, Volume 16, Issue 3, pp 183–200

Therapeutic Approaches in Multiple Sclerosis

Lessons from Failed and Interrupted Treatment Trials
Therapy Review


The therapy for multiple sclerosis (MS) has changed dramatically over the past decade. Recent immunobiological findings and current pathophysiological concepts together with advances in biotechnology, improvements in clinical trial design and development of magnetic resonance imaging have led to a variety of evaluable therapeutic approaches in MS. However, in contrast to the successfully introduced and established immunomodulatory therapies (e.g. interferon-β and glatiramer acetate), there have been a remarkable number of therapeutic failures as well. Despite convincing immunological concepts, impressive data from animal models and promising results from phase I/II studies, the drugs and strategies investigated showed no benefit or even turned out to have unexpectedly severe adverse effects.

Although to date there is no uniformly accepted model for MS, there is agreement on the significance of inflammatory events mediated by autoreactive T cells in the CNS. These can be modified therapeutically at the individual steps of a hypothetical pathogenetic cascade. Crucial corners like: (i) the prevalence and peripheral activation of CNS-autoreactive T cells in the periphery; (ii) adhesion and penetration of T cells into the CNS; (iii) local activation and proliferation and; (iv) de-and remyelination processes can be targeted through their putative mediators. Like a ‘specificity pyramid’, therapeutic approaches therefore cover from general immunosuppression up to specific targeting of T-cell receptor peptide major histocompatibility (MHC) complex.

We discuss in detail clinical MS trials that failed or were discontinued for other reasons. These trials include cytokine modulators [tumour necrosis factor (TNF)-α antagonists, interleukin-10, interleukin-4, transforming growth factor-β2], immunosuppressive agents (roquinimex, gusperimus, sulfasalazine, cladribine), inducers of remyelination [intravenous immunoglobulins (IVIg)], antigen-derived therapies [oral tolerance, altered peptide ligands (APL), MHC-Peptide blockade], T cell and T-cell receptor directed therapies (T cell vaccination, T-cell receptor peptide vaccination), monoclonal antibodies against leucocyte differentiation molecules (anti-CD3, anti-CD4), and inactivation of circulating T cells (extracorporeal photopheresis).

The main conclusions that can be drawn from these ‘negative’ experiences are as follows. Theoretically promising agents may paradoxically increase disease activity (lenercept, infliximab), be associated with unforeseen adverse effects (e.g. roquinimex) or short-term favourable trends may reverse with prolonged follow-up (e.g. sulfasalzine). One should not be too enthusiastic about successful trials in animal models (TNFα blockers; oral tolerance; remyelinating effect of IVIg) nor be irritated by non-scientific media hype (deoxyspergualine; bone marrow transplantation). More selectivity can imply less efficacy (APL, superselective interventions like T-cell receptor vaccination) and antigen-related therapies can stimulate rather than inhibit encephalitogenic cells. Failed strategies are of high importance for a critical revision of assumed immunopathological mechanisms, their neuroimaging correlates, and for future trial design. Since failed trials add to our growing understanding of multiple sclerosis, ‘misses’ are nearly as important to the scientific process as the ‘hits’.


  1. 1.
    Hohlfeld R, Wiendl H. The ups and downs of multiple sclerosis therapeutics. Ann Neurol 2001; 49(3): 281–4PubMedCrossRefGoogle Scholar
  2. 2.
    Noseworthy JH, Lucchinetti C, Rodriguez M, et al. Multiple sclerosis. N Engl J Med 2000; 343(13): 938–52PubMedCrossRefGoogle Scholar
  3. 3.
    Hohlfeld R. Biotechnological agents for the immunotherapy of multiple sclerosis: Principles, problems and perspectives. Brain 1997; 120: 865–916PubMedCrossRefGoogle Scholar
  4. 4.
    Weilbach FX, Gold R. Disease modifying treatments for multiple sclerosis: what is on the horizon? CNS Drugs 1999; 11(2): 133–57CrossRefGoogle Scholar
  5. 5.
    Miller DH, Albert PS, Barkhof F, et al. Guidelines for the use of magnetic resonance techniques in monitoring the treatment of multiple sclerosis. US National MS Society Task Force. Ann Neurol 1996; 39: 6–16PubMedCrossRefGoogle Scholar
  6. 6.
    Fazekas F, Barkhof F, Filippi M, et al. The contribution of magnetic resonance imaging to the diagnosis of multiple sclerosis. Neurology 1999; 53: 448–56PubMedCrossRefGoogle Scholar
  7. 7.
    Noseworthy JH, Wolinsky JS, Lublin FD, et al. Linomide in relapsing and secondary progressive MS: part I: trial design and clinical results. North American Linomide Investigators [see comments]. Neurology 2000; 54(9): 1726–33PubMedCrossRefGoogle Scholar
  8. 8.
    Wolinsky JS, Narayana PA, Noseworthy JH, et al. Linomide in relapsing and secondary progressive MS: part II: MRI results. MRI Analysis Center of the University of Texas-Houston, Health Science Center, and the North American Linomide Investigators [see comments]. Neurology 2000; 54(9): 1734–41PubMedCrossRefGoogle Scholar
  9. 9.
    Noseworthy JH, O’Brien P, Erickson BJ, et al. The Mayo-Clinic Canadian cooperative trial of sulfasalazine in active multiple sclerosis. Neurology 1998; 51(5): 1342–52PubMedCrossRefGoogle Scholar
  10. 10.
    Kappos L, Radü EW, Haas J, et al. European multicenter trial +/−deoxyspergualine (dsg) versus placebo: results of the first interim analysis [abstract]. J Neurol 1994; 241:Suppl. 2: S27Google Scholar
  11. 11.
    Kappos L, Radu EW, Dellas S, et al. Deoxyspergualine in the treatment of active MS: final analysis of the European multicenter study. Neurology 1996; 46Suppl. 2: A410–1Google Scholar
  12. 12.
    Rice GP, Filippi M, Comi G. Cladribine and progressive ms: clinical and mri outcomes of a multicenter controlled trial. Cladribine MRI Study Group. Neurology 2000; 54(5): 1145–55PubMedCrossRefGoogle Scholar
  13. 13.
    Filippi M, Rovaris M, Rice GP, et al. The effect of cladribine on T(1) ‘black hole’ changes in progressive MS. J Neurol Sci 2000; 176(1): 42–4PubMedCrossRefGoogle Scholar
  14. 14.
    Filippi M, Rovaris M, Iannucci G, et al. Whole brain volume changes in patients with progressive MS treated with cladribine. Neurology 2000; 55(11): 1714–8PubMedCrossRefGoogle Scholar
  15. 15.
    Arnason BGW, Jacobs G, Hanlon M, et al. TNF neutralization in MS -results of a randomized, placebo controlled multicenter study. Neurology 1999; 53: 457–65CrossRefGoogle Scholar
  16. 16.
    Van Oosten BW, Barkhof F, Truyen L, et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody CA2. Neurology 1996; 47(6): 1531–4PubMedCrossRefGoogle Scholar
  17. 17.
    Calabresi PA, Fields NS, Maloni HW, et al. Phase-1 trial of transforming-growth-factor-beta-2 in chronic progressive MS. Neurology 1998; 51(1): 289–92PubMedCrossRefGoogle Scholar
  18. 18.
    Noseworthy JH, O’Brien PC, Petterson TM, et al. A randomized trial of intravenous immunoglobulin in inflammatory demyelinating optic neuritis. Neurology 2001; 56(11): 1514–22PubMedCrossRefGoogle Scholar
  19. 19.
    Noseworthy JH, O’Brien PC, Weinshenker BG, et al. IV immunoglobulin does not reverse established weakness in MS: A double-blind, placebo-controlled trial. Neurology 2000; 55(8): 1135–43PubMedCrossRefGoogle Scholar
  20. 20.
    Stangel M, Boegner F, Klatt CH, et al. Placebo controlled pilot trial to study the remyelinating potential of intravenous immunoglobulins in multiple sclerosis. J Neurol Neurosurg Psychiatry 2000; 68: 89–92PubMedCrossRefGoogle Scholar
  21. 21.
    Weiner HL, Mackin GA, Matsui M, et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 1993; 259: 1321–4PubMedCrossRefGoogle Scholar
  22. 22.
    Francis G, Evans A, Panitch H. MRI results of a phase III trial of oral myelin in relapsing-remitting multiple sclerosis [abstract]. Ann Neurol 1997; 42: 467Google Scholar
  23. 23.
    Panitch H, Francis G, Oral Myelin Study Group. Clinical results of a phase III trial of oral myelin in relapsing-remitting multiple sclerosis [abstract]. Ann Neurol 1997; 42: 459Google Scholar
  24. 24.
    Bielekova B, Goodwin B, Richert N, et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: Results of a phase II clinical trial with an altered peptide ligand. Nat Med 2000; 6(10): 1167–75PubMedCrossRefGoogle Scholar
  25. 25.
    Kappos L, Comi G, Panitch H, et al. Induction of a non-encephalitogenic type 2 T-helper cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo controlled, randomized phase II trial. Nat Med 2000; 6(10): 1176–82PubMedCrossRefGoogle Scholar
  26. 26.
    Goodkin DE, Shulman M, Winkelhake J, et al. A phase I trial of solubilized DR2:MBP84-102 (AG284) in multiple sclerosis. Neurology 2000; 54(7): 1414–20PubMedCrossRefGoogle Scholar
  27. 27.
    Medaer R, Stinissen P, Truyen L, et al. Depletion of myelin-basic-protein autoreactive t cells by T-cell vaccination: pilot trial in multiple sclerosis. Lancet 1995; 346(8978): 807–8PubMedCrossRefGoogle Scholar
  28. 28.
    Vandenbark AA, Chou YK, Whitham R, et al. Treatment of multiple sclerosis with T-cell receptor peptides: results of a double-blind pilot trial. Nat Med 1996; 2: 1109–15PubMedCrossRefGoogle Scholar
  29. 29.
    Rostami AM, Sater RA, Bird SJ, et al. A double-blind, placebo-controlled trial of extracorporeal photopheresis in chronic progressive multiple sclerosis. Mult Scler 1999; 5: 198–203PubMedGoogle Scholar
  30. 30.
    Aggarwal BB, Natarjan K. Tumor necrosis factor: developments during the last decade. Eur Cytokine Netw 1996; 7: 93–124PubMedGoogle Scholar
  31. 31.
    Beutler BA. The role of tumor necrosis factor in health and disease. J Rheumatol 1999; 26Suppl. 57: 16–21Google Scholar
  32. 32.
    Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104(4): 487–501PubMedCrossRefGoogle Scholar
  33. 33.
    Selmaj K, Raine CS, Cannella B, et al. Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest 1991; 87: 949–54PubMedCrossRefGoogle Scholar
  34. 34.
    Cannella B, Raine CS. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 1995; 37: 424–35PubMedCrossRefGoogle Scholar
  35. 35.
    Klinkert WEF, Kojima K, Lesslauer W, et al. TNF-alpha receptor fusion protein prevents experimental auto-immune encephalomyelitis and demyelination in Lewis rats: an overview. J Neuroimmunol 1997; 72: 163–8PubMedCrossRefGoogle Scholar
  36. 36.
    Körner H, Lemckert FA, Chaudhri G, et al. Tumor necrosis factor blockade in actively induced experimental autoimmune encephalomyelitis prevents clinical disease despite activated T cell infiltration to the central nervous system. Eur J Immunol 1997; 27: 1973–81PubMedCrossRefGoogle Scholar
  37. 37.
    Beck J, Rondot P, Catinot L, et al. Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol Scand 1988; 78: 318–23PubMedCrossRefGoogle Scholar
  38. 38.
    Sharief MK, Hentges R. Association between tumor necrosis factor alpha and disease progression in patients with multiple sclerosis. N Engl J Med 1991; 325: 467–72PubMedCrossRefGoogle Scholar
  39. 39.
    Chofflon M, Juillard C, Juillard P, et al. Tumor necrosis factor alpha production as a possible predictor of relapse in patients with multiple sclerosis. Eur Cytokine Netw 1992; 3: 523–31PubMedGoogle Scholar
  40. 40.
    Rudick RA, Ransohoff RM. Cytokine secretion by multiple sclerosis monocytes. Relationship to disease activity. Arch Neurol 1992; 49: 265–70PubMedCrossRefGoogle Scholar
  41. 41.
    Imamura K, Suzumura A, Hayashi F, et al. Cytokine production by peripheral blood monocytes/macrophages in multiple sclerosis patients. Acta Neurol Scand 1993; 87: 281–5PubMedCrossRefGoogle Scholar
  42. 42.
    Rieckmann P, Albrecht M, Kitze B, et al. Tumor-necrosis-factor-alpha messenger-RNA expression in patients with relapsing-remitting multiple-sclerosis is associated with disease-activity. Ann Neurol 1995; 37(1): 82–8PubMedCrossRefGoogle Scholar
  43. 43.
    Van Oosten BW, Barkhof F, Scholten PET, et al. Increased production of tumor necrosis factor alpha, and not of interferon gamma, preceding disease activity in patients with multiple sclerosis. Arch Neurol 1998; 55(6): 793–8PubMedCrossRefGoogle Scholar
  44. 44.
    Elliott MJ, Maini RN, Feldmann M, et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibody to tumor necrosis factor alpha. Arthritis Rheum 1993; 36: 1681–90PubMedCrossRefGoogle Scholar
  45. 45.
    Weinblatt ME, Kremer JM, Bankhurst AD, et al. A trial of etanercept, a recombinant tumor necrosis factor receptor: fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 1999; 340: 253–9PubMedCrossRefGoogle Scholar
  46. 46.
    Maini R, St Clair EW, Breedveld F, et al. Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 1999; 354(9194): 1932–9PubMedCrossRefGoogle Scholar
  47. 47.
    Lovell DJ, Giannini EH, Reiff A, et al. Etanercept in children with polyarticular juvenile rheumatoid arthritis. Pediatric Rheumatology Collaborative Study group. N Engl J Med 2000; 342(11): 763–9PubMedCrossRefGoogle Scholar
  48. 48.
    Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 2001; 19: 163–96PubMedCrossRefGoogle Scholar
  49. 49.
    Croxford JL, Triantaphyllopoulos KA, Neve RM, et al. Gene therapy for chronic relapsing experimental allergic encephalomyelitis using cells expressing a novel soluble p75 dimeric TNF receptor. J Immunol 2000; 164(5): 2776–81PubMedGoogle Scholar
  50. 50.
    Sean Riminton D, Korner H, Strickland DH, et al. Challenging cytokine redundancy: inflammatory cell movement and clinical course of experimental autoimmune encephalomyelitis are normal in lymphotoxin-deficient, but not tumor necrosis factor-deficient, mice. J Exp Med 1998; 187(9): 1517–28CrossRefGoogle Scholar
  51. 51.
    Kassiotis G, Kollias G. Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (tnf) at the p55 tnf receptor level: implications for pathogenesis and therapy of autoimmune demyelination. J Exp Med 2001; 193(4): 427–34PubMedCrossRefGoogle Scholar
  52. 52.
    Liu J, Marino MW, Wong G, et al. TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nat Med 1998; 4: 78–83PubMedCrossRefGoogle Scholar
  53. 53.
    Eugster HP, Frei K, Bachmann R, et al. Severity of symptoms and demyelination in mog-induced EAE depends on TNFR1. Eur J Immunol 1999; 29: 626–32PubMedCrossRefGoogle Scholar
  54. 54.
    Probert L, Eugster HP, Akassoglou K, et al. TNFR1 signalling is critical for the development of demyelination and the limitation of T-cell responses during immune-mediated CNS disease. Brain 2000; 123 (Pt 10): 2005–19PubMedCrossRefGoogle Scholar
  55. 55.
    Grewal IS, Grewal KD, Wong FS, et al. Local expression of transgene encoded TNF alpha in islets prevents autoimmune diabetes in nonobese diabetic (NOD) mice by preventing the development of auto-reactive islet-specific T cells. J Exp Med 1996; 184(5): 1963–74PubMedCrossRefGoogle Scholar
  56. 56.
    Weishaupt A, Gold R, Hartung T, et al. Role of TNF-alpha in high-dose antigen therapy in experimental autoimmune neuritis: inhibition of TNF-alpha by neutralizing antibodies reduces T-cell apoptosis and prevents liver necrosis. J Neuropathol Exp Neurol 2000; 59(5): 368–76PubMedGoogle Scholar
  57. 57.
    Campbell IK, O’Donnell K, Lawlor KE, et al. Severe inflammatory arthritis and lymphadenopathy in the absence of TNF. J Clin Invest 2001; 107: 1519–27PubMedCrossRefGoogle Scholar
  58. 58.
    Cope AP. Regulation of autoimmunity by proinflammatory cytokines. Curr Opin Immunol 1998; 10(6): 669–76PubMedCrossRefGoogle Scholar
  59. 59.
    Stavnezer J. Regulation of antibody production and class switching by TFG-β. J Immunol 1995; 155: 1647–51PubMedGoogle Scholar
  60. 60.
    Schluesener HJ, Lider O. Transforming growth factors β1 and β2: cytokines with identical immunosuppressive effects and a potential role in the regulation of autoimmune T cell function. J Neuroimmunol 1989; 24: 249–58PubMedCrossRefGoogle Scholar
  61. 61.
    Johns LD, Flanders KC, Ranges GE, et al. Successful treatment of experimental allergic encephalomyelitis with transforming growth factor-β1. J Immunol 1991; 147: 1792–6PubMedGoogle Scholar
  62. 62.
    Kuruvilla AP, Shah R, Hochwald GM, et al. Protective effect of transforming growth factor-β1 on experimental autoimmune diseases in mice. Proc Natl Acad Sci U S A 1991; 88: 2918–21PubMedCrossRefGoogle Scholar
  63. 63.
    Racke MK, Bonomo A, Scott DE, et al. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med 1994; 180: 1961–6PubMedCrossRefGoogle Scholar
  64. 64.
    Stevens DB, Gould KE, Swanborg RH. Transforming growth factor-β1 inhibits tumor necrosis factor-alpha/lymphotoxin production and adoptive transfer of disease by effector cells of autoimmune encephalomyelitis. J Neuroimmunol 1994; 51: 77–83PubMedCrossRefGoogle Scholar
  65. 65.
    Fabry Z, Topham DJ, Fee D, et al. TGF-β2 decreases migration of lymphocytes in vitro and homing of cells into the central nervous system in vivo. J Immunol 1995; 155: 325–32PubMedGoogle Scholar
  66. 66.
    Wahl SM. Transforming growth factor β: the good, the bad, and the ugly. J Exp Med 1994; 180: 1587–90PubMedCrossRefGoogle Scholar
  67. 67.
    Moore KW, de Waal Malefyt R, Coffman RL, et al. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683–765PubMedCrossRefGoogle Scholar
  68. 68.
    Rott O, Fleischer B, Cash E. Interleukin-10 prevents experimental allergic encephalomyelitis in rats. Eur J Immunol 1994; 24: 1434–40PubMedCrossRefGoogle Scholar
  69. 69.
    Crisi GM, Santambrogio L, Hochwald GM, et al. Staphylococcus enterotoxin B and tumor-necrosis factor-alpha induced relapses of experimental allergic encephalomyelitis: protection by transforming growth factor-β and interleukin-10. Eur J Immunol 1995; 25: 3035–40PubMedCrossRefGoogle Scholar
  70. 70.
    Cannella B, Gao YL, Brosnan C, et al. Il-10 fails to abrogate experimental autoimmune encephalomyelitis. J Neurosci Res 1996; 45: 735–46PubMedCrossRefGoogle Scholar
  71. 71.
    Owens T, Wekerle H, Antel J. Genetic models for CNS inflammation. Nat Med 2001; 7(2): 161–6PubMedCrossRefGoogle Scholar
  72. 72.
    Porrini AM, Gambi D, Reder AT. Interferon effects on interleukin-10 secretion: mononuclear cell response to interleukin-10 is normal in multiple sclerosis patients. J Neuroimmunol 1995; 61: 27–34PubMedCrossRefGoogle Scholar
  73. 73.
    Rudick RA, Ransohoff RM, Peppier R, et al. Interferon beta induces interleukin-10 expression: relevance to multiple sclerosis. Ann Neurol 1996; 40(4): 618–27PubMedCrossRefGoogle Scholar
  74. 74.
    Salmaggi A, Dufour A, Eoli M, et al. Low serum interleukin-10 levels in multiple sclerosis: further evidence for decreased systemic immunosuppression? J Neurol 1996; 243: 13–7PubMedCrossRefGoogle Scholar
  75. 75.
    Chernoff AE, Granowitz EV, Shapiro L, et al. A randomized controlled trial of Il-10 in humans: inhibition of inflammatory cytokine production and immune responses. J Immunol 1995; 154: 5292–499Google Scholar
  76. 76.
    Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell 1994; 76(2): 241–51PubMedCrossRefGoogle Scholar
  77. 77.
    de Vries JE, Carballido JM, Aversa G. Receptors and cytokines involved in allergic Th2 cell responses. J Allergy Clin Immunol 1999; 103 (5 Pt 2): S492–6PubMedCrossRefGoogle Scholar
  78. 78.
    Manabe A, Coustan-Smith E, Kumagai M, et al. Interleukin-4 induces programmed cell death (apoptosis) in cases of high-risk acute lymphoblastic leukemia. Blood 1994; 83(7): 1731–7PubMedGoogle Scholar
  79. 79.
    Srivannaboon K, Shanafelt AB, Todisco E, et al. Interleukin-4 variant (BAY 36-1677) selectively induces apoptosis in acute lymphoblastic leukemia cells. Blood 2001; 97(3): 752–8PubMedCrossRefGoogle Scholar
  80. 80.
    Bettelli E, Das MP, Howard ED, et al. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10-and IL-4-deficient and transgenic mice. J Immunol 1998; 161(7): 3299–306PubMedGoogle Scholar
  81. 81.
    Falcone M, Rajan AJ, Bloom BR, et al. A critical role for IL-4 in regulating disease severity in experimental allergic encephalomyelitis as demonstrated in IL-4-deficient C57BL/6 mice and BALB/c mice. J Immunol 1998; 160(10): 4822–30PubMedGoogle Scholar
  82. 82.
    Vandenbroeck K, Martino G, Marrosu M, et al. Occurrence and clinical relevance of an interleukin-4 gene polymorphism in patients with multiple sclerosis. J Neuroimmunol 1997; 76(1–2): 189–92PubMedCrossRefGoogle Scholar
  83. 83.
    Neuhaus O, Farina C, Yassouridis A, et al. Multiple sclerosis: comparison of co-polymer-1-reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci U S A 2000; 97(13): 7452–7PubMedCrossRefGoogle Scholar
  84. 84.
    Duda PW, Schmied MC, Cook SL, et al. Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 2000; 105(7): 967–76PubMedCrossRefGoogle Scholar
  85. 85.
    Gran B, Tranquill LR, Chen M, et al. Mechanisms of immunomodulation by glatiramer acetate. Neurology 2000; 55(11): 1704–14PubMedCrossRefGoogle Scholar
  86. 86.
    Farina C, Bergh F, Albrecht H, et al. Treatment of multiple sclerosis with copaxone (cop): Elispot assay detects cop-induced interleukin-4 and interferon-gamma response in blood cells. Brain 2001; 124 (Pt 4): 705–19PubMedCrossRefGoogle Scholar
  87. 87.
    Shanafelt AB, Forte CP, Kasper JJ, et al. An immune cell-selective interleukin 4 agonist. Proc Natl Acad Sci U S A 1998; 95(16): 9454–8PubMedCrossRefGoogle Scholar
  88. 88.
    Townsend MJ, McKenzie AN. Unravelling the net? Cytokines and diseases. J Cell Sci 2000; 113 (Pt 20): 3549–50PubMedGoogle Scholar
  89. 89.
    Lassmann H, Bruck W, Lucchinetti C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 2001; 7(3): 115–21PubMedCrossRefGoogle Scholar
  90. 90.
    Arimilli S, Ferlin W, Solvason N, et al. Chemokines in autoimmune diseases. Immunol Rev 2000; 177: 43–51PubMedCrossRefGoogle Scholar
  91. 91.
    Gonzalo J, Gonzalez-Garcia A, Kalland T, et al. Linomide, a novel immunomodulator that prevents death in four models of septic shock. Eur J Immunol 1993; 23: 2372–4PubMedCrossRefGoogle Scholar
  92. 92.
    Karussis DM, Lehmann D, Slavin S, et al. Inhibition of acute, experimental autoimmune encephalomyelitis by the synthetic immunomodulator linomide. Ann Neurol 1993; 34: 654–60PubMedCrossRefGoogle Scholar
  93. 93.
    Karussis DM, Lehmann D, Slavin S, et al. Treatment of chronic relapsing experimental autoimmune encephalomyelitis with the synthetic immunomodulator linomide (quinoline-3-carboxamide). Proc Natl Acad Sci U S A 1993; 90: 6400–4PubMedCrossRefGoogle Scholar
  94. 94.
    Schwid SR, Noseworthy JH. Targeting immunotherapy in multiple sclerosis: a near hit and a clear miss. Neurology 1999; 53: 444–5PubMedCrossRefGoogle Scholar
  95. 95.
    Peppercorn MA. Sulfasalazine: pharmacology, clinical use, toxicity, and related new drug development. Ann Intern Med 1984; 101: 377–86PubMedGoogle Scholar
  96. 96.
    Hoult JR. Pharmacological and biochemical actions of sulfasalazine. Drugs 1986; 32: 18–26PubMedCrossRefGoogle Scholar
  97. 97.
    Prosiegel M, Neu I, Ruhenstroth-Bauer G, et al. Suppression of experimental autoimmune encephalitis by sulfasalazine. N Engl J Med 1989; 321: 545–6PubMedGoogle Scholar
  98. 98.
    Prosiegel M, Neu I, Vogl S, et al. Suppression of experimental autoimmune encephalomyelitis by sulfasalazine. Acta Neurol Scand 1990; 81: 237–8PubMedCrossRefGoogle Scholar
  99. 99.
    Kappos L. Multiple sclerosis trials [letter; comment]. Lancet 1999; 353(9171): 2242–3PubMedCrossRefGoogle Scholar
  100. 100.
    Rudge P. Are clinical trials of therapeutic agents for MS long enough? Lancet 1999; 353(9158): 1033–4PubMedCrossRefGoogle Scholar
  101. 101.
    Amemiya H. 15-Deoxyspergualin: a newly developed immunosuppressive agent and its mechanism of action and clinical effect: a review. Japan Collaborative Transplant Study Group for NKT-01. Artif Organs 1996; 20(8): 832–5PubMedCrossRefGoogle Scholar
  102. 102.
    Jung S, Toyka KV, Hartung HP. Impact of 15-deoxyspergualin on effector cells in experimental autoimmune diseases of the nervous system in the Lewis rat. Clin Exp Immunol 1994; 98(3): 494–502PubMedCrossRefGoogle Scholar
  103. 103.
    Yamamura T, Da-Lin Y, Satoh J, et al. Suppression of experimental allergic encephalomyelitis by 15-deoxyspergualin. J Neurol Sci 1987; 82(1–3): 101–10PubMedCrossRefGoogle Scholar
  104. 104.
    Beutler E. Cladribine (2-chlorodeoxyadenosine). Lancet 1992; 340: 952–6PubMedCrossRefGoogle Scholar
  105. 105.
    Sipe JC, Romine JS, Koziol JA, et al. Cladribine in treatment of chronic progressive multiple sclerosis [see comments]. Lancet 1994; 344(8914): 9–13PubMedCrossRefGoogle Scholar
  106. 106.
    Beutler E, Sipe JC, Romine JS, et al. The treatment of chronic progressive multiple sclerosis with cladribine. Proc Natl Acad Sci U S A 1996; 93: 1716–20PubMedCrossRefGoogle Scholar
  107. 107.
    Sipe JC, Romine JS, Koziol J, et al. Cladribine improves relapsing-remitting MS: a double blind placebo controlled study. Neurology 1997; 48Suppl. 2: A340Google Scholar
  108. 108.
    Romine JS, Sipe JC, Koziol JA, et al. A double-blind, placebo-controlled, randomized trial of cladribine in relapsing-remitting multiple sclerosis. Proc Assoc Am Physician 1999; 111(1): 35–44CrossRefGoogle Scholar
  109. 109.
    Stangel M, Hartung HP, Marx P, et al. Intravenous immunoglobulin treatment of neurological autoimmune disorders. J Neurol Sci 1998; 153: 203–14PubMedCrossRefGoogle Scholar
  110. 110.
    Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 2001; 291(5503): 484–6PubMedCrossRefGoogle Scholar
  111. 111.
    Rodriguez M, Lennon VA. Immunoglobulins promote remyelination in the central nervous system. Ann Neurol 1990; 27: 12–7PubMedCrossRefGoogle Scholar
  112. 112.
    Warrington AE, Asakura K, Bieber AJ, et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci U S A 2000; 97(12): 6820–5PubMedCrossRefGoogle Scholar
  113. 113.
    Van Engelen BG, Hommes OR, Pinckers A, et al. Improved vision after intravenous immunoglobulin in stable demyelinating optic neuritis [letter]. Ann Neurol 1992; 32: 834–5PubMedCrossRefGoogle Scholar
  114. 114.
    Larroche C, Chanseaud Y, Garciadelapenalefebvre P, et al. Mechanisms of intravenous immunoglobulin action in autoimmune disorders. Biodrugs 2002; 16(1): 47–55PubMedCrossRefGoogle Scholar
  115. 115.
    Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med 2001; 345(10): 747–55PubMedCrossRefGoogle Scholar
  116. 116.
    Kekow J, Reinhold D, Pap T, et al. Intravenous immunoglobulins and transforming growth factor beta. Lancet 1998; 351(9097): 184–5PubMedCrossRefGoogle Scholar
  117. 117.
    Van Schaik IN, Vermeulen M, Brand A. Intravenous immunoglobulins and transforming growth factor beta. Lancet 1998; 351(9111): 1288PubMedCrossRefGoogle Scholar
  118. 118.
    Stangel M, Compston A, Scolding MJ. Polyclonal immunoglobulins for intravenous use do not influence the behaviour of cultured oligodendrocytes. J Neuroimmunol 1999; 96: 228–33PubMedCrossRefGoogle Scholar
  119. 119.
    Weiner HL, Friedmann A, Miller A, et al. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Ann Rev Immunol 1994; 12: 809–37CrossRefGoogle Scholar
  120. 120.
    Chen Y, Kuchroo VK, Inobe JI, et al. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994; 265: 1237–40PubMedCrossRefGoogle Scholar
  121. 121.
    Teitelbaum D, Arnon R, Sela M. Immunomodulation of experimental autoimmune encephalomyelitis by oral administration of copolymer-I. Proc Natl Acad Sci U S A 1999; 96: 3842–7PubMedCrossRefGoogle Scholar
  122. 122.
    Tian J, Olcott A, Hanssen L, et al. Antigen-based immunotherapy for autoimmune disease: from animal models to humans? Immunol Today 1999; 20(4): 190–5PubMedCrossRefGoogle Scholar
  123. 123.
    Sloan-Lancaster J, Allen PM. Altered peptide ligand induced partial T cell activation: molecular mechanisms and role in T cell biology. Ann Rev Immunol 1996; 14: 1–27CrossRefGoogle Scholar
  124. 124.
    Windhagen A, Scholz C, Höllsbert P, et al. Modulation of cytokine patterns of human autoreactive T cell clones by a single amino acid substitution of their peptide ligand. Immunity 1995; 2: 373–80PubMedCrossRefGoogle Scholar
  125. 125.
    Sloan-Lancaster J, Evavold BD, Allen PM. Induction of T-cell anergy by altered T-cell-receptor ligand on live antigen-presenting cells. Nature 1993; 363: 156–9PubMedCrossRefGoogle Scholar
  126. 126.
    Smilek DE, Wraith DC, Hodgkinson S, et al. A single amino acid change in a myelin basic protein peptide confers the capacity to prevent rather than induce experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 1991; 88: 9633–7PubMedCrossRefGoogle Scholar
  127. 127.
    Nicholson LB, Greer JM, Sobel RA, et al. An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity 1995; 3: 397–405PubMedCrossRefGoogle Scholar
  128. 128.
    Hafler DA, Weiner HL. Immunosuppression with monoclonal antibodies in multiple sclerosis. Neurology 1988; 38 7Suppl. 2: 42–7Google Scholar
  129. 129.
    Hafler DA, Ritz J, Schlossman SF, et al. Anti-CD4 and anti-CD2 monoclonal antibody infusions in subjects with multiple sclerosis. Immunosuppressive effects and human anti-mouse responses. J Immunol 1988; 141(1): 131–8PubMedGoogle Scholar
  130. 130.
    Weinshenker BG, Bass B, Karlik S, et al. An open trial of OKT3 in patients with multiple sclerosis. Neurology 1991; 41(7): 1047–52PubMedCrossRefGoogle Scholar
  131. 131.
    Lindsey JW, Hodgkinson S, Mehta R, et al. Repeated treatment with chimeric anti-CD4 antibody in multiple sclerosis. Ann Neurol 1994; 36(2): 183–9PubMedCrossRefGoogle Scholar
  132. 132.
    Lindsey JW, Hodgkinson S, Mehta R, et al. Phase 1 clinical trial of chimeric monoclonal anti-CD4 antibody in multiple sclerosis. Neurology 1994; 44 (3 Pt 1): 413–9PubMedCrossRefGoogle Scholar
  133. 133.
    Van Oosten BW, Lai M, Barkhof F, et al. A phase II trial of anti-CD4 antibodies in the treatment of multiple sclerosis. Mult Scler 1996; 1(6): 339–42PubMedGoogle Scholar
  134. 134.
    Racadot E, Rumbach L, Bataillard M, et al. Treatment of multiple sclerosis with anti-CD4 monoclonal antibody. A preliminary report on B-F5 in 21 patients. J Autoimmun 1993; 6(6): 771–86PubMedCrossRefGoogle Scholar
  135. 135.
    Rep MH, van Oosten BW, Roos MT, et al. Treatment with depleting CD4 monoclonal antibody results in a preferential loss of circulating naive T cells but does not affect IFN-gamma secreting TH1 cells in humans. J Clin Invest 1997; 99(9): 2225–31PubMedCrossRefGoogle Scholar
  136. 136.
    Weinberg AD, Bourdette DN, Sullivan TJ, et al. Selective depletion of myelin-reactive T cells with the anti-OX-40 antibody ameliorates autoimmune encephalomyelitis. Nat Med 1996; 2(2): 183–9PubMedCrossRefGoogle Scholar
  137. 137.
    Anderson DE, Sharpe AH, Hafler DA. The B7-CD28/CTLA-4 costimulatory pathways in autoimmune disease of the central nervous system. Curr Opin Immunol 1999; 11(6): 677–83PubMedCrossRefGoogle Scholar
  138. 138.
    Sperling AI. ICOS costimulation: is it the key to selective immunotherapy? Clin Immunol 2001; 100(3): 261–2PubMedCrossRefGoogle Scholar
  139. 139.
    Edelson R, Berger C, Gasparro F, et al. Treatment of cutaneous T cell lymphoma by extracorporeal photochemistry: Preliminary results. N Engl J Med 1987; 316: 297–303PubMedCrossRefGoogle Scholar
  140. 140.
    Vahlquist C, Larsson M, Ernerudh J, et al. Treatment of psoriatic arthritis with extracorporeal photochemotherapy and conventional psoralen-ultraviolet A irradiation. Arthritis Rheum 1996; 39: 1519–23PubMedCrossRefGoogle Scholar
  141. 141.
    Schwartz J, Gonzalez J, Palangio M, et al. Extracorporeal photochemotherapy in progressive systemic sclerosis: a follow-up study. Int J Derm 1997; 36: 380–5PubMedCrossRefGoogle Scholar
  142. 142.
    Lider O, Reshef T, Beraud E, et al. Anti-idiotype network induced by T cell vaccination against experimental autoimmune encephalomyelitis. Science 1988; 239: 181–3PubMedCrossRefGoogle Scholar
  143. 143.
    Khavari P, Edelson RL, Lider O, et al. Specific vaccination against photoinactivated cloned T cells [abstract]. Clin Res 1988; 36: 662AGoogle Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  1. 1.Department of Neurology, School of MedicineUniversity of TuebingenTuebingenGermany
  2. 2.Institute for Clinical NeuroimmunologyKlinikum GrosshadernMunichGermany
  3. 3.Department of NeuroimmunologyMax-Planck-Institute for NeurobiologyMartinsriedGermany

Personalised recommendations