, Volume 20, Issue 6, pp 363–370

An Experimental Model for the Study of Lymphedema and its Response to Therapeutic Lymphangiogenesis

  • Lauren Cheung
  • Jennifer Han
  • Andreas Beilhack
  • Smita Joshi
  • Paul Wilburn
  • Aman Dua
  • Andrew An
  • Stanley G. Rockson
Original Research Article



Evaluation of the efficacy of molecular treatment strategies for lymphatic vascular insufficiency requires a suitable preclinical animal model. Ideally, the model should closely replicate the untreated human disease in its pathogenesis and pathological expression.


We have undertaken a study of the time course of the development and resolution of acquired, experimental lymphedema and of its responses to vascular endothelial growth factor (VEGF)-C lymphangiogenesis in the mouse tail model.

Study design

We provoked post-surgical lymphedema in the mouse tail model and assessed the effects of exogenously administered human recombinant VEGF-C. Quantitative assessment of immune traffic function was performed through sequential in vivo bioluminescent imaging.


In untreated lymphedema, tail edema was sustained until day 21. Exogenous administration of human recombinant VEGF-C produced a significant decrease in volume. Untreated lymphedema in the mouse tail model was characterized by the presence of dilated cutaneous lymphatics, marked acute inflammatory changes, and hypercellularity; VEGF-C produced a substantial reversion to the normal pattern, with notable regression in the size and number of cutaneous lymphatic vessels that express lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1). In vivo imaging confirmed the presence of an impairment of immune traffic in lymphedema that was ameliorated after VEGF-C administration.


The post-surgical murine tail model of lymphedema closely simulates attributes of human lymphedema and provides the requisite sensitivity to detect therapeutically induced functional and structural alterations. It can, therefore, be used as an investigative platform to assess mechanisms of disease and its responses to candidate therapies, such as therapeutic lymphangiogenesis.


  1. 1.
    Schmid-Schonbein GW. Microlymphatics and lymph flow. Physiol Rev 1990; 70(4): 987–1028PubMedGoogle Scholar
  2. 2.
    Swartz MA. The physiology of the lymphatic system. Adv Drag Deliv Rev 2001; 50(1–2): 3–20CrossRefGoogle Scholar
  3. 3.
    Szuba A, Rockson SG. Lymphedema: classification, diagnosis and therapy. Vasc Med 1998; 3(2): 145–56PubMedGoogle Scholar
  4. 4.
    Rockson SG. Lymphedema. Am J Med 2001; 110(4): 288–95PubMedCrossRefGoogle Scholar
  5. 5.
    Piller NB. Macrophage and tissue changes in the developmental phases of secondary lymphoedema and during conservative therapy with benzopyrone. Arch Histol Cytol 1990; 53: 209–18PubMedCrossRefGoogle Scholar
  6. 6.
    Daroczy J. Pathology of lymphedema. Clin Dermatol 1995; 13(5): 433–44PubMedCrossRefGoogle Scholar
  7. 7.
    Rockson SG, Miller LT, Senie R, et al. American Cancer Society Lymphedema Workshop: workgroup III. Diagnosis and management of lymphedema. Cancer 1998; 83(12 Suppl. American): 2882–5PubMedCrossRefGoogle Scholar
  8. 8.
    Ferrara N, Alitalo K. Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 1999; 5: 1359–64PubMedCrossRefGoogle Scholar
  9. 9.
    Alitalo K, Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 2002; 1(3): 219–27PubMedCrossRefGoogle Scholar
  10. 10.
    An A, Rockson SG. The potential for molecular treatment strategies in lymphatic disease. Lymphat Res Biol 2004; 2(4): 173–81PubMedCrossRefGoogle Scholar
  11. 11.
    Szuba A, Skobe M, Karkkainen MJ, et al. Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J 2002; 16(14): 1985–7PubMedGoogle Scholar
  12. 12.
    Yoon YS, Murayama T, Gravereaux E, et al. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest 2003; 111(5): 717–25PubMedGoogle Scholar
  13. 13.
    Swartz MA, Berk DA, Jain RK. Transport in lymphatic capillaries: I. Macroscopic measurements using residence time distribution theory. Am J Physiol 1996; 270 (1 Pt 2): H324–9PubMedGoogle Scholar
  14. 14.
    Swartz MA, Boardman Jr KC. The role of interstitial stress in lymphatic function and lymphangiogenesis. Ann N Y Acad Sci 2002; 979: 197–210, discussion 134PubMedCrossRefGoogle Scholar
  15. 15.
    Slavin SA, Van den Abbeele AD, Losken A, et al. return of lymphatic function after flap transfer for acute lymphedema. Ann Surg 1999; 229 (3): 421-7Google Scholar
  16. 16.
    Boardman KC, Swartz MA. Interstitial flow as a guide for lymphangiogenesis. Circ Res 2003; 92(7): 801–8PubMedCrossRefGoogle Scholar
  17. 17.
    Swartz MA, Kaipainen A, Netti PA, et al. Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. J Biomech 1999; 32(12): 1297–307PubMedCrossRefGoogle Scholar
  18. 18.
    Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997; 276(5317): 1423–5PubMedCrossRefGoogle Scholar
  19. 19.
    Casley-Smith JR, Clodius L, Foldi M. Experimental blood vascular and lymphatic occlusion in the rabbit ear and the effect of benzopyrones. Arzneimittelforschung 1977; 27(2): 379–82PubMedGoogle Scholar
  20. 20.
    Slavin SA, Upton J, Kaplan WD, et al. An investigation of lymphatic function following free-tissue transfer. Plast Reconstr Surg 1997; 99(3): 730–41, discussion 742-3PubMedCrossRefGoogle Scholar
  21. 21.
    Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996; 15: 290–8PubMedGoogle Scholar
  22. 22.
    Sitzia J. Volume measurement in lymphoedema treatment: examination of formulae. Eur J Cancer Care (Engl) 1995; 4(1): 11–6CrossRefGoogle Scholar
  23. 23.
    Cao YA, Wagers AJ, Beilhack A, et al. Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc Natl Acad Sci U S A 2004; 101(1): 221–6PubMedCrossRefGoogle Scholar
  24. 24.
    Beilhack A, Schulz S, Baker J, et al. In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T cell subsets. Blood 2005 Aug 1; 106(3): 1113–22PubMedCrossRefGoogle Scholar
  25. 25.
    Banerji S, Ni J, Wang SX, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 1999; 144(4): 789–801PubMedCrossRefGoogle Scholar
  26. 26.
    Jackson DG. Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. Apmis 2004; 112(7–8): 526–38PubMedCrossRefGoogle Scholar
  27. 27.
    Yong C, Bridenbaugh EA, Zawieja DC, et al. Microarray analysis of VEGF-C responsive genes in human lymphatic endothelial cells. Lymphat Res Biol 2005; 3(4): 183–207PubMedCrossRefGoogle Scholar
  28. 28.
    Hong YK, Shin JW, Detmar M. Development of the lymphatic vascular system: a mystery unravels. Dev Dyn 2004; 231(3): 462–73PubMedCrossRefGoogle Scholar
  29. 29.
    Tammela T, Enholm B, Alitalo K, et al. The biology of vascular endothelial growth factors. Cardiovasc Res 2005; 65(3): 550–63PubMedCrossRefGoogle Scholar
  30. 30.
    Shin WS, Szuba A, Rockson SG. Animal models for the study of lymphatic insufficiency. Lymphat Res Biol 2003; 1(2): 159–69PubMedCrossRefGoogle Scholar
  31. 31.
    Enholm B, Karpanen T, Jeltsch M, et al. Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ Res 2001; 88(6): 623–9PubMedCrossRefGoogle Scholar
  32. 32.
    Saaristo A, Veikkola T, Enholm B, et al. Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. Faseb J 2002; 16(9): 1041–9PubMedCrossRefGoogle Scholar
  33. 33.
    Goldman J, Le TX, Skobe M, et al. Overexpression of VEGF-C causes transient lymphatic hyperplasia but not increased lymphangiogenesis in regenerating skin. Circ Res 2005; 96(11): 1193–9PubMedCrossRefGoogle Scholar
  34. 34.
    Wilson SF. Histopathologic improvement with lymphedema management, Leogane, Haiti. Emerg Infect Dis 2004; 10(11): 1938–46PubMedCrossRefGoogle Scholar
  35. 35.
    Makinen T, Jussila L, Veikkola T, et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 2001; 7(2): 199–205PubMedCrossRefGoogle Scholar
  36. 36.
    Karkkainen MJ, Saaristo A, Jussila L, et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci U S A 2001; 98(22): 12677–82PubMedCrossRefGoogle Scholar
  37. 37.
    Schneider M, Ny A, de Almodovar CR, et al. A new mouse model to study acquired lymphedema. PLoS Med 2006; 3(7): e264PubMedCrossRefGoogle Scholar
  38. 38.
    Tabibiazar R, Cheung L, Han J, et al. Inflammatory manifestations of experimental lymphatic insufficiency. PLoS Med 2006; 3(7): e254PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  • Lauren Cheung
    • 1
  • Jennifer Han
    • 1
  • Andreas Beilhack
    • 1
  • Smita Joshi
    • 1
  • Paul Wilburn
    • 1
  • Aman Dua
    • 1
  • Andrew An
    • 1
  • Stanley G. Rockson
    • 1
  1. 1.Division of Cardiovascular Medicine, Stanford Center for Lymphatic and Venous DisordersStanford University School of Medicine, Falk Cardiovascular Research CenterStanfordUSA

Personalised recommendations