, Volume 20, Issue 4, pp 219–229 | Cite as

Sleeping Beauty Transposon-Mediated Nonviral Gene Therapy

  • Stephen Fernando
  • Bradley S. Fletcher
Gene Therapy


Safe and effective delivery of genetic material to mammalian tissues would significantly expand the therapeutic possibilities for a large number of medical conditions. Unfortunately, the promise of gene therapy has been hampered by technical challenges, the induction of immune responses, and inadequate expression over time. Despite these setbacks, progress continues to be made and the anticipated benefits may come to fruition for certain disorders. In terms of delivery, nonviral vector systems are particularly attractive as they are simple to produce, can be stored for long periods of time, and induce no specific immune responses. A significant drawback to nonviral systems has been the lack of persistent expression, as plasmids are lost or degraded when delivered to living tissues. The recent application of integrating transposons to nonviral gene delivery has significantly helped to overcome this obstacle, because it allows for genomic integration and long-term expression. Recent advances in transposon-based vector systems hold promise as new technologies that may unlock the potential of gene therapy; however, technical and safety issues still need refinement.


Gene Therapy Insertional Mutagenesis Sleep Beauty Donor Plasmid Nonviral Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Bradley S. Fletcher is supported by grants from the American Heart Association and the Veterans Affairs Medical Research Service.

The authors have no conflicts of interest directly relevant to the contents of this article.


  1. 1.
    Somia N, Verma IM. Gene therapy: trials and tribulations. Nat Rev Genet 2000; 1(2): 91–9PubMedCrossRefGoogle Scholar
  2. 2.
    Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302(5644): 415–9PubMedCrossRefGoogle Scholar
  3. 3.
    Manno CS, Arruda VR, Pierce GF, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12(3): 342–7PubMedCrossRefGoogle Scholar
  4. 4.
    Ivics Z, Hackett PB, Plasterk RH, et al. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 1997; 91(4): 501–10PubMedCrossRefGoogle Scholar
  5. 5.
    Groth AC, Olivares EC, Thyagarajan B, et al. A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A 2000; 97(11): 5995–6000PubMedCrossRefGoogle Scholar
  6. 6.
    Groth AC, Calos MP. Phage integrases: biology and applications. J Mol Biol 2004; 335(3): 667–78PubMedCrossRefGoogle Scholar
  7. 7.
    Ding S, Wu X, Li G, et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 2005; 122(3): 473–83PubMedCrossRefGoogle Scholar
  8. 8.
    Izsvak Z, Ivics Z. Sleeping Beauty transposition: biology and applications for molecular therapy. Mol Ther 2004; 9(2): 147–56PubMedCrossRefGoogle Scholar
  9. 9.
    Essner JJ, McIvor RS, Hackett PB. Awakening gene therapy with Sleeping Beauty transposons. Curr Opin Pharmacol 2005; 5(5): 513–9PubMedCrossRefGoogle Scholar
  10. 10.
    Hackett PB, Ekker SC, Largaespada DA, et al. Sleeping Beauty transposonmediated gene therapy for prolonged expression. Adv Genet 2005, 232Google Scholar
  11. 11.
    Moran JV, Holmes SE, Naas TP, et al. High frequency retrotransposition in cultured mammalian cells. Cell 1996; 87(5): 917–27PubMedCrossRefGoogle Scholar
  12. 12.
    Plasterk RH, Izsvak Z, Ivics Z. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 1999; 15(8): 326–32PubMedCrossRefGoogle Scholar
  13. 13.
    Ivics Z, Izsvak Z, Minter A, et al. Identification of functional domains and evolution of Tc1-like transposable elements. Proc Natl Acad Sci U S A 1996; 93(10): 5008–13PubMedCrossRefGoogle Scholar
  14. 14.
    Izsvak Z, Ivics Z, Plasterk RH. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol 2000; 302(1): 93–102PubMedCrossRefGoogle Scholar
  15. 15.
    Geurts AM, Yang Y, Clark KJ, et al. Gene transfer into genomes of human cells by the Sleeping Beauty transposon system. Mol Ther 2003; 8(1): 108–17PubMedCrossRefGoogle Scholar
  16. 16.
    Heggestad AD, Notterpek L, Fletcher BS. Transposon-based RNAi delivery system for generating knockdown cell lines. Biochem Biophys Res Commun 2004; 316(3): 643–50PubMedCrossRefGoogle Scholar
  17. 17.
    Converse AD, Belur LR, Gori JL, et al. Counterselection and co-delivery of transposon and transposase functions for Sleeping Beauty-mediated transposition in cultured mammalian cells. Biosci Rep 2004; 24(6): 577–94PubMedCrossRefGoogle Scholar
  18. 18.
    Davidson AE, Balciunas D, Mohn D, et al. Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol 2003; 263(2): 191–202PubMedCrossRefGoogle Scholar
  19. 19.
    Clark KJ, Geurts AM, Bell JB, et al. Transposon vectors for gene-trap insertional mutagenesis in vertebrates. Genesis 2004; 39(4): 225–33PubMedCrossRefGoogle Scholar
  20. 20.
    Wadman SA, Clark KJ, Hackett PB. Fishing for answers with transposons. Mar Biotechnol (NY) 2005; 7(3): 135–1CrossRefGoogle Scholar
  21. 21.
    Dupuy AJ, Clark K, Carlson CM, et al. Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci U S A 2002; 99(7): 4495–9PubMedCrossRefGoogle Scholar
  22. 22.
    Dupuy AJ, Fritz S, Largaespada DA. Transposition and gene disruption in the male germline of the mouse. Genesis 2001; 30(2): 82–8PubMedCrossRefGoogle Scholar
  23. 23.
    Fischer SE, Wienholds E, Plasterk RH. Regulated transposition of a fish transposon in the mouse germ line. Proc Natl Acad Sci U S A 2001; 98(12): 6759–64PubMedCrossRefGoogle Scholar
  24. 24.
    Horie K, Kuroiwa A, Ikawa M, et al. Efficient chromosomal transposition of a Tc1/ mariner-like transposon Sleeping Beauty in mice. Proc Natl Acad Sci U S A 2001; 98(16): 9191–6PubMedCrossRefGoogle Scholar
  25. 25.
    Horie K, Yusa K, Yae K, et al. Characterization of Sleeping Beauty transposition and its application to genetic screening in mice. Mol Cell Biol 2003; 23(24): 9189–207PubMedCrossRefGoogle Scholar
  26. 26.
    Carlson CM, Dupuy AJ, Fritz S, et al. Transposon mutagenesis of the mouse germline. Genetics 2003; 165(1): 243–56PubMedGoogle Scholar
  27. 27.
    Luo G, Ivics Z, Izsvak Z, et al. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc Natl Acad Sci U S A 1998; 95(18): 10769–73PubMedCrossRefGoogle Scholar
  28. 28.
    Tolar J, Osborn M, Bell S, et al. Real-time in vivo imaging of stem cells following transgenesis by transposition. Mol Ther 2005; 12(1): 42–8PubMedCrossRefGoogle Scholar
  29. 29.
    Yant SR, Meuse L, Chiu W, et al. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet 2000; 25(1): 35–41PubMedCrossRefGoogle Scholar
  30. 30.
    Yant SR, Ehrhardt A, Mikkelsen JG, et al. Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nat Biotechnol 2002; 20(10): 999–1005PubMedCrossRefGoogle Scholar
  31. 31.
    Montini E, Held PK, Noll M, et al. In vivo correction of murine tyrosinemia type I by DNA-mediated transposition. Mol Ther 2002; 6(6): 759–69PubMedCrossRefGoogle Scholar
  32. 32.
    Belur LR, Frandsen JL, Dupuy AJ, et al. Gene insertion and long-term expression in lung mediated by the Sleeping Beauty transposon system. Mol Ther 2003; 8(3): 501–7PubMedCrossRefGoogle Scholar
  33. 33.
    Ortiz-Urda S, Lin Q, Yant SR, et al. Sustainable correction of junctional epidermolysis bullosa via transposon-mediated nonviral gene transfer. Gene Ther 2003; 10(13): 1099–104PubMedCrossRefGoogle Scholar
  34. 34.
    He CX, Shi D, Wu WJ, et al. Insulin expression in livers of diabetic mice mediated by hydrodynamics-based administration. World J Gastroenterol 2004; 10(4): 567–72PubMedGoogle Scholar
  35. 35.
    Liu L, Sanz S, Heggestad AD, et al. Endothelial targeting of the Sleeping Beauty transposon within lung. Mol Ther 2004; 10(1): 97–105PubMedCrossRefGoogle Scholar
  36. 36.
    Ohlfest JR, Lobitz PD, Perkinson SG, et al. Integration and long-term expression in xenografted human glioblastoma cells using a plasmid-based transposon system. Mol Ther 2004; 10(2): 260–8PubMedCrossRefGoogle Scholar
  37. 37.
    Ohlfest JR, Frandsen JL, Fritz S, et al. Phenotypic correction and long-term expression of factor VIII in hemophilic mice by immunotolerization and nonviral gene transfer using the Sleeping Beauty transposon system. Blood 2005; 105(7): 2691–8PubMedCrossRefGoogle Scholar
  38. 38.
    Huang X, Wilber AC, Bao L, et al. Stable gene transfer and expression in human primary T-cells by the Sleeping Beauty transposon system. Blood 2005; 107(2): 483–91PubMedCrossRefGoogle Scholar
  39. 39.
    Collier LS, Carlson CM, Ravimohan S, et al. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 2005; 436(7048): 272–6PubMedCrossRefGoogle Scholar
  40. 40.
    Harris JW, Strong DD, Amoui M, et al. Construction of a Tc1-like transposon Sleeping Beauty-based gene transfer plasmid vector for generation of stable transgenic mammalian cell clones. Anal Biochem 2002; 310(1): 15–26PubMedCrossRefGoogle Scholar
  41. 41.
    Mikkelsen JG, Yant SR, Meuse L, et al. Helper-independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. Mol Ther 2003; 8(4): 654–65PubMedCrossRefGoogle Scholar
  42. 42.
    Izsvak Z, Khare D, Behlke J, et al. Involvement of a bifunctional, paired-like DNA-binding domain and a transpositional enhancer in Sleeping Beauty transposition. J Biol Chem 2002; 277(37): 34581–8PubMedCrossRefGoogle Scholar
  43. 43.
    Cui Z, Geurts AM, Liu G, et al. Structure-function analysis of the inverted terminal repeats of the Sleeping Beauty transposon. J Mol Biol 2002; 318(5): 1221–35PubMedCrossRefGoogle Scholar
  44. 44.
    Karsi A, Moav B, Hackett P, et al. Effects of insert size on transposition efficiency of the Sleeping Beauty transposon in mouse cells. Mar Biotechnol (NY) 2001; 3(3): 241–5CrossRefGoogle Scholar
  45. 45.
    Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860–921PubMedCrossRefGoogle Scholar
  46. 46.
    Zayed H, Izsvak Z, Walisko O, et al. Development of hyperactive Sleeping Beauty transposon vectors by mutational analysis. Mol Ther 2004; 9(2): 292–304PubMedCrossRefGoogle Scholar
  47. 47.
    Yant SR, Park J, Huang Y, et al. Mutational analysis of the N-terminal DNA-binding domain of Sleeping Beauty transposase: critical residues for DNA binding and hyperactivity in mammalian cells. Mol Cell Biol 2004; 24(20): 9239–47PubMedCrossRefGoogle Scholar
  48. 48.
    Chen ZJ, Kren BT, Wong PY, et al. Sleeping Beauty-mediated down-regulation of huntingtin expression by RNA interference. Biochem Biophys Res Commun 2005; 329(2): 646–52PubMedCrossRefGoogle Scholar
  49. 49.
    Kaufman CD, Izsvák Z, Katzer A, et al. Frog Prince transposon-based RNAi vectors mediate efficient gene knockdown in human cells. J RNAi Gene Silenc 2005; 1(2): 97–104Google Scholar
  50. 50.
    Doak TG, Doerder FP, Jahn CL, et al. A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common “D35E” motif. Proc Natl Acad Sci U S A 1994; 91(3): 942–6PubMedCrossRefGoogle Scholar
  51. 51.
    Craig NL. Unity in transposition reactions. Science 1995; 270(5234): 253–4PubMedCrossRefGoogle Scholar
  52. 52.
    van Luenen HG, Colloms SD, Plasterk RH. The mechanism of transposition of Tc3 in C. elegans. Cell 1994; 79(2): 293–301CrossRefGoogle Scholar
  53. 53.
    Izsvak Z, Stuwe EE, Fiedler D, et al. Healing the wounds inflicted by Sleeping Beauty transposition by double-strand break repair in mammalian somatic cells. Mol Cell 2004; 13(2): 279–90PubMedCrossRefGoogle Scholar
  54. 54.
    Baus J, Liu L, Heggestad AD, et al. Hyperactive transposase mutants of the Sleeping Beauty transposon. Mol Ther 2005; 12(6): 1148–56PubMedCrossRefGoogle Scholar
  55. 55.
    Zayed H, Izsvak Z, Khare D, et al. The DNA-bending protein HMGB1 is a cellular cofactor of Sleeping Beauty transposition. Nucleic Acids Res 2003; 31(9): 2313–22PubMedCrossRefGoogle Scholar
  56. 56.
    Walisko O, Izsvak Z, Szabo K, et al. Sleeping Beauty transposase modulates cell-cycle progression through interaction with Miz-1. Proc Natl Acad Sci U S A 2006; 103(11): 4062–7PubMedCrossRefGoogle Scholar
  57. 57.
    Yant SR, Kay MA. Nonhomologous-end-joining factors regulate DNA repair fidelity during Sleeping Beauty element transposition in mammalian cells. Mol Cell Biol 2003; 23(23): 8505–18PubMedCrossRefGoogle Scholar
  58. 58.
    Liu G, Aronovich EL, Cui Z, et al. Excision of Sleeping Beauty transposons: parameters and applications to gene therapy. J Gene Med 2004; 6(5): 574–83PubMedCrossRefGoogle Scholar
  59. 59.
    Yusa K, Takeda J, Horie K. Enhancement of Sleeping Beauty transposition by CpG methylation: possible role of heterochromatin formation. Mol Cell Biol 2004; 24(9): 4004–18PubMedCrossRefGoogle Scholar
  60. 60.
    Brenner C, Fuks F. DNA methyltransferases: facts, clues, mysteries. Curr Top Microbiol Immunol 2006; 301: 45–66PubMedCrossRefGoogle Scholar
  61. 61.
    Vigdal TJ, Kaufman CD, Izsvak Z, et al. Common physical properties of DNA affecting target site selection of Sleeping Beauty and other Tc1/mariner transposable elements. J Mol Biol 2002; 323(3): 441–52PubMedCrossRefGoogle Scholar
  62. 62.
    Liu G, Geurts AM, Yae K, et al. Target-site preferences of Sleeping Beauty transposons. J Mol Biol 2005; 346(1): 161–73PubMedCrossRefGoogle Scholar
  63. 63.
    Yant SR, Wu X, Huang Y, et al. High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol 2005; 25(6): 2085–94PubMedCrossRefGoogle Scholar
  64. 64.
    Wilber A, Frandsen JL, Geurts JL, et al. RNA as a source of transposase for Sleeping Beauty-mediated gene insertion and expression in somatic cells and tissues. Mol Ther 2005; 13(3): 625–30PubMedCrossRefGoogle Scholar
  65. 65.
    Hartl DL, Lohe AR, Lozovskaya ER. Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu Rev Genet 1997; 31: 337–58PubMedCrossRefGoogle Scholar
  66. 66.
    Tranchant I, Thompson B, Nicolazzi C, et al. Physicochemical optimisation of plasmid delivery by cationic lipids. J Gene Med 2004; 6Suppl. 1: S24–35PubMedCrossRefGoogle Scholar
  67. 67.
    Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med 2005; 7(8): 992–1009PubMedCrossRefGoogle Scholar
  68. 68.
    Kaneda Y, Yamamoto S, Nakajima T. Development of HVJ envelope vector and its application to gene therapy. Adv Genet 2005; 53PA: 307–32PubMedCrossRefGoogle Scholar
  69. 69.
    Wolff JA, Budker V. The mechanism of naked DNA uptake and expression. Adv Genet 2005; 54: 3–20PubMedGoogle Scholar
  70. 70.
    Greelish JP, Su LT, Lankford EB, et al. Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector. Nat Med 1999; 5(4): 439–43PubMedCrossRefGoogle Scholar
  71. 71.
    Dean DA. Nonviral gene transfer to skeletal, smooth, and cardiac muscle in living animals. Am J Physiol Cell Physiol 2005; 289(2): C233–45PubMedCrossRefGoogle Scholar
  72. 72.
    Somiari S, Glasspool-Malone J, Drabick JJ, et al. Theory and in vivo application of electroporative gene delivery. Mol Ther 2000; 2(3): 178–87PubMedCrossRefGoogle Scholar
  73. 73.
    Wells DJ. Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 2004; 11(18): 1363–9PubMedCrossRefGoogle Scholar
  74. 74.
    Bowers WJ, Mastrangelo MA, Howard DF, et al. Neuronal precursor-restricted transduction via in utero CNS gene delivery of a novel bipartite HSV amplicon/ transposase hybrid vector. Mol Ther 2006; 13(3): 580–8PubMedCrossRefGoogle Scholar
  75. 75.
    Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 1999; 6(7): 1258–66PubMedCrossRefGoogle Scholar
  76. 76.
    Su LT, Gopal K, Wang Z, et al. Uniform scale-independent gene transfer to striated muscle after transvenular extravasation of vector. Circulation 2005; 112(12): 1780–8PubMedCrossRefGoogle Scholar
  77. 77.
    Miao CH, Thompson AR, Loeb K, et al. Long-term and therapeutic-level hepatic gene expression of human factor IX after naked plasmid transfer in vivo. Mol Ther 2001; 3(6): 947–57PubMedCrossRefGoogle Scholar
  78. 78.
    Feng DM, He CX, Miao CY, et al. Conditions affecting hydrodynamics-based gene delivery into mouse liver in vivo. Clin Exp Pharmacol Physiol 2004; 31(12): 850–5PubMedCrossRefGoogle Scholar
  79. 79.
    Zhang G, Gao X, Song YK, et al. Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther 2004; 11(8): 675–82PubMedCrossRefGoogle Scholar
  80. 80.
    Inoue S, Hakamata Y, Kaneko M, et al. Gene therapy for organ grafts using rapid injection of naked DNA: application to the rat liver. Transplantation 2004; 77(7): 997–1003PubMedCrossRefGoogle Scholar
  81. 81.
    Ohlfest JR, Demorest ZL, Motooka Y, et al. Combinatorial antiangiogenic gene therapy by nonviral gene transfer using the Sleeping Beauty transposon causes tumor regression and improves survival in mice bearing intracranial human glioblastoma. Mol Ther 2005; 12(5): 778–88PubMedCrossRefGoogle Scholar
  82. 82.
    Liu L, Mah C, Fletcher BS. Sustained FVIII expression and phenotypic correction of hemophilia A in neonatal mice using an endothelial-targeted Sleeping Beauty transposon. Mol Ther 2006; 13(5): 1006–15PubMedCrossRefGoogle Scholar
  83. 83.
    Elouahabi A, Ruysschaert JM. Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Ther 2005; 11(3): 336–47PubMedCrossRefGoogle Scholar
  84. 84.
    Lungwitz U, Breunig M, Blunk T, et al. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 2005; 60(2): 247–66PubMedCrossRefGoogle Scholar
  85. 85.
    Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 1995; 92(16): 7297–301PubMedCrossRefGoogle Scholar
  86. 86.
    Kopatz I, Remy JS, Behr JP. A model for non-viral gene delivery: through syndecan adhesion molecules and powered by actin. J Gene Med 2004; 6(7): 769–76PubMedCrossRefGoogle Scholar
  87. 87.
    Pollard H, Toumaniantz G, Amos JL, et al. Ca2+-sensitive cytosolic nucleases prevent efficient delivery to the nucleus of injected plasmids. J Gene Med 2001; 3(2): 153–64PubMedCrossRefGoogle Scholar
  88. 88.
    Goula D, Benoist C, Mantero S, et al. Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther 1998; 5(9): 1291–5PubMedCrossRefGoogle Scholar
  89. 89.
    Goula D, Becker N, Lemkine GF, et al. Rapid crossing of the pulmonary endothelial barrier by polyethylenimine/DNA complexes. Gene Ther 2000; 7(6): 499–504PubMedCrossRefGoogle Scholar
  90. 90.
    Rudolph C, Schillinger U, Plank C, et al. Nonviral gene delivery to the lung with copolymer-protected and transferrin-modified polyethylenimine. Biochim Biophys Acta 2002; 1573(1): 75–83PubMedCrossRefGoogle Scholar
  91. 91.
    Densmore CL. Polyethyleneimine-based gene therapy by inhalation. Expert Opin Biol Ther 2003; 3(7): 1083–92PubMedCrossRefGoogle Scholar
  92. 92.
    Boletta A, Benigni A, Lutz J, et al. Nonviral gene delivery to the rat kidney with polyethylenimine. Hum Gene Ther 1997; 8(10): 1243–51PubMedCrossRefGoogle Scholar
  93. 93.
    Abdallah B, Hassan A, Benoist C, et al. A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum Gene Ther 1996; 7(16): 1947–54PubMedCrossRefGoogle Scholar
  94. 94.
    Coll JL, Chollet P, Brambilla E, et al. In vivo delivery to tumors of DNA complexed with linear polyethylenimine. Hum Gene Ther 1999; 10(10): 1659–66PubMedCrossRefGoogle Scholar
  95. 95.
    Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine)-mediated gene delivery affects endothelial cell function and viability. Biomaterials 2001; 22(5): 471–80PubMedCrossRefGoogle Scholar
  96. 96.
    Liu H, Liu L, Fletcher BS, et al. Novel action of indoleamine 2,3-dioxygenase attenuating acute lung allograft injury. Am J Respir Crit Care Med 2006; 173(5): 566–72PubMedCrossRefGoogle Scholar
  97. 97.
    Mukhopadhyay A, Madhusudhan T, Kumar R. Hematopoietic stem cells: clinical requirements and developments in ex-vivo culture. Adv Biochem Eng Biotechnol 2004; 86: 215–53PubMedGoogle Scholar
  98. 98.
    Huard J, Cao B, Qu-Petersen Z. Muscle-derived stem cells: potential for muscle regeneration. Birth Defects Res C Embryo Today 2003; 69(3): 230–7PubMedCrossRefGoogle Scholar
  99. 99.
    Ozawa CR, Springer ML, Blau ML. A novel means of drug delivery: myoblast-mediated gene therapy and regulatable retroviral vectors. Annu Rev Pharmacol Toxicol 2000; 40: 295–317PubMedCrossRefGoogle Scholar
  100. 100.
    Ferrari S, Pellegrini G, Mavilio F, et al. Gene therapy approaches for epidermolysis bullosa. Clin Dermatol 2005; 23(4): 430–6PubMedCrossRefGoogle Scholar
  101. 101.
    Ebert AD, Svendsen CN. A new tool in the battle against Alzheimer’s disease and aging: ex vivo gene therapy. Rejuvenation Res 2005; 8(3): 131–4PubMedCrossRefGoogle Scholar
  102. 102.
    Pereboeva L, Curiel DT. Cellular vehicles for cancer gene therapy: current status and future potential. BioDrugs 2004; 18(6): 361–85PubMedCrossRefGoogle Scholar
  103. 103.
    Rossig C, Brenner MK. Genetic modification of T lymphocytes for adoptive immunotherapy. Mol Ther 2004; 10(1): 5–18PubMedCrossRefGoogle Scholar
  104. 104.
    Hsu C, Hughes MS, Zheng Z, et al. Primary human T lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine. J Immunol 2005; 175(11): 7226–34PubMedGoogle Scholar
  105. 105.
    Rossig C, Bar A, Pscherer S, et al. Target antigen expression on a professional antigen-presenting cell induces superior proliferative antitumor T-cell responses via chimeric T-cell receptors. J Immunother 2006; 29(1): 21–31PubMedCrossRefGoogle Scholar
  106. 106.
    Zhang D, Murakami A, Johnson RP, et al. Optimization of ex vivo activation and expansion of macaque primary CD4-enriched peripheral blood mononuclear cells for use in anti-HIV immunotherapy and gene therapy strategies. J Acquir Immune Defic Syndr 2003; 32(3): 245–54PubMedCrossRefGoogle Scholar
  107. 107.
    Hacein-Bey-Abina S, de Saint Basil G, Cavazzana-Calvo M. Gene therapy of X-linked severe combined immunodeficiency. Methods Mol Biol 2003; 215: 247–59PubMedGoogle Scholar
  108. 108.
    Dietrich PY, Walker PR, Schnuriger V, et al. TCR analysis reveals significant repertoire selection during in vitro lymphocyte culture. Int Immunol 1997; 9(8): 1073–83PubMedCrossRefGoogle Scholar
  109. 109.
    Zhou X, Cui Y, Huang X, et al. Lentivirus-mediated gene transfer and expression in established human tumor antigen-specific cytotoxic T cells and primary unstimulated T cells. Hum Gene Ther 2003; 14(11): 1089–105PubMedCrossRefGoogle Scholar
  110. 110.
    Dupuy AJ, Akagi K, Largaespada DA, et al. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 2005; 436(7048): 221–6PubMedCrossRefGoogle Scholar
  111. 111.
    Carlson CM, Frandsen JL, Kirchhof N, et al. Somatic integration of an oncogeneharboring Sleeping Beauty transposon models liver tumor development in the mouse. Proc Natl Acad Sci U S A 2005; 102(47): 17059–64PubMedCrossRefGoogle Scholar
  112. 112.
    Kaminski JM, Huber MR, Summers JB, et al. Design of a nonviral vector for site-selective, efficient integration into the human genome. Faseb J. 2002; 16(10): 1242–7PubMedCrossRefGoogle Scholar
  113. 113.
    Chalberg TW, Portlock JL, Olivares EC, et al. Integration specificity of phage varphiC31 integrase in the human genome. J Mol Biol 2005; 357(1): 28–48PubMedCrossRefGoogle Scholar
  114. 114.
    Hollis RP, Stoll SM, Sclimenti CR, et al. Phage integrases for the construction and manipulation of transgenic mammals. Reprod Biol Endocrinol 2003; 1: 79–90PubMedCrossRefGoogle Scholar
  115. 115.
    Malla S, Dafhnis-Calas F, Brookfield JF, et al. Rearranging the centromere of the human Y chromosome with phiC31 integrase. Nucleic Acids Res 2005; 33(19): 6101–13PubMedCrossRefGoogle Scholar
  116. 116.
    Ehrhardt A, Xu H, Huang Z, et al. A direct comparison of two nonviral gene therapy vectors for somatic integration: in vivo evaluation of the bacteriophage integrase phiC31 and the Sleeping Beauty transposase. Mol Ther 2005; 11(5): 695–706PubMedCrossRefGoogle Scholar
  117. 117.
    Yew NS, Cheng SH. Reducing the immunostimulatory activity of CpG-containing plasmid DNA vectors for non-viral gene therapy. Expert Opin Drug Deliv 2004; 1(1): 115–25PubMedCrossRefGoogle Scholar
  118. 118.
    Chen Y, Lenert P, Weeratna R, et al. Identification of methylated CpG motifs as inhibitors of the immune stimulatory CpG motifs. Gene Ther 2001; 8(13): 1024–32PubMedCrossRefGoogle Scholar
  119. 119.
    Reyes-Sandoval A, Ertl HC. CpG methylation of a plasmid vector results in extended transgene product expression by circumventing induction of immune responses. Mol Ther 2004; 9(2): 249–61PubMedCrossRefGoogle Scholar
  120. 120.
    Gallo-Penn AM, Shirley PS, Andrews JL, et al. Systemic delivery of an adenoviral vector encoding canine factor VIII results in short-term phenotypic correction, inhibitor development, and biphasic liver toxicity in hemophilia A dogs. Blood 2001; 97(1): 107–13PubMedCrossRefGoogle Scholar
  121. 121.
    Ye P, Thompson AR, Sarkar R, et al. Naked DNA transfer of factor VIII induced transgene-specific, species-independent immune response in hemophilia A mice. Mol Ther 2004; 10(1): 117–26PubMedCrossRefGoogle Scholar
  122. 122.
    Kichler A. Gene transfer with modified polyethylenimines. J Gene Med 2004; 6Suppl. 1: S3–10PubMedCrossRefGoogle Scholar
  123. 123.
    Wilson MH, Kaminski JM, George Jr AL. Functional zinc finger/Sleeping Beauty transposase chimeras exhibit attenuated overproduction inhibition. FEBS Lett 2005; 579(27): 6205–9PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  1. 1.Department of Pharmacology and TherapeuticsUniversity of Florida, College of MedicineGainesvilleUSA
  2. 2.Department of Veteran Affairs Medical CenterMedical Research ServiceGainesvilleUSA

Personalised recommendations