Skip to main content
Log in

Locked Nucleic Acid Oligonucleotides

  • Drug Development
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Locked nucleic acid (LNA) is the term for oligonucleotides that contain one or more nucleotide building blocks in which an extra methylene bridge fixes the ribose moiety either in the C3′-endo (β-D-LNA) or C2′-endo(α-L-LNA) conformation. The β-D-LNA modification results in significant increases in melting temperature of up to several degrees per LNA residue. The α-L-LNA stereoisomer, which also stabilizes duplexes, lends itself to use in triplex-forming oligonucleotides and transcription factor decoys, which have to maintain a B-type (C2′-endo) DNA conformation. LNA oligonucleotides are synthesized in different formats, such as all-LNA, LNA/DNA mixmers, or LNA/DNA gapmers. Essentially, all aspects of antisense technology have profited from LNAdue to its unprecedented affinity, good or even improved mismatch discrimination, low toxicity, and increased metabolic stability. LNA is particularly attractive for in vivo applications that are inaccessible to RNAinterference technology, such as suppression of aberrant splice sites or inhibition of oncogenic microRNAs. Furthermore, the extreme antisense-target duplex stability (formation of persistent steric blocks) conferred by β-D-LNAalso contributes to the capacity to invade stable secondary structures of RNA targets. The in vivo studies reported so far indeed point to LNA as a promising antisense player at the horizon of clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2

Similar content being viewed by others

References

  1. Koizuma M. True antisense oligonucleotides with modified nucleotides restricted in the N-conformation. Curr Top Med Chem 2007; 7(7): 661–5

    Article  Google Scholar 

  2. Mouritzen P, Nielsen AT, Pfundheller HM, et al. Single nucleotide polymorphism genotyping using locked nucleic acid (LNA). Expert Rev Mol Diagn 2003 Jan; 3(1): 27–38

    Article  PubMed  CAS  Google Scholar 

  3. Petersen M, Wengel J. LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 2003 Feb; 21(2): 74–81

    Article  PubMed  CAS  Google Scholar 

  4. Jepsen JS, Wengel J. LNA-antisense rivals siRNA for gene silencing. Curr Opin Drug Discov Devel 2004; 7(2): 188–94

    PubMed  CAS  Google Scholar 

  5. Kauppinen S, Vester B, Wengel J. Locked nucleic acid: high-affinity targeting of complementary RNA for RNomics. Handb Exp Pharmacol 2006; (173): 405–22

  6. Koshkin AA, Nielsen P, Meldgaard M, et al. LNA (locked nucleic acid): an RNA mimic forming exceedingly stable LNA. LNA duplexes. J Am Chem Soc 1998; 120: 13252–3

    Article  CAS  Google Scholar 

  7. Koshkin AA, Singh SK, Nielsen P, et al. LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 1998; 54: 3607–30

    Article  CAS  Google Scholar 

  8. Obika S, Nanbu D, Hari Y, et al. Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides. Tetrahedron Lett 1998; 39: 5401–4

    Article  CAS  Google Scholar 

  9. Braasch DA, Corey DR. Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 2001 Jan; 8(1): 1–7

    Article  PubMed  CAS  Google Scholar 

  10. Kurreck J, Wyszko E, Gillen C, et al. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 2002 May 1; 30(9): 1911–8

    Article  PubMed  CAS  Google Scholar 

  11. Elayadi AN, Braasch DA, Corey DR. Implications of high-affinity hybridization by locked nucleic acid oligomers for inhibition of human telomerase. Biochemistry 2002 Aug 6; 41(31): 9973–81

    Article  PubMed  CAS  Google Scholar 

  12. Petersen M, Bondensgaard K, Wengel J, et al. Locked nucleic acid (LNA) recognition of RNA: NMR solution structures of LNA. RNA hybrids. J Am Chem Soc 2002 May 29; 124(21): 5974–82

    Article  PubMed  CAS  Google Scholar 

  13. Petersen M, Nielsen CB, Nielsen KE, et al. The conformations of locked nucleic acids (LNA). J Mol Recognit 2000 Jan–Feb; 13(1): 44–53

    Article  PubMed  CAS  Google Scholar 

  14. Sorensen MD, Kvaerno L, Bryld T, et al. Alpha-L-ribo-configured locked nucleic acid (alpha-L-LNA): synthesis and properties. J Am Chem Soc 2002 Mar 13; 124(10): 2164–76

    Article  PubMed  CAS  Google Scholar 

  15. Crinelli R, Bianchi M, Gentilini L, et al. Design and characterization of decoy oligonucleotides containing locked nucleic acids. Nucleic Acids Res 2002 Jun 1; 30(11): 2435–43

    Article  PubMed  CAS  Google Scholar 

  16. Kumar N, Nielsen KE, Maiti S, et al. Triplex formation with alpha-L-LNA (alpha-L-ribo-configured locked nucleic acid). J Am Chem Soc 2006 Jan 11; 128(1): 14–5

    Article  PubMed  CAS  Google Scholar 

  17. Kurreck J. Antisense technologies: improvement through novel chemical modifications. Eur J Biochem 2003 Apr; 270(8): 1628–44

    Article  PubMed  CAS  Google Scholar 

  18. Wahlestedt C, Salmi P, Good L, et al. Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci U S A 2000 May 9; 97(10): 5633–8

    Article  PubMed  CAS  Google Scholar 

  19. Fluiter K, ten Asbroek AL, de Wissel MB, et al. In vivo tumor growth inhibition and biodistribution studies of locked nucleic acid (LNA) antisense oligonucleotides. Nucleic Acids Res 2003 Feb 1; 31(3): 953–62

    Article  PubMed  CAS  Google Scholar 

  20. Nulf CJ, Corey D. Intracellular inhibition of hepatitis C virus (HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs) [published erratum appears in Nucleic Acids Res 2004 Sep 14; 32 (16): 4954]. Nucleic Acids Res 2004 Jul 19; 32(13): 3792–8

    Article  PubMed  CAS  Google Scholar 

  21. Elayadi AN, Demieville A, Wancewicz EV, et al. Inhibition of telomerase by 2′-O-(2-methoxyethyl) RNA oligomers: effect of length, phosphorothioate substitution and time inside cells. Nucleic Acids Res 2001 Apr 15; 29(8): 1683–9

    Article  PubMed  CAS  Google Scholar 

  22. Orom UA, Kauppinen S, Lund AH. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 2006 May 10; 372: 137–41

    Article  PubMed  CAS  Google Scholar 

  23. Arzumanov A, Walsh AP, Rajwanshi VK, et al. Inhibition of HIV-1 tat-dependent trans activation by steric block chimeric 2′-O-methyl/LNA oligoribonucleotides. Biochemistry 2001 Dec 4; 40(48): 14645–54

    Article  PubMed  CAS  Google Scholar 

  24. Braasch DA, Liu Y, Corey DR. Antisense inhibition of gene expression in cells by oligonucleotides incorporating locked nucleic acids: effect of mRNA target sequence and chimera design. Nucleic Acids Res 2002 Dec 1; 30(23): 5160–7

    Article  PubMed  CAS  Google Scholar 

  25. Grunweller A, Wyszko E, Bieber B, et al. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 2003 Jun 15; 31(12): 3185–93

    Article  PubMed  Google Scholar 

  26. Simoes-Wust AP, Hopkins-Donaldson S, Sigrist B, et al. A functionally improved locked nucleic acid antisense oligonucleotide inhibits Bcl-2 and Bcl-xL expression and facilitates tumor cell apoptosis. Oligonucleotides 2004; 14(3): 199–209

    Article  PubMed  Google Scholar 

  27. Hansen JB, Westergaard M, Thrue CA, et al. Antisense knockdown of PKC-alpha using LNA-oligos. Nucleosides Nucleotides Nucleic Acids 2003 May–Aug; 22(5-8): 1607–9

    Article  PubMed  CAS  Google Scholar 

  28. Jepsen JS, Pfundheller HM, Lykkesfeldt AE. Downregulation of p21 (WAF1/ CIP1) and estrogen receptor alpha in MCF-7 cells by antisense oligonucleotides containing locked nucleic acid (LNA). Oligonucleotides 2004; 14(2): 147–56

    Article  PubMed  CAS  Google Scholar 

  29. Obika S, Hemamayi R, Masuda T, et al. Inhibition of ICAM-1 gene expression by antisense 2′,4′-BNA oligonucleotides. Nucleic Acids Res Suppl 2001; (1): 145–6

  30. Fluiter K, Frieden M, Vreijling J, et al. On the in vitro and in vivo properties of four locked nucleic acid nucleotides incorporated into an anti-H-Ras antisense oligonucleotide. Chembiochem 2005 Jun; 6(6): 1104–9

    Article  PubMed  CAS  Google Scholar 

  31. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005 Jul 15; 65(14): 6029–33

    Article  PubMed  CAS  Google Scholar 

  32. Vester B, Lundberg LB, Sorensen MD, et al. LNAzymes: incorporation of LNA-type monomers into DNAzymes markedly increases RNA cleavage. J Am Chem Soc 2002 Nov 20; 124(46): 13682–3

    Article  PubMed  CAS  Google Scholar 

  33. Vester B, Hansen LH, Lundberg LB, et al. Locked nucleoside analogues expand the potential of DNAzymes to cleave structured RNA targets. BMC Mol Biol 2006 Jun 5; 7: 19

    Article  PubMed  Google Scholar 

  34. Fluiter K, Frieden M, Vreijling J, et al. Evaluation of LNA-modified DNAzymes targeting a single nucleotide polymorphism in the large subunit of RNA polymerase II. Oligonucleotides 2005 Dec; 15(4): 246–54

    Article  PubMed  CAS  Google Scholar 

  35. Fahmy RG, Khachigian LM. Locked nucleic acid modified DNA enzymes targeting early growth response-1 inhibit human vascular smooth muscle cell growth. Nucleic Acids Res 2004 Apr 23; 32(7): 2281–5

    Article  PubMed  CAS  Google Scholar 

  36. Schubert S, Gül DC, Grunert HP, et al. RNA cleaving ‘10-23’ DNAzymes with enhanced stability and activity. Nucleic Acids Res 2003 Oct 15; 31(20): 5982–92

    Article  PubMed  CAS  Google Scholar 

  37. Frieden M, Christensen SM, Mikkelsen ND, et al. Expanding the design horizon of antisense oligonucleotides with alpha-L-LNA. Nucleic Acids Res 2003 Nov 1; 31(21): 6365–72

    Article  PubMed  CAS  Google Scholar 

  38. Di Giusto DA, King GC. Strong positional preference in the interaction of LNA oligonucleotides with DNA polymerase and proofreading exonuclease activities: implications for genotyping assays. Nucleic Acids Res 2004 Feb 18; 32(3): e32

    Article  Google Scholar 

  39. Orum H, Jakobsen MH, Koch T, et al. Detection of the factor V Leiden mutation by direct allele-specific hybridization of PCR amplicons to photoimmobilized locked nucleic acids. Clin Chem 1999 Nov; 45(11): 1898–905

    PubMed  CAS  Google Scholar 

  40. Jacobsen N, Fenger M, Bentzen J, et al. Genotyping of the apolipoprotein B R3500Q mutation using immobilized locked nucleic acid capture probes. Clin Chem 2002; 48(4): 657–60

    PubMed  CAS  Google Scholar 

  41. Jacobsen N, Bentzen J, Meldgaard M, et al. LNA-enhanced detection of single nucleotide polymorphisms in the apolipoprotein E. Nucleic Acids Res 2002 Oct 1; 30(19): e1OO

    Article  Google Scholar 

  42. Kole R, Williams T, Cohen L. RNA modulation, repair and remodeling by splice switching oligonucleotides. Acta Biochim Pol 2004; 51(2): 373–8

    PubMed  CAS  Google Scholar 

  43. Aartsma-Rus A, Kaman WE, Bremmer-Bout M, et al. Comparative analysis of antisense oligonucleotide analogs for targeted DMD exon 46 skipping in muscle cells. Gene Ther 2004 Sep; 11(18): 1391–8

    Article  PubMed  CAS  Google Scholar 

  44. Roberts J, Palma E, Sazani P, et al. Efficient and persistent splice switching by systemically delivered LNA oligonucleotides in mice. Mol Ther 2006 Oct; 14(4): 471–5

    Article  PubMed  CAS  Google Scholar 

  45. Ittig D, Liu S, Renneberg D, et al. Nuclear antisense effects in cyclophilin A premRNA splicing by oligonucleotides: a comparison of tricyclo-DNA with LNA. Nucleic Acids Res 2004 Jan 15; 32(1): 346–53

    Article  PubMed  CAS  Google Scholar 

  46. Childs JL, Disney MD, Turner DH. Oligonucleotide directed misfolding of RNA inhibits Candida albicans group I intron splicing. Proc Natl Acad Sci U S A 2002 Aug 20; 99(17): 11091–6

    Article  PubMed  CAS  Google Scholar 

  47. Valoczi A, Hornyik C, Varga N, et al. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 2004 Dec 14; 32(22): e175

    Article  PubMed  Google Scholar 

  48. Castoldi M, Schmidt S, Benes V, et al. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 2006 May; 12(5): 913–20

    Article  PubMed  CAS  Google Scholar 

  49. Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development. Science 2005 Jul 8; 309(5732): 310–1

    Article  PubMed  CAS  Google Scholar 

  50. Kloosterman WP, Wienholds E, de Bruijn E, et al. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 2006 Jan; 3(1): 27–9

    Article  PubMed  CAS  Google Scholar 

  51. Nelson FT, Baldwin DA, Kloosterman WP, et al. RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 2006 Feb; 12(2): 187–91

    Article  PubMed  CAS  Google Scholar 

  52. Schubert S, Kurreck J. Oligonucleotide-based antiviral strategies. Handb Exp Pharmacol 2006; (173): 261–87

  53. Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997 Aug 15; 277(5328): 955–9

    Article  PubMed  CAS  Google Scholar 

  54. Shay JW, Wright WE. Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discov 2006 Jul; 5(7): 577–84

    Article  PubMed  CAS  Google Scholar 

  55. Christoph T, Gillen C, Mika J, et al. Antinoceptive effect of antisense oligonucleotides against VR1/TRPV1. Neurochem Int 2007 Jan; 50(1): 281–90

    Article  PubMed  CAS  Google Scholar 

  56. Christoph T, Grunweller A, Mika J, et al. Silencing of vanilloid receptor TRPV1 by RNAi reduces neuropathic and visceral pain in vivo. Biochem Biophys Res Commun 2006 Nov 10; 350(1): 238–43

    Article  PubMed  CAS  Google Scholar 

  57. Grunweller A, Hartmann RK. RNA interference as a gene-specific approach for molecular medicine. Curr Med Chem 2005; 12(26): 3143–61

    Article  PubMed  CAS  Google Scholar 

  58. Rapozzi V, Cogoi S, Xodo LE. Antisense locked nucleic acids efficiently suppress BCR/ABL and induce cell growth decline and apoptosis in leukemic cells. Mol Cancer Ther2006 Jul; 5(7): 1683–92

    Article  PubMed  CAS  Google Scholar 

  59. Schubert S, Furste JP, Werk D, et al. Gaining target access for deoxyribozymes. J Mol Biol 2004 May 28; 339(2): 355–63

    Article  PubMed  CAS  Google Scholar 

  60. Charlier TD, Ball GF, Balthazart J. Inhibition of steroid receptor coactivator-1 blocks estrogen and androgen action on male sex behavior and associated brain plasticity. J Neurosci 2005 Jan 26; 25(4): 906–13

    Article  PubMed  CAS  Google Scholar 

  61. Krutzfeldt J, Poy MN, Stoffel M. Strategies to determine the biological function of microRNAs. Nat Genet 2006 Jun; 38 Suppl.: S14–9

    Article  PubMed  Google Scholar 

  62. Esquela-Kerscher A, Slack FJ. Oncomirs: microRNAs with a role in cancer. Nat Rev Cancer 2006 Apr; 6(4): 259–69

    Article  PubMed  CAS  Google Scholar 

  63. Hrdlicka PJ, Babu BR, Sorensen MD, et al. Multilabeled pyrene-functionalized 2′-amino-LNA probes for nucleic acid detection in homogeneous fluorescence assays. J Am Chem Soc 2005 Sep 28; 127(38): 13293–9

    Article  PubMed  CAS  Google Scholar 

  64. Elmen J, Thonberg H, Ljungberg K, et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 2005 Jan 14; 33(1): 439–47

    Article  PubMed  CAS  Google Scholar 

  65. Mouritzen P, Noerholm M, Nielsen PS, et al. ProbeLibrary: a new method for faster design and execution of quantitative real-time PCR. Nature Methods 2005; 2: 313–6

    Article  CAS  Google Scholar 

  66. Morandi L, Ferrari D, Lombardo C, et al. Monitoring HCV RNA viral load by locked nucleic acid molecular beacons real time PCR. J Virol Methods 2007 Mar; 140(1-2): 148–54

    Article  PubMed  CAS  Google Scholar 

  67. Wang L, Yang CJ, Medley CD, et al. Locked nucleic acid molecular beacons. J Am Chem Soc 2005 Nov 16; 127(45): 15664–5

    Article  PubMed  CAS  Google Scholar 

  68. Frieden M, Orum H. The application of locked nucleic acids in the treatment of cancer. IDrugs 2006 Oct; 9(10): 706–11

    PubMed  CAS  Google Scholar 

  69. Swayze EE, Siwkowski AM, Wancewicz EV, et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res 2007; 35(2): 687–700

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dagmar K. Willkomm for critical reading of the manuscript. Financial support from the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie (R.K. Hartmann), and the Fritz Thyssen Stiftung (A. Grünweller and R.K. Hartmann) is acknowledged. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold GrÜnweiler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

GrÜnweiler, A., Hartmann, R.K. Locked Nucleic Acid Oligonucleotides. BioDrugs 21, 235–243 (2007). https://doi.org/10.2165/00063030-200721040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200721040-00004

Keywords

Navigation