BioDrugs

, Volume 20, Issue 2, pp 121–135 | Cite as

Peroxisome Proliferator-Activated Receptor-γ

Novel Therapeutic Target Linking Adiposity, Insulin Resistance, and Atherosclerosis
Mechanisms and Targets

Abstract

Insulin resistance and obesity is a common health problem in the industrialized world. As a result of the availability of high-calorie food and a reduction in energy expenditure, maladaptive metabolic processes may interfere with the action of insulin and increase susceptibility for the development of atherosclerotic cardiovascular diseases. With the advent of peroxisome proliferator-activated receptors (PPARs), the mechanisms of this maladaptation and its relationship to insulin resistance syndrome components have become less obscure, promising new therapeutic approaches for this common problem. In this review we first focus on the molecular structure and cellular mechanisms of action of these receptors and then discuss how PPAR-γ, a PPAR isoform, provides a link between adiposity, insulin resistance, and atherosclerosis.

References

  1. 1.
    Mokdad AH, Ford ES, Bowman BA, et al. Prevalence of obesity, diabetes, and obesity related health risk factors 2001. JAMA 2003; 289: 76–9PubMedCrossRefGoogle Scholar
  2. 2.
    National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002; 106: 3143–421Google Scholar
  3. 3.
    Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 2002; 288: 2709–16PubMedCrossRefGoogle Scholar
  4. 4.
    Ridker PM, Buring JE, Cook NR, et al. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: a 8-year follow-up of 14 719 initially healthy American women. Circulation 2003; 107: 391–7PubMedCrossRefGoogle Scholar
  5. 5.
    Ginsberg HN. Treatment for patients with the metabolic syndrome. Am J Cardiol 2003; 91(7A): 29E–39EPubMedCrossRefGoogle Scholar
  6. 6.
    Debril MB, Renaud JP, Fajas L, et al. The pleiotropic functions of peroxisome proliferator-activated receptor y. J Mol Med 2001; 79: 30–47PubMedCrossRefGoogle Scholar
  7. 7.
    Lehmann JM, Moore LB, Smith-Oliver TA, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor y (PPAR-γ). J Biol Chem 1995; 270: 12953–6PubMedCrossRefGoogle Scholar
  8. 8.
    Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990; 347: 645–50PubMedCrossRefGoogle Scholar
  9. 9.
    Dreyer C, Krey G, Keller H. Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell 1992; 68: 879–87PubMedCrossRefGoogle Scholar
  10. 10.
    Kliewer SA, Forman BM, Blumberg B, et al. Differential expression and activation of family murine peroxisome proliferator-activated receptors. Proc Natl Acad sci US A 1994; 91: 7355–9CrossRefGoogle Scholar
  11. 11.
    Sher T, Yi HF, McBride OW, et al. cDNA cloning, chromosomal mapping and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry 1993; 32: 5598–604PubMedCrossRefGoogle Scholar
  12. 12.
    Kota BP, Huang TH, Roufogalis BD. An overview on biological mechanisms of PPARs. Pharmacol Res 2005; 51(2): 85–94PubMedCrossRefGoogle Scholar
  13. 13.
    Kliewer SA, Umesono K, Noonan DJ, et al. Convergence of 9-cis retinoic acid and peroxisome proliferators signaling pathways through heterodimer formation of their receptors. Nature 1992; 358: 771–4PubMedCrossRefGoogle Scholar
  14. 14.
    Gearing KL, Gottlicher M, Teboul M, et al. Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor. Proc Natl Acad sci U S A 1993; 90: 1440–4PubMedCrossRefGoogle Scholar
  15. 15.
    Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000; 14(2): 121–41PubMedGoogle Scholar
  16. 16.
    Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999; 20(5): 649–88PubMedCrossRefGoogle Scholar
  17. 17.
    Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha,-beta, and -gamma in the adult rat. Endocrinology 1996; 137: 354–66PubMedCrossRefGoogle Scholar
  18. 18.
    Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor a (PPAR-α) in the cellular fasting response: the PPAR α-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad sci U S A 1999; 96: 7473–8PubMedCrossRefGoogle Scholar
  19. 19.
    Motojima K, Passilly P, Peters JM, et al. Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor α and γ activators in a tissue-and inducer-specific manner. J Biol Chem 1998; 273: 16710–4PubMedCrossRefGoogle Scholar
  20. 20.
    Vosper H, Khoudoli GA, Graham TL, et al. Peroxisome proliferator-activated receptor agonists, hyperlipidemia and atherosclerosis. Pharmacol Ther 2002; 95: 47–62PubMedCrossRefGoogle Scholar
  21. 21.
    Lee SS, Pineau T, Draogo J, et al. Targeted disruption of the α isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 1995; 15: 3012–22PubMedGoogle Scholar
  22. 22.
    Nagao K, Yoshida S, Nakagiri H, et al. Gemfibrozil reduces non-high-density lipoprotein cholesterol in exogenously hypercholesterolemic (ExHC) rats fed a high-cholesterol diet. Comp Biochem Physiol B Biochem Mol Biol 1998; 120: 579–86PubMedCrossRefGoogle Scholar
  23. 23.
    Delerive P, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol 2001; 169(3): 453–9PubMedCrossRefGoogle Scholar
  24. 24.
    Francis GA, Fayard E, Picard F, et al. Nuclear receptors and the control of metabolism. Annu Rev Physiol 2003; 65: 261–311PubMedCrossRefGoogle Scholar
  25. 25.
    Lehmann JM, Lenhard JM, Oliver BB, et al. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1997; 272(6): 3406–10PubMedCrossRefGoogle Scholar
  26. 26.
    Benson SC, Pershadsingh HA, Ho CI, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension 2004; 43(5): 993–1002PubMedCrossRefGoogle Scholar
  27. 27.
    Schupp M, Janke J, Clasen R, et al. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity. Circulation 2004; 109(17): 2054–7PubMedCrossRefGoogle Scholar
  28. 28.
    Doggrell SA. Telmisartan: killing two birds with one stone. Expert Opin Pharmacother 2004; 5(11): 2397–400PubMedCrossRefGoogle Scholar
  29. 29.
    Forman BM, Tontonoz P, Chen J, et al. 15-Deoxy-delta 12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR-γ. Cell 1995; 83: 803–12PubMedCrossRefGoogle Scholar
  30. 30.
    Kliewer SA, Lenhard JM, Wilson TM, et al. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 1995; 83: 813–9PubMedCrossRefGoogle Scholar
  31. 31.
    Huang JT, Welch JS, Ricote M, et al. Interleukin-4 dependent production of PPAR-γ ligands in macrophages by 12/15-lipoxygenase. Nature 1999; 400: 378–82PubMedCrossRefGoogle Scholar
  32. 32.
    Chawla A, Barak Y, Nagy L, et al. PPAR gamma dependent and independent effects on macrophage gene expression in lipid metabolism and inflammation. Nat Med 2001; 7: 48–52PubMedCrossRefGoogle Scholar
  33. 33.
    Bell-Parikh LC, Ide T, Lawson JA, et al. Biosynthesis of 15-deoxy-Δl2.l4_pGJ2 and the ligation of PPARγ. J Clin Invest 2003; 112: 945–55PubMedGoogle Scholar
  34. 34.
    Pascual G, Fong AL, Ogawa S, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 2005; 437(7059): 759–63PubMedCrossRefGoogle Scholar
  35. 35.
    Ohshima T, Koga H, Shimotohno K, et al. Transcriptional activity of peroxisome proliferator-activated receptor γ is modulated by SUMO-2 modification. J Biol Chem 2004; 279(28): 29551–7PubMedCrossRefGoogle Scholar
  36. 36.
    Hu E, Kim JB, Sarraf P, et al. Inhibition of adipogenesis through MAP-kinase mediated phosphorylation of PPARγ. Science 1996; 274: 2100–3PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang B, Berger J, Zhou G, et al. Insulin and mitogen-activated protein kinase-mediated phosphorylation and activation of peroxisome proliferator-activated receptor gamma. J Biol Chem 1996; 27: 31771–4Google Scholar
  38. 38.
    Camp HS, Tafuri SR. Regulation of peroxisome proliferator-activated receptor gamma activity by mitogen-activated protein kinase. J Biol Chem 1997; 272: 10811–6PubMedCrossRefGoogle Scholar
  39. 39.
    Camp HS, Tafuri SR, Leff T. c-Jun N-terminal kinase phosphorylates peroxisome proliferator-activated receptor gamma-1 and negatively regulates its transcriptional activity. Endocrinology 1999; 140: 392–7PubMedCrossRefGoogle Scholar
  40. 40.
    Adams M, Reginato MJ, Shao D, et al. Transcriptional activation by peroxisome proliferator activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 1997; 272: 5128–32PubMedCrossRefGoogle Scholar
  41. 41.
    Shao D, Rangwala SM, Bailey ST, et al. Interdomain communication regulating ligand binding by PPAR gamma. Nature 1998; 396: 377–80PubMedCrossRefGoogle Scholar
  42. 42.
    Diradourian C, Girard J, Pegorier JP. Phosphorylation of PPARs: from molecular characterization to physiological relevance. Biochimie 2005; 87(1): 33–8PubMedCrossRefGoogle Scholar
  43. 43.
    Fajas L, Auboeuf D, Raspe E, et al. Organization promoter analysis and expression of the human PPAR γ gene. J Biol Chem 1997; 272: 18779–89PubMedCrossRefGoogle Scholar
  44. 44.
    Fajas L, Fruchart JC, Auwerx J. PPAR γ3 mRNA: a distinct PPARγ mRNA subtype transcribed from an independent promoter. FEBS Lett 1998; 438: 55–60PubMedCrossRefGoogle Scholar
  45. 45.
    Lee CK, Klopp RG, Weindruch R, et al. Gene expression profile of aging and its retardation by caloric restriction. Science 1999; 285: 1390–3PubMedCrossRefGoogle Scholar
  46. 46.
    Lefebvre AM, Laville M, Vega N, et al. Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes 1998; 47: 98–103PubMedCrossRefGoogle Scholar
  47. 47.
    Vidal-Puig AJ, Considine RV, Jimenez-Linan M, et al. Peroxisome proliferator activated receptor gene expression in human tissues: effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 1997; 99: 2416–22CrossRefGoogle Scholar
  48. 48.
    Xing H, Northrop JP, Grove JR, et al. TNF-α mediated inhibition and reversal of adipocyte differentiation is accompanied by suppressed expression of PPARα without effects on Pref-1 expression. Endocrinology 1997; 138: 2776–83PubMedCrossRefGoogle Scholar
  49. 49.
    Kruszynska YT, Mukherjee R, Jow L, et al. Skeletal muscle peroxisome proliferator activated receptor-γ expression in obesity and non-insulin-dependent diabetes mellitus. J Clin Invest 1998; 101: 543–8PubMedCrossRefGoogle Scholar
  50. 50.
    Park KS, Ciaraldi TP, Lindgren K, et al. Troglitazone effects on muscle gene expression in human skeletal muscle of type II diabetes involve upregulation of peroxisome proliferator-activated receptor γ. J Clin Endocrinol Metab 1998; 83: 2830–5PubMedCrossRefGoogle Scholar
  51. 51.
    Tontonoz P, Hu E, Graves RA, et al. mPPARγ2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 1994; 8(10): 1224–34PubMedCrossRefGoogle Scholar
  52. 52.
    Tontonoz P, Hu E, Devine J, et al. PPARγ2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol 1995; 15(1): 351–7PubMedGoogle Scholar
  53. 53.
    Martin G, Schoonjans K, Lefebvre AM, et al. Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J Biol Chem 1997 Nov 7; 272(45): 28210–7PubMedCrossRefGoogle Scholar
  54. 54.
    Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, et al. PPARa and PPARγ activators direct a tissue-specific transcriptional response via PPRE in the lipoprotein lipase gene. EMBO J 1996; 15(19): 5336–48PubMedGoogle Scholar
  55. 55.
    Barak Y, Nelson MJ, Ong ES. PPARy is required for placental, cardiac and adipose tissue development. Mol Cell 1999; 4: 585–95PubMedCrossRefGoogle Scholar
  56. 56.
    Kubota N, Terauchi Y, Miki H, et al. PPAR γ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 1999; 4(4): 597–609PubMedCrossRefGoogle Scholar
  57. 57.
    Rosen ED, Sarraf P, Troy AE, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 1999; 4: 611–7PubMedCrossRefGoogle Scholar
  58. 58.
    Imai T, Takakuwa R, Marchand S, et al. Peroxisome proliferator-activated receptor γ is required in mature white and brown adipocytes for their survival in the mouse. Proc Natl Acad sci U S A 2004; 101: 4543–7PubMedCrossRefGoogle Scholar
  59. 59.
    Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR γ2, a lipid-activated transcription factor. Cell 1994; 79: 1147–56PubMedCrossRefGoogle Scholar
  60. 60.
    Hu E, Tontonoz P, Spiegelman BM. Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR γ and C/EBPα. Proc Natl Acad sci U S A 1995; 92(21): 9856–60PubMedCrossRefGoogle Scholar
  61. 61.
    Knouff C, Auwerx J. Peroxisome proliferator-activator receptor-γ calls for activation in moderation: lessons from genetics and pharmacology. Endocr Rev 2004; 25: 899–918PubMedCrossRefGoogle Scholar
  62. 62.
    Ristow M, Muller-Wieland D, Pfeiffer A, et al. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med 1998; 339(14): 953–9PubMedCrossRefGoogle Scholar
  63. 63.
    Deeb S, Fajas L, Nemoto M. A Pro 12 Ala substitution in the human peroxisome proliferator-activated receptor gamma 2 is associated with decreased receptor activity, improved insulin sensitivity and lowered body mass index. Nat Genet 1998; 20(3): 284–7PubMedCrossRefGoogle Scholar
  64. 64.
    Okuno A, Tamemoto H, Tobe K. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101: 1354–61PubMedCrossRefGoogle Scholar
  65. 65.
    Pakala R, Kuchulakanti P, Rha SW, et al. Peroxisome proliferator-activated receptor gamma: its role in metabolic syndrome. Cardiovasc Radiat Med 2004; 5(2): 97–103PubMedCrossRefGoogle Scholar
  66. 66.
    Despres JP, Lamarche B, Mauriege P, et al. Hyperinsulinemia as an independent risk factor for ischemie heart disease. N Engl J Med 1996; 334: 952–7PubMedCrossRefGoogle Scholar
  67. 67.
    Pyolara M, Miettinen H, Halonen P, et al. Insulin resistance syndrome predicts the risk of coronary heart disease and stroke in healthy middle-aged men: the 22-year follow-up results of the Helsinki Policemen Study. Arterioscler Thromb Vasc Biol 2000; 20: 538–44CrossRefGoogle Scholar
  68. 68.
    Rajala MW, Scherer PE. Minireview: the adipocyte; at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 2003; 144: 3765–73PubMedCrossRefGoogle Scholar
  69. 69.
    Nolan JJ, Ludvik B, Beerdsen P, et al. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994; 331: 1188–93PubMedCrossRefGoogle Scholar
  70. 70.
    Lee MK, Miles PD, Khoursheed M, et al. Metabolic effects of troglitazone on fructose-induced insulin resistance in the rat. Diabetes 1994; 43: 1435–9PubMedCrossRefGoogle Scholar
  71. 71.
    Miles PD, Barak Y, He W, et al. Improved insulin-sensitivity in mice heterozygous for PPAR-γ deficiency. J Clin Invest 2000; 105: 287–92PubMedCrossRefGoogle Scholar
  72. 72.
    Miles PD, Barak Y, Evans RM. Effect of heterozygous PPAR γ deficiency and TZD treatment on insulin resistance associated with age and high-fat feeding. Am J Physiol Endocrinol Metab 2003; 284: E618–26PubMedGoogle Scholar
  73. 73.
    Koutnikova H, Cock TA, Watanabe M, et al. Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPAR gamma hypomorphic mice. Proc Natl Acad sci U S A 2003; 100(24): 14457–62PubMedCrossRefGoogle Scholar
  74. 74.
    He W, Barak Y, Hevener A, et al. Adipose-specific peroxisome proliferators-activated receptor y knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad sci U S A 2003; 100: 15712–7PubMedCrossRefGoogle Scholar
  75. 75.
    Jones JR, Barrick C, Kim KA, et al. Deletion of PPAR γ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad sci U S A 2005; 102(17): 6207–12PubMedCrossRefGoogle Scholar
  76. 76.
    Matsusue K, Haluzik M, Lambert G, et al. Liver-specific disruption of PPAR γ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest 2003; 111(5): 737–47PubMedGoogle Scholar
  77. 77.
    Gavrilova O, Haluzik M, Matsusue K, et al. Liver PPAR γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem 2003; 278(36): 34268–76PubMedCrossRefGoogle Scholar
  78. 78.
    Norris AW, Chen L, Fischer SJ, et al. Muscle-specific PPAR γ-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidine-diones. J Clin Invest 2003; 112(4): 608–18PubMedGoogle Scholar
  79. 79.
    Hevener AL, He W, Barak Y, et al. Muscle-specific PPAR γ deletion causes insulin resistance. Nat Med 2003; 9(12): 1491–7PubMedCrossRefGoogle Scholar
  80. 80.
    Gavrilova O, Marcus-Samuels B, Graham D, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest 2000; 105(3): 271–8PubMedCrossRefGoogle Scholar
  81. 81.
    Chao L, Marcus-Samuels B, Mason MM, et al. Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J Clin Invest 2000; 106(10): 1221–8PubMedCrossRefGoogle Scholar
  82. 82.
    Burant CF, Sreenan S, Hirano K, et al. Troglitazone action is independent of adipose tissue. J Clin Invest 1997; 100(11): 2900–8PubMedCrossRefGoogle Scholar
  83. 83.
    Yu S, Matsusue K, Kashireddy P, et al. Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor γ1 (PPAR γ1) overexpression. J Biol Chem 2003; 278(1): 498–505PubMedCrossRefGoogle Scholar
  84. 84.
    Nakamuta M, Kohjima M, Morizono S, et al. Evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med 2005; 16(4): 631–5PubMedGoogle Scholar
  85. 85.
    Kaplowitz N. Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 2005; 4(6): 489–99PubMedCrossRefGoogle Scholar
  86. 86.
    Arioglu E, Duncan-Morin J, Sebring N, et al. Efficacy and safety of troglitazone in the treatment of lipodystrophy syndromes. Ann Intern Med 2000; 133(4): 263–74PubMedGoogle Scholar
  87. 87.
    Reynaert H, Geerts A, Henrion J. Review article: the treatment of non-alcoholic steohepatitis with thiazolidinediones. Aliment Pharmacol Ther 2005; 22: 897–905PubMedCrossRefGoogle Scholar
  88. 88.
    Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 1998; 14(4): 263–83PubMedCrossRefGoogle Scholar
  89. 89.
    Oakes ND, Camilleri S, Furier SM, et al. The insulin sensitizer, BRL 49653, reduces systemic fatty acid supply and utilization and tissue lipid availability in the rat. Metabolism 1997; 46: 935–42PubMedCrossRefGoogle Scholar
  90. 90.
    Miyazaki Y, Mahankali A, Matsuda M, et al. Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with piog-litazone. Diabetes Care 2001; 24: 710–9PubMedCrossRefGoogle Scholar
  91. 91.
    Kumar S, Boulton AJ, Beck-Nielsen H, et al. Troglitazone, an insulin action enhancer, improves metabolic control in NIDDM patients: Troglitazone Study Group. Diabetologia 1996; 39: 701–9PubMedCrossRefGoogle Scholar
  92. 92.
    Patel J, Anderson RJ, Rappaport EB. Rosiglitazone monotherapy improves glycaemic control in patients with type 2 diabetes: a twelve-week, randomized, placebo-controlled study. Diabetes Obes Metab 1999; 1: 165–72PubMedCrossRefGoogle Scholar
  93. 93.
    Brown KK, Henke BR, Blanchard SG, et al. A novel N-aryl tyrosine activator of peroxisome proliferator-activated receptor-gamma reverses the diabetic phenotype of the Zucker diabetic fatty rat. Diabetes 1999; 48(7): 1415–24PubMedCrossRefGoogle Scholar
  94. 94.
    Rangwala SM, Lazar MA. Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol sci 2004; 25(6): 331–6PubMedCrossRefGoogle Scholar
  95. 95.
    Wu Z, Xie Y, Morrison RF, et al. PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes. J Clin Invest 1998; 101: 22–32PubMedCrossRefGoogle Scholar
  96. 96.
    Baumann CA, Chokshi N, Saltiel AR, et al. Cloning and characterization of a functional peroxisome proliferator activator receptor-gamma-responsive element in the promoter of the CAP gene. J Biol Chem 2000; 275: 9131–5PubMedCrossRefGoogle Scholar
  97. 97.
    Freidman JM. Obesity in the new millennium. Nature 2000; 404: 632–4Google Scholar
  98. 98.
    Petersen KF, Oral EA, Dufour S, et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest 2002; 109: 1345–50PubMedGoogle Scholar
  99. 99.
    Shimomura I, Hammer RE, Ikemoto S, et al. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 1999; 401: 73–6PubMedCrossRefGoogle Scholar
  100. 100.
    Minokoshi Y, Kim Y, Peroni O, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002; 415: 268–9CrossRefGoogle Scholar
  101. 101.
    Kallen CB, Lazar MA. Antidiabetic thiazolidinediones inhibit leptin (ob) expression in 3T3-L1 adipocytes. Proc Natl Acad sci U S A 1996; 93: 5793–6PubMedCrossRefGoogle Scholar
  102. 102.
    De Vos P, Lefebvre AM, Miller SG. Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma. J Clin Invest 1996; 98: 1004–9PubMedCrossRefGoogle Scholar
  103. 103.
    Sethi JK, Hotamisligil GS. The role of TNFα in adipocyte metabolism. Semin Cell Dev Biol 1999; 10(1): 19–29PubMedCrossRefGoogle Scholar
  104. 104.
    Walzcak R, Tontonoz P. PPARadigms and PPARadoxes: expanding roles for PPAR γ in the control of lipid metabolism. J Lipid Res 2002; 43: 177–86Google Scholar
  105. 105.
    Kern PA, Ranganathan S, Li C, et al. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 2001; 280: E745–51PubMedGoogle Scholar
  106. 106.
    Zingarelli B, Sheehan M, Hake PW, et al. Peroxisome proliferator activator receptor-gamma ligands, 15-deoxy-Delta (12,14)-prostaglandin J2 and ciglitazone, reduce systemic inflammation in polymicrobial sepsis by modulation of signal transduction pathways. J Immunol 2003; 171(12): 6827–37PubMedGoogle Scholar
  107. 107.
    Lagathu C, Bastard JP, Auclair M, et al. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem Biophys Res Commun 2003; 311(2): 372–9PubMedCrossRefGoogle Scholar
  108. 108.
    Beltowski J. Adiponectin and resistin: new hormones of white adipose tissue. Med sci Monit 2003; 9(2): RA55–61PubMedGoogle Scholar
  109. 109.
    Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001; 50(9): 2094–9PubMedCrossRefGoogle Scholar
  110. 110.
    Yu JG, Javorschi S, Hevener AL, et al. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes 2002; 51(10): 2968–74PubMedCrossRefGoogle Scholar
  111. 111.
    Combs TP, Wagner JA, Berger J, et al. Induction of adipocyte complement-related protein of 30 kilodaltons by PPARgamma agonists: a potential mechanism of insulin sensitization. Endocrinology 2002; 143: 998–1007PubMedCrossRefGoogle Scholar
  112. 112.
    Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature 2001; 409(6818): 307–12PubMedCrossRefGoogle Scholar
  113. 113.
    Way JM, Gorgun CZ, Tong Q, et al. Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists. J Biol Chem 2001; 276(28): 25651–3PubMedCrossRefGoogle Scholar
  114. 114.
    Savage DB, Sewter CP, Klenk ES, et al. Resistin / Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes 2001; 50(10): 2199–202PubMedCrossRefGoogle Scholar
  115. 115.
    Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension 2001; 37: 1053–9PubMedCrossRefGoogle Scholar
  116. 116.
    Wagenknecht LE, D’Agostino Jr RB, Haffner SM, et al. Impaired glucose tolerance, type 2 diabetes, and carotid wall thickness: the Insulin Resistance Atherosclerosis Study. Diabetes Care 1998; 21: 1812–8PubMedCrossRefGoogle Scholar
  117. 117.
    Bonora E, Kiechl S, Oberhollenzer F, et al. Impaired glucose tolerance, type II diabetes mellitus and carotid atherosclerosis: prospective results from the Bruneck Study. Diabetologia 2000; 43: 156–64PubMedCrossRefGoogle Scholar
  118. 118.
    Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med 1999; 340: 115–26PubMedCrossRefGoogle Scholar
  119. 119.
    Zeng G, Nystrom FH, Ravichandran LV, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 2000; 101: 1539–45PubMedCrossRefGoogle Scholar
  120. 120.
    Xi XP, Graf K, Goetze S, et al. Inhibition of MAP kinase blocks insulin-mediated DNA synthesis and transcriptional activation of c-fos by Elk-1 in vascular smooth muscle cells. FEBS Lett 1997; 417: 283–6PubMedCrossRefGoogle Scholar
  121. 121.
    Graf K, Xi XP, Yang D, et al. Mitogen-activated protein kinase activation is involved in platelet-derived growth factor directed migration by vascular smooth muscle cells. Hypertension 1997; 29: 334–9PubMedCrossRefGoogle Scholar
  122. 122.
    Lundberg MS, Curto KA, Bilato C, et al. Regulation of vascular smooth muscle migration by mitogen-activated protein kinase and calcium/calmodulin-depen-dent protein kinase II signaling pathways. J Mol Cell Cardiol 1998; 30: 2377–89PubMedCrossRefGoogle Scholar
  123. 123.
    Hsueh WA, Quinones MJ. Role of endothelial dysfunction in insulin resistance. Am J Cardiol 2003; 92: 10J–7JPubMedCrossRefGoogle Scholar
  124. 124.
    Ricote M, Huang J, Fajas L, et al. Expression of the peroxisome proliferator-activated receptor γ (PPARγ) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low-density lipoprotein. Proc Natl Acad sci U S A 1998; 95: 7614–9PubMedCrossRefGoogle Scholar
  125. 125.
    Castrillo A, Diaz-Guerra JM, Hortelano S, et al. Inhibition of IκB kinase and IκB phosphorylation by 15-deoxy Δ12,14 prostaglandin J2 in activated murine macrophages. Mol Cell Biol 2000; 20: 1692–8PubMedCrossRefGoogle Scholar
  126. 126.
    Hsueh WA, Law RE. PPAR γ and atherosclerosis: effects on cell growth and movement. Arterioscler Thromb Vasc Biol 2001; 21: 1891–5PubMedCrossRefGoogle Scholar
  127. 127.
    Greene ME, Blumberg B, McBride OW, et al. Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr 1995; 4: 281–99PubMedGoogle Scholar
  128. 128.
    Tontonoz P, Nagy L, Alvarez JG, et al. PPAR γ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93: 241–52PubMedCrossRefGoogle Scholar
  129. 129.
    Janowski BA, Grogan MJ, Jones SA, et al. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad sci U S A 1999; 96(1): 266–71PubMedCrossRefGoogle Scholar
  130. 130.
    Nagy L, Tontonoz P, Alvarez JGA, et al. Oxidised LDL regulates macrophage gene expression through ligand activation of PPAR γ. Cell 1998; 93: 229–40PubMedCrossRefGoogle Scholar
  131. 131.
    Ricote M, Li AC, Wilson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391: 79–82PubMedCrossRefGoogle Scholar
  132. 132.
    Chawla A, Boisvert WA, Lee CH, et al. A PPAR γ -LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001; 7: 161–71PubMedCrossRefGoogle Scholar
  133. 133.
    Tall AR, Costet P, Wang N. Regulation and mechanisms of macrophage cholesterol efflux. J Clin Invest 2002; 110: 899–904PubMedGoogle Scholar
  134. 134.
    Jiang C, Ting AT, Seed B. PPAR γ agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391: 82–6PubMedCrossRefGoogle Scholar
  135. 135.
    Murao K, Imachi H, Momoi A, et al. Thiazolidinedione inhibits the production of monocyte chemoattractant protein-1 in cytokine treated human vascular endothelial cells. FEBS Lett 1999; 454: 27–30PubMedCrossRefGoogle Scholar
  136. 136.
    Pasceri V, Wu H, Willerson JT, et al. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-y activators. Circulation 2000; 101: 235–8PubMedCrossRefGoogle Scholar
  137. 137.
    Satoh H, Tsukamoto K, Hashimoto Y, et al. Thiazolidinediones suppress endothe-lin-1 secretion from bovine vascular endothelial cells: a new possible role of PPARγ on vascular endothelial function. Biochem Biophys Res Commun 1999; 254: 757–63PubMedCrossRefGoogle Scholar
  138. 138.
    Clark RB, Bishop-Bailey D, Estrada-Hernandez T, et al. The nuclear receptor PPARgamma and immunoregulation: PPAR gamma mediates inhibition of helper T cell responses. J Immunol 2000; 164: 1364–71PubMedGoogle Scholar
  139. 139.
    Kato K, Satoh H, Endo Y, et al. Thiazolidinediones down regulate plasminogen activator inhibitor type 1 expression in human vascular endothelial cells: a possible role for PPARγ in endothelial function. Biochem Biophys Res Commun 1999; 258: 431–5PubMedCrossRefGoogle Scholar
  140. 140.
    Hsueh WA, Jackson S, Law RE. Control of vascular cell proliferation and migration by PPAR-gamma: a new approach to the macrovascular complications of diabetes. Diabetes Care 2001; 24(2): 392–7PubMedCrossRefGoogle Scholar
  141. 141.
    Marx N, Schonbeck U, Lazar MA, et al. Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 1998; 83: 1097–103PubMedCrossRefGoogle Scholar
  142. 142.
    Wakino S, Kintscher U, Kim S, et al. Peroxisome proliferator-activated receptor-γ ligands inhibit Rb phosphorylation and G1→S transition in vascular smooth muscle cells. J Biol Chem 2000; 275: 22435–41PubMedCrossRefGoogle Scholar
  143. 143.
    Cai S, Pestic-Dragovich L, O’Donnell ME, et al. Regulation of cytoskeletal mechanics and cell growth by myosin light chain phosphorylation. Am J Physiol 1998; 275: C1349–56PubMedGoogle Scholar
  144. 144.
    Goetze S, Kintscher U, Kim S, et al. Peroxisome proliferator-activated receptor-gamma ligands inhibit nuclear but not cytosolic extracellular signal-regulated kinase/mitogen-activated protein kinase-regulated steps in vascular smooth muscle cell migration. J Cardiovasc Pharmacol 2001; 38: 909–21PubMedCrossRefGoogle Scholar
  145. 145.
    Law RE, Goetze S, Xi XP, et al. Expression and function of PPAR; in rat and human vascular smooth muscle cells. Circulation 2000; 101: 1311–8PubMedCrossRefGoogle Scholar
  146. 146.
    Takagi T, Akasaka T, Yamamuro A, et al. Troglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with non-insulin dependent diabetes mellitus: a serial intravascular ultrasound study. J Am Coll Cardiol 2000; 36: 1529–35PubMedCrossRefGoogle Scholar
  147. 147.
    Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care 2004; 27(1): 256–63PubMedCrossRefGoogle Scholar
  148. 148.
    Reginato MJ, Bailey ST, Krakow SL, et al. A potent antidiabetic thiazolidinedione with unique peroxisome proliferator-activated receptor gamma-activating properties. J Biol Chem 1998; 273(49): 32679–84PubMedCrossRefGoogle Scholar
  149. 149.
    Wang M, Tafuri S. Modulation of PPAR γ activity with pharmaceutical agents: treatment of insulin resistance and atherosclerosis. J Cell Biochem 2003; 89(1): 38–47PubMedCrossRefGoogle Scholar
  150. 150.
    Qi C, Zhu Y, Reddy JK. Peroxisome proliferator-activated receptors, coactivators and downstream targets. Cell Biochem Biophys 2000; 32: 187–204PubMedCrossRefGoogle Scholar
  151. 151.
    Camp HS, Li O, Wise SC, et al. Differential activation of peroxisome proliferator-activated receptor-gamma by troglitazone and rosiglitazone. Diabetes 2000; 49(4): 539–47PubMedCrossRefGoogle Scholar
  152. 152.
    Shang Y, Hu X, Direnzo J, et al. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 2000; 103(6): 843–52PubMedCrossRefGoogle Scholar
  153. 153.
    Oberfield JL, Collins JL, Holmes CP, et al. A peroxisome proliferator-activated receptor gamma ligand inhibits adipocyte differentiation. Proc Natl Acad sci U SA 1999; 96(11): 6102–6CrossRefGoogle Scholar
  154. 154.
    Mukherjee R, Hoener PA, Jow L, et al. A selective peroxisome proliferator-activated receptor-γ (PPAR γ) modulator blocks adipocyte differentiation but stimulates glucose uptake in 3t3-ll adipocytes. Mol Endocrinol 2000; 14: 1425–33PubMedCrossRefGoogle Scholar
  155. 155.
    Wright HM, Clish CB, Mikami T, et al. A synthetic antagonist for the peroxisome proliferators-activated receptor γ inhibits adipocyte differentiation. J Biol Chem 2000; 275: 1873–7PubMedCrossRefGoogle Scholar
  156. 156.
    Rocchi S, Paciard F, Vamecq J, et al. A unique PPARgamma ligand with potent insulin-sensitizing yet weak adipogenic activity. Mol Cell 2001; 8(4): 737–47PubMedCrossRefGoogle Scholar
  157. 157.
    Berger JP, Petro AE, Macnaul KL, et al. Distinct properties and advantages of a novel peroxisome proliferator-activated protein γ selective modulator. Mol Endocrinol 2003; 17(4): 662–76PubMedCrossRefGoogle Scholar
  158. 158.
    Acton III JJ, Black RM, Jones AB, et al. Benzoyl 2-methyl indoles as selective PPAR γ modulators. Bioorg Med Chem Lett 2005; 15(2): 357–62PubMedCrossRefGoogle Scholar
  159. 159.
    Rangwala SM, Rhoades B, Shapiro JS, et al. Genetic modulation of PPARgamma phosphorylation regulates insulin sensitivity. Dev Cell 2003; 5(4): 657–63PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  1. 1.Faculty of Medicine Cardiology DepartmentHacettepe UniversityAnkaraTurkey
  2. 2.Endocrinology DepartmentHacettepe University Faculty of MedicineAnkaraTurkey

Personalised recommendations