Consortium Trials 01-03 and 00-01. Clin Cancer Res 2005 Nov 1; 11(21): 7841–50PubMedCrossRefGoogle Scholar
  13. 13.
    Mellinghoff IK, Wang MY, Vivanco I, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005 Nov 10; 353(19): 2012–24PubMedCrossRefGoogle Scholar
  14. 14.
    Lassman AB, Abrey LE, Gilbert MR. Response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2006 Feb 2; 354(5): 525–6; author reply 526PubMedCrossRefGoogle Scholar
  15. 15.
    Tacken PJ, de Vries IJ, Torensma R, et al. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 2007 Oct; 7(10): 790–802PubMedCrossRefGoogle Scholar
  16. 16.
    Garcia de Palazzo IE, Adams GP, Sundareshan P, et al. Expression of mutated epidermal growth factor receptor by non-small cell lung carcinomas. Cancer Res 1993 Jul 15; 53(14): 3217–20PubMedGoogle Scholar
  17. 17.
    Wikstrand CJ, Hale LP, Batra SK, et al. Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 1995 Jul 15; 55(14): 3140–8PubMedGoogle Scholar
  18. 18.
    Ekstrand AJ, James CD, Cavenee WK, et al. Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 1991 Apr 15; 51(8): 2164–72PubMedGoogle Scholar
  19. 19.
    Heimberger AB, Hlatky R, Suki D, et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 2005 Feb 15; 11(4): 1462–6PubMedCrossRefGoogle Scholar
  20. 20.
    Moscatello DK, Ramirez G, Wong AJ. A naturally occurring mutant human epidermal growth factor receptor as a target for peptide vaccine immunotherapy of tumors. Cancer Res 1997 Apr 15; 57(8): 1419–24PubMedGoogle Scholar
  21. 21.
    Ciesielski MJ, Kazim AL, Barth RF, et al. Cellular anti-tumor immune response to a branched lysine multiple antigenic peptide containing epitopes of a common tumor-specific antigen in a rat glioma model. Cancer Immunol Immunother 2005 Feb; 54(2): 107–19PubMedCrossRefGoogle Scholar
  22. 22.
    Sampson JH, Archer GE, Mitchell DA, et al. Tumor-specific immunotherapy targeting the EGFRvIII mutation in patients with malignant glioma. Semin Immunol 2008 Oct; 20(5): 267–75PubMedCrossRefGoogle Scholar
  23. 23.
    Yajima N, Yamanaka R, Mine T, et al. Immunologic evaluation of personalized peptide vaccination for patients with advanced malignant glioma. Clin Cancer Res 2005 Aug 15; 11(16): 5900–11PubMedCrossRefGoogle Scholar
  24. 24.
    Barnett JA, Urbauer DL, Murray GI, et al. Cytochrome P450 1B1 expression in glial cell tumors: an immunotherapeutic target. Clin Cancer Res 2007 Jun 15; 13(12): 3559–67PubMedCrossRefGoogle Scholar
  25. 25.
    Komata T, Kanzawa T, Kondo Y, et al. Telomerase as a therapeutic target for malignant gliomas. Oncogene 2002 Jan 21; 21(4): 656–63PubMedCrossRefGoogle Scholar
  26. 26.
    Tsuda N, Nonaka Y, Shichijo S, et al. UDP-Gal: betaGlcNAc beta1,3-galactosyltransferase, polypeptide 3 (GALT3) is a tumour antigen recognised by HLA-A2-restricted cytotoxic T lymphocytes from patients with brain tumour. Br J Cancer 2002 Oct 21; 87(9): 1006–12PubMedCrossRefGoogle Scholar
  27. 27.
    Yamada Y, Kuroiwa T, Nakagawa T, et al. Transcriptional expression of survivin and its splice variants in brain tumors in humans. J Neurosurg 2003 Oct; 99(4): 738–45PubMedCrossRefGoogle Scholar
  28. 28.
    Ventimiglia JB, Wikstrand CJ, Ostrowski LE, et al. Tenascin expression in human glioma cell lines and normal tissues. J Neuroimmunol 1992 Jan; 36(1): 41–55PubMedCrossRefGoogle Scholar
  29. 29.
    Kurpad SN, Zhao XG, Wikstrand CJ, et al. Tumor antigens in astrocytic gliomas. Glia 1995 Nov; 15(3): 244–56PubMedCrossRefGoogle Scholar
  30. 30.
    Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004 Jun 3; 350(23): 2335–42PubMedCrossRefGoogle Scholar
  31. 31.
    Giantonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 2007 Apr 20; 25(12): 1539–44PubMedCrossRefGoogle Scholar
  32. 32.
    Vredenburgh JJ, Desjardins A, Herndon JE, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007 Feb 15; 13(4): 1253–9PubMedCrossRefGoogle Scholar
  33. 33.
    Batchelor TT, Gilbert MR, Supko JG, et al. Phase 2 study of weekly irinotecan in adults with recurrent malignant glioma: final report of NABTT 97-11. Neuro Oncol 2004 Jan; 6(1): 21–7PubMedCrossRefGoogle Scholar
  34. 34.
    Prados MD, Lamborn K, Yung WK, et al. A phase 2 trial of irinotecan (CPT-11) in patients with recurrent malignant glioma: a North American Brain Tumor Consortium study. Neuro Oncol 2006 Apr; 8(2): 189–93PubMedCrossRefGoogle Scholar
  35. 35.
    Ostman A. PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev 2004 Aug; 15(4): 275–86PubMedCrossRefGoogle Scholar
  36. 36.
    Wen PY, Yung WK, Lamborn KR, et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res 2006 Aug 15; 12(16): 4899–907PubMedCrossRefGoogle Scholar
  37. 37.
    Dresemann G. Imatinib and hydroxyurea in pretreated progressive glioblastoma multiforme: a patient series. Ann Oncol 2005 Oct; 16(10): 1702–8PubMedCrossRefGoogle Scholar
  38. 38.
    Reardon DA, Egorin MJ, Quinn JA, et al. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 2005 Dec 20; 23(36): 9359–68PubMedCrossRefGoogle Scholar
  39. 39.
    Bihorel S, Camenisch G, Gross G, et al. Influence of hydroxyurea on imatinib mesylate (Gleevec) transport at the mouse blood-brain barrier. Drug Metab Dispos 2006 Dec; 34(12): 1945–9PubMedCrossRefGoogle Scholar
  40. 40.
    Knobbe CB, Reifenberger J, Reifenberger G. Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathol 2004 Dec; 108(6): 467–70PubMedCrossRefGoogle Scholar
  41. 41.
    Cloughesy TF, Wen PY, Robins HI, et al. Phase II trial of tipifarnib in patients with recurrent malignant glioma either receiving or not receiving enzyme-inducing antiepileptic drugs: a North American Brain Tumor Consortium Study. J Clin Oncol 2006 Aug 1; 24(22): 3651–6PubMedCrossRefGoogle Scholar
  42. 42.
    Gilbert MR, Gaupp P, Liu V, et al. A phase I study of temozolomide (TMZ) and the farnesyltransferase inhibitor (FTI), lonafarnib (Sarasar, SCH66336) in recurrent glioblastoma [abstract no. 1556]. 2006 Annual Meeting, American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA) [online]. Available from URL: http://meeting.ascopubs.org/cgi/content/abstract/24/18_suppl/1556 [Accessed 2009 Feb 5]
  43. 43.
    Chakravarti A, Zhai G, Suzuki Y, et al. The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J Clin Oncol 2004 May 15; 22(10): 1926–33PubMedCrossRefGoogle Scholar
  44. 44.
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002 Jul; 2(7): 489–501PubMedCrossRefGoogle Scholar
  45. 45.
    Galanis E, Buckner JC, Maurer MJ, et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 2005 Aug 10; 23(23): 5294–304PubMedCrossRefGoogle Scholar
  46. 46.
    Chang SM, Wen P, Cloughesy T, et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs 2005 Aug; 23(4): 357–61PubMedCrossRefGoogle Scholar
  47. 47.
    Sawyers CL. Will kinase inhibitors have a dark side? N Engl J Med 2006 Jul 20; 355(3): 313–5PubMedCrossRefGoogle Scholar
  48. 48.
    Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 2006 Sep; 6(9): 729–34PubMedCrossRefGoogle Scholar
  49. 49.
    Couldwell WT, Uhm JH, Antel JP, et al. Enhanced protein kinase C activity correlates with the growth rate of malignant gliomas in vitro. Neurosurgery 1991 Dec; 29(6): 880–86; discussion 886-7PubMedCrossRefGoogle Scholar
  50. 50.
    da Rocha AB, Mans DR, Regner A, et al. Targeting protein kinase C: new therapeutic opportunities against high-grade malignant gliomas? Oncologist 2002; 7(1): 17–33PubMedCrossRefGoogle Scholar
  51. 51.
    Balendran A, Hare GR, Kieloch A, et al. Further evidence that 3-phosphoinositide-dependent protein kinase-1 (PDK1) is required for the stability and phosphorylation of protein kinase C (PKC) isoforms. FEBS Lett 2000 Nov 10; 484(3): 217–23PubMedCrossRefGoogle Scholar
  52. 52.
    Hui AM, Zhang W, Chen W, et al. Agents with selective estrogen receptor (ER) modulator activity induce apoptosis in vitro and in vivo in ER-negative glioma cells. Cancer Res 2004 Dec 15; 64(24): 9115–23PubMedCrossRefGoogle Scholar
  53. 53.
    Brandes AA, Ermani M, Turazzi S, et al. Procarbazine and high-dose tamoxifen as a second-line regimen in recurrent high-grade gliomas: a phase II study. J Clin Oncol 1999 Feb; 17(2): 645–50PubMedGoogle Scholar
  54. 54.
    Spence AM, Peterson RA, Scharnhorst JD, et al. Phase II study of concurrent continuous temozolomide (TMZ) and tamoxifen (TMX) for recurrent malignant astrocytic gliomas. J Neurooncol 2004 Oct; 70(1): 91–5PubMedCrossRefGoogle Scholar
  55. 55.
    Graff JR, McNulty AM, Hanna KR, et al. The protein kinase Cbeta-selective inhibitor, enzastaurin (LY317615.HCl), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res 2005 Aug 15; 65(16): 7462–9PubMedCrossRefGoogle Scholar
  56. 56.
    Fine HA, Kim L, Royce C, et al. Results from phase II trial of enzastaurin (LY317615) in patients with recurrent high grade gliomas [abstract no. 1504]. 2005 Annual Meeting, American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL) [online]. Available from URL: http://meeting.ascopubs.org/cgi/content/abstract/23/16_suppl/1504 [Accessed 2009 Feb 5]
  57. 57.
    Chinnaiyan P, Vallabhaneni G, Armstrong E, et al. Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 2005 May 1; 62(1): 223–9PubMedCrossRefGoogle Scholar
  58. 58.
    Galanis E, Jaeckle KA, Maurer MJ, et al. N047B: NCCTG phase II trial of vorinostat (suberoylanilide hydroxamic acid) in recurrent glioblastoma multiforme (GBM) [abstract no. 2004]. 2007 Annual Meeting, American Society of Clinical Oncology; 2007 Jun 1–5; Chicago (IL) [online]. Available from URL: http://meeting.ascopubs.org/cgi/content/abstract/25/18_suppl/2004 [Accessed 2009 Feb 5]
  59. 59.
    Richter K, Buchner J. Hsp90: chaperoning signal transduction. J Cell Physiol 2001 Sep; 188(3): 281–90PubMedCrossRefGoogle Scholar
  60. 60.
    Yang J, Yang JM, Iannone M, et al. Disruption of the EF-2 kinase/Hsp90 protein complex: a possible mechanism to inhibit glioblastoma by geldanamycin. Cancer Res 2001 May 15; 61(10): 4010–6PubMedGoogle Scholar
  61. 61.
    Debinski W, Obiri NI, Powers SK, et al. Human glioma cells overexpress receptors for interleukin 13 and are extremely sensitive to a novel chimeric protein composed of interleukin 13 and Pseudomonas exotoxin. Clin Cancer Res 1995 Nov; 1(11): 1253–8PubMedGoogle Scholar
  62. 62.
    Husain SR, Puri RK. Interleukin-13 receptor-directed cytotoxin for malignant glioma therapy: from bench to bedside. J Neurooncol 2003 Oct; 65(1): 37–48PubMedCrossRefGoogle Scholar
  63. 63.
    Kioi M, Husain SR, Croteau D, et al. Convection-enhanced delivery of interleukin-13 receptor-directed cytotoxin for malignant glioma therapy. Technol Cancer Res Treat 2006 Jun; 5(3): 239–50PubMedGoogle Scholar
  64. 64.
    Kunwar S, Prados MD, Chang SM, et al. Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol 2007 Mar 1; 25(7): 837–44PubMedCrossRefGoogle Scholar
  65. 65.
    Vogelbaum MA, Sampson JH, Kunwar S, et al. Convection-enhanced delivery of cintredekin besudotox (interleukin-13-PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: phase 1 study of final safety results. Neurosurgery 2007 Nov; 61(5): 1031–7; discussion 1037-8PubMedCrossRefGoogle Scholar
  66. 66.
    Neopharm, Inc. NeoPharm (NEOL) announces efficacy results for phase 3 PRECISE trial; drug misses goal in brain-cancer trial; stock plunges [media release]. 2006 Dec 11 [online]. Available from URL: http://www.biospace.com/news_story.aspx?NewsEntityId=39560 [Accessed 2009 Mar 26]
  67. 67.
    Chakravarti A, Loeffler JS, Dyson NJ. Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res 2002 Jan 1; 62(1): 200–7PubMedGoogle Scholar
  68. 68.
    Li B, Chang CM, Yuan M, et al. Resistance to small molecule inhibitors of epidermal growth factor receptor in malignant gliomas. Cancer Res 2003 Nov 1; 63(21): 7443–50PubMedGoogle Scholar
  69. 69.
    Reardon DA, Quinn JA, Vredenburgh JJ, et al. Phase 1 trial of gefitinib plus sirolimus in adults with recurrent malignant glioma. Clin Cancer Res 2006 Feb 1; 12(3 Pt 1): 860–8PubMedCrossRefGoogle Scholar
  70. 70.
    Goudar RK, Shi Q, Hjelmeland MD, et al. Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol Cancer Ther 2005 Jan; 4(1): 101–2PubMedGoogle Scholar
  71. 71.
    Sandstrom M, Johansson M, Bergstrom P, et al. Effects of the VEGFR inhibitor ZD6474 in combination with radiotherapy and temozolomide in an orthotopic glioma model. J Neurooncol 2008 May; 88(1): 1–9PubMedCrossRefGoogle Scholar
  72. 72.
    de Bouard S, Herlin P, Christensen JG, et al. Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. Neuro Oncol 2007 Oct; 9(4): 412–23PubMedCrossRefGoogle Scholar
  73. 73.
    Jane EP, Premkumar DR, Pollack IF. Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells. J Pharmacol Exp Ther 2006 Dec; 319(3): 1070–80PubMedCrossRefGoogle Scholar
  74. 74.
    Fine HA. Promising new therapies for malignant gliomas. Cancer J 2007 Nov-Dec; 13(6): 349–54PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2009

Authors and Affiliations

  • Ronald W. Mercer
    • 1
  • Matthew A. Tyler
    • 1
  • Ilya V. Ulasov
    • 1
  • Maciej S. Lesniak
    • 1
  1. 1.University of Chicago Brain Tumor Center, University of ChicagoChicagoUSA

Personalised recommendations