BioDrugs

, Volume 15, Issue 6, pp 379–393 | Cite as

New Therapeutic Approaches to the Management of Rheumatoid Arthritis

Review Article

Abstract

Rheumatoid arthritis (RA) is a common disease that affects up to 1% of the population, and causes significant morbidity and early mortality. The aetiology of RA is unknown; however, in the last 10 to 15 years significant advances in molecular technology have provided a greater understanding of the pathogenesis of the disease. This has led to the development of new approaches to the treatment of RA. The disease modifying antirheumatic oral agent leflunomide inhibits the proliferation of activated T cells that are important in the inflammation and degradation of synovial tissues. The 2 biological agents approved for the treatment of RA, infliximab and etanercept, are inhibitors of the pro-inflammatory cytokine, tumour necrosis factor-α (TNFα). Infliximab is a chimeric human/mouse monoclonal antibody which is administered by intravenous infusion and binds with high affinity to TNFα, thereby neutralising its effects. Etanercept is a recombinant, soluble TNF receptor molecule which is administered subcutaneously and binds to TNFα in the serum rendering it biologically inactive. The protein A immunoadsorption column is a medical device that in conjunction with plasma-pheresis can be used in patients with refractory RA. These agents have provided new and effective therapies for the treatment of patients with RA.

References

  1. 1.
    Arnett FC, Edworthy SM, Bloch DA, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31(3): 315–24PubMedCrossRefGoogle Scholar
  2. 2.
    Sherrer YS, Bloch DA, Mitchell DM, et al. The development of disability in rheumatoid arthritis. Arthritis Rheum 1986; 29(4): 494–500PubMedCrossRefGoogle Scholar
  3. 3.
    Pincus T, Callahan LF, Sale WG, et al. Severe functional declines, work disability, and increased mortality in seventyfive rheumatoid arthritis patients studied over nine years. Arthritis Rheum 1984; 27(8): 864–72PubMedCrossRefGoogle Scholar
  4. 4.
    Gabriel SE, Crowson CS, O’Fallon WM. Mortality in rheumatoid arthritis: have we made an impact in 4 decades? J Rheumatol 1999; 26(12): 2529–33PubMedGoogle Scholar
  5. 5.
    Tugwell P, Pincus T, Yocum D, et al. Combination therapy with cyclosporine and methotrexate in severe rheumatoid arthritis. The Methotrexate-Cyclosporine Combination Study Group [see comments]. N Engl J Med 1995; 333(3): 137–41PubMedCrossRefGoogle Scholar
  6. 6.
    O’Dell JR, Haire CE, Erikson N, et al. Treatment of rheumatoid arthritis with methotrexate alone, sulfasalazine and hydroxychloroquine, or a combination of all three medications. N Engl J Med 1996; 334(20): 1287–91PubMedCrossRefGoogle Scholar
  7. 7.
    Fox DA. Cytokine blockade as a new strategy to treat rheumatoid arthritis: inhibition of tumor necrosis factor. Arch Intern Med 2000; 160(4): 437–44PubMedCrossRefGoogle Scholar
  8. 8.
    Moreland LW, Heck Jr LW, Koopman WJ. Biologic agents for treating rheumatoid arthritis. Concepts and progress. Arthritis Rheum 1997; 40(3): 397–409PubMedCrossRefGoogle Scholar
  9. 9.
    Felson DT, Anderson JJ, Boers M, et al. The American College of Rheumatology preliminary core set of disease activity measures for rheumatoid arthritis clinical trials. The Committee on Outcome Measures in Rheumatoid Arthritis Clinical Trials. Arthritis Rheum 1993; 36(6): 729–40PubMedCrossRefGoogle Scholar
  10. 10.
    Paulus HE, Egger MJ, Ward JR, et al. Analysis of improvement in individual rheumatoid arthritis patients treated with disease-modifying antirheumatic drugs, based on the findings in patients treated with placebo. The Cooperative Systematic Studies of Rheumatic Diseases Group. Arthritis Rheum 1990; 33(4): 477–84PubMedCrossRefGoogle Scholar
  11. 11.
    Koch AE, Kunkel SL, Strieter RM. Cytokines in rheumatoid arthritis. J Invest Med 1995; 43(1): 28–38Google Scholar
  12. 12.
    Gravallese EM, Darling JM, Ladd AL, et al. In situ hybridization studies of stromelysin and collagenase messenger RNA expression in rheumatoid synovium. Arthritis Rheum 1991; 34(9): 1076–84PubMedCrossRefGoogle Scholar
  13. 13.
    Szekanecz Z, Szegedi G, Koch AE. Cellular adhesion molecules in rheumatoid arthritis: regulation by cytokines and possible clinical importance. J Invest Med 1996; 44(4): 124–35Google Scholar
  14. 14.
    Szekanecz Z, Szegedi G, Koch AE. Angiogenesis in rheumatoid arthritis: pathogenic and clinical significance. J Invest Med 1998; 46(2): 27–41Google Scholar
  15. 15.
    Brazelton TR, Morris RE. Molecular mechanisms of action of new xenobiotic immunosuppressive drugs: tacrolimus (FK506), sirolimus (rapamycin), mycophenolate mofetil and leflunomide. Opin Immunol 1996; 8: 710–20CrossRefGoogle Scholar
  16. 16.
    Davis JP, Cain GA, Pitts WJ, et al. The immunosuppressive metabolite of leflunomide is a potent inhibitor of human dihydroorotate dehydrogenase. Biochemistry 1996; 35: 1270–3PubMedCrossRefGoogle Scholar
  17. 17.
    Fairbanks LD, Bofil M, Ruckemann K, et al. Importance of ribonucleotide availability to proliferating T-lymphocytes from healthy humans. J Biol Chem 1995; 270: 29682–91PubMedCrossRefGoogle Scholar
  18. 18.
    Mladenovic V, Domljan Z, Rozman B, et al. Safety and effectiveness of leflunomide in the treatment of patients with active rheumatoid arthritis. Results of a randomized, placebo-controlled, phase II study. Arthritis Rheum 1995; 38(11): 1595–603PubMedCrossRefGoogle Scholar
  19. 19.
    Strand V, Cohen S, Schiff M, et al. Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate. Leflunomide Rheumatoid Arthritis Investigators Group. Arch Intern Med 1999; 159(21): 2542–50PubMedCrossRefGoogle Scholar
  20. 20.
    Smolen JS, Kalden JR, Scott DL, et al. Efficacy and safety of leflunomide compared with placebo and sulphasalazine in active rheumatoid arthritis: a double-blind, randomised, multicentre trial. European Leflunomide Study Group [see comments]. Lancet 1999; 353(9149): 259–66PubMedCrossRefGoogle Scholar
  21. 21.
    Emery P, Breedveld F, Lemmell EM, et al. A comparison of the efficacy and safety of leflunomide and methotrexate for the treatment of rheumatoid arthritis. Rheumatology 2000; 39: 655–65PubMedCrossRefGoogle Scholar
  22. 22.
    Cohen S, Smolen J, Emery P, et al. Consistency of ACR>20%, ACR>50%, ACR70% response rates with leflunomide at 24 months in patients continuing blinded therapy for a second year in three 2-year controlled trials [abstract]. Arthritis Rheum 2000; 43 (9 Suppl.): S270CrossRefGoogle Scholar
  23. 23.
    Weinblatt ME, Kremer JM, Coblyn JS, et al. Pharmacokinetics, safety, and efficacy of combination treatment with methotrexate and leflunomide in patients with active rheumatoid arthritis. Arthritis Rheum 1999; 42(7): 1322–8PubMedCrossRefGoogle Scholar
  24. 24.
    Weinblatt ME, Dixon J, Falchuk K. Serious liver disease in a patient receiving methotrexate and leflunomide. Arthritis Rheum 2000; 43(11): 2609–11PubMedCrossRefGoogle Scholar
  25. 25.
    Kremer JM, Caldwell J, Cannon G, et al. The combination of leflunomide and methotrexate in patients with active rheumatoid arthritis who are failing on methotrexate treatment alone: a double-blind placebo controlled study. Arthritis Rheum 2000; 43 (9 Suppl.): S224Google Scholar
  26. 26.
    Aventis Pharmaceuticals Inc. ARAVA prescribing information pamphletGoogle Scholar
  27. 27.
    van de Loo FA, Joosten LA, van Lent PL, et al. Role of interleukin-1, tumor necrosis factor alpha, and interleukin-6 in cartilage proteoglycan metabolism and destruction: effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis Rheum 1995; 38: 164–72PubMedCrossRefGoogle Scholar
  28. 28.
    Leirisalo-Repo M, Paimela L, Jaattela M, et al. Production of TNF by monocytes of patients with early rheumatoid arthritis is increased. Scand J Rheumatol 1995; 24(6): 366–71PubMedCrossRefGoogle Scholar
  29. 29.
    Moreland L. The role of cytokines in rheumatoid arthritis: inhibition of cytokines in therapeutic trials. Drugs Today 1999; 35: 309–19PubMedGoogle Scholar
  30. 30.
    Tracey KJ, Vlassara H, Cerami A. Cachectin/tumour necrosis factor. Lancet 1989; 1(8647): 1122–6PubMedCrossRefGoogle Scholar
  31. 31.
    Moss M, Jin S, Becherer J, et al. Structural features and biochemical properties of TNF converting enzyme. J Neuroimmunol 1997; 72: 127–9PubMedCrossRefGoogle Scholar
  32. 32.
    Roux-Lombard P, Punzi L, Hasler F, et al. Soluble tumor necrosis factor receptors in human inflammatory synovial fluids. Arthritis Rheum 1993; 36(4): 485–9PubMedCrossRefGoogle Scholar
  33. 33.
    Drug Topics Red Book. 2000 ed. Montvale, NJ: Medical Economics Co., 2000Google Scholar
  34. 34.
    Bathon J, Martin R, Fleischmann R, et al. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med 2000; 343(22): 1586–93PubMedCrossRefGoogle Scholar
  35. 35.
    Mohan N, Edwards E, Cupps T, et al. Demyelination diagnosed during etanercept therapy. Arthritis Rheum 2000; 42 Suppl.: S228Google Scholar
  36. 36.
    Immunex Corporation. Etanercept (Enbrel) package insert [pamphlet], 1999Google Scholar
  37. 37.
    Lipsky P, St Clair EW, Furst D. 54-week clinical and radiographic results from the Attract trial: a Phase III study of infliximab (Remicade) in patients with active RA despite methotrexate [abstract]. Arthritis Rheum 1999; 42 Suppl.: S147Google Scholar
  38. 38.
    Maini R, St Clair EW, Breedveld F, et al. Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 1999; 354(9194): 1932–9PubMedCrossRefGoogle Scholar
  39. 39.
    Bridges SL. The genetics of rheumatoid arthritis: influences on susceptibility, severity and treatment response. Current Rheum Reports 1999; 1(2): 164–71CrossRefGoogle Scholar
  40. 40.
    Elliott MJ, Maini RN, Feldmann M, et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum 1993; 36(12): 1681–90PubMedCrossRefGoogle Scholar
  41. 41.
    Fries JF, Spitz PW, Young DY. The dimensions of health outcomes: the health assessment questionnaire, disability and pain scales. J Rheumatol 1982; 9(5): 789–93PubMedGoogle Scholar
  42. 42.
    Elliott MJ, Maini RN, Feldmann M, et al. Randomised doubleblind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 1994; 344(8930): 1105–10PubMedCrossRefGoogle Scholar
  43. 43.
    Maini RN, Breedveld FC, Kalden JR, et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 1998; 41(9): 1552–63PubMedCrossRefGoogle Scholar
  44. 44.
    Kavanaugh A, St Clair EW, McCune WJ, et al. Chimeric anti-tumor necrosis factor-alpha monoclonal antibody treatment of patients with rheumatoid arthritis receiving methotrexate therapy. J Rheumatol 2000; 27(4): 841–50PubMedGoogle Scholar
  45. 45.
    Lipsky P, van der Heijde D, St Clair EW, et al. 102-week clinical and radiologic results from the Attract trial: a 2 year randomized, controlled, Phase 3 trial of infliximab (Remicade) in pts with active RA despite MTX. Arthritis Rheum 2000; 43 Suppl.: S269Google Scholar
  46. 46.
    Centocor Inc. Infliximab package insert [pamphlet], 2000Google Scholar
  47. 47.
    Elliott MJ, Maini RN, Feldmann M, et al. Repeated therapy with monoclonal antibody to tumour necrosis factor alpha (cA2) in patients with rheumatoid arthritis. Lancet 1994; 344(8930): 1125–7PubMedCrossRefGoogle Scholar
  48. 48.
    Beutler B, van Huffel C. Unraveling function in the TNF ligand and receptor families [comment]. Science 1994; 264(5159): 667–8PubMedCrossRefGoogle Scholar
  49. 49.
    Moreland LW, Margolies G, Heck Jr LW, et al. Recombinant soluble tumor necrosis factor receptor (p80) fusion protein: toxicity and dose finding trial in refractory rheumatoid arthritis. J Rheumatol 1996; 23(11): 1849–55PubMedGoogle Scholar
  50. 50.
    Moreland LW, Baumgartner SW, Schiff MH, et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N Engl J Med 1997; 337(3): 141–7PubMedCrossRefGoogle Scholar
  51. 51.
    Moreland LW, Schiff MH, Baumgartner SW, et al. Etanercept therapy in rheumatoid arthritis. A randomized, controlled trial. Ann Intern Med 1999; 130(6): 478–86PubMedGoogle Scholar
  52. 52.
    Moreland L, Cohen S, Baumgartner SW, et al. Long-term use of Enbrel (R) in patients with DMARD-refractory rheumatoid arthritis. Arthritis Rheum 2000; 43 Suppl.: S270CrossRefGoogle Scholar
  53. 53.
    Weinblatt ME, Kremer JM, Bankhurst AD, et al. A trial of etanercept, a recombinant tumor necrosis factor receptor: Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 1999; 340(4): 253–9PubMedCrossRefGoogle Scholar
  54. 54.
    Kremer JM, Weinblatt ME, Fleischmann R, et al. Etanercept (Enbrel) in addition to methotrexate in rheumatoid arthritis: long-term observations [abstract]. Arthritis Rheum 2000; 43 Suppl.: S270CrossRefGoogle Scholar
  55. 55.
    Sharp JT, Young DY, Bluhm GB, et al. How many joints in the hands and wrists should be included in a score of radiologic abnormalities used to assess rheumatoid arthritis? Arthritis Rheum 1985; 28(12): 1326–35PubMedCrossRefGoogle Scholar
  56. 56.
    Genovese M, Martin R, Fleischmann R, et al. Enbrel (etanercept) vs. methotrexate in early rheumatoid arthritis (ERA trial): two-year follow-up [abstract]. Arthritis Rheum 2000; 43 Suppl.: S269Google Scholar
  57. 57.
    Lovell DJ, Giannini EH, Reiff A, et al. Etanercept in children with polyarticular juvenile rheumatoid arthritis. Pediatric Rheumatology Collaborative Study Group. N Engl J Med 2000; 342(11): 763–9PubMedCrossRefGoogle Scholar
  58. 58.
    Caldwell R, Gendreau R, Furst D, et al. A pilot study using a staph protein A column (Prosorba®) to treat refractory rheumatoid arthritis. J Rheumatol 1999; 26(120): 2718Google Scholar
  59. 59.
    Felson DT, LaValley MP, Baldassare AR, et al. The Prosorba column for treatment of refractory rheumatoid arthritis: a randomized, double-blind, sham-controlled trial. Arthritis Rheum 1999; 42(10): 2153–9PubMedCrossRefGoogle Scholar
  60. 60.
    Campion GV, Lebsack ME, Lookabaugh J, et al. Dose-range and dose-frequency study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis. The IL-1Ra Arthritis Study Group. Arthritis Rheum 1996; 39(7): 1092–101PubMedCrossRefGoogle Scholar
  61. 61.
    Bresnihan B, Alvaro-Gracia JM, Cobby M, et al. Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum 1998;41(12): 2196–204PubMedCrossRefGoogle Scholar
  62. 62.
    Jiang Y, Genant HK, Watt I, et al. A multicenter, double-blind, dose-ranging, randomized, placebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: radiologie progression and correlation of Genant and Larsen scores. Arthritis Rheum 2000; 43(5): 1001–9PubMedCrossRefGoogle Scholar
  63. 63.
    Schattenkirchner M, Wasthuber J, Rau R, et al. Long-term use of the fully human anti-TNF antibody D2E7 in combination with methotrexate in active rheumatoid arthritis [abstract]. Arthritis Rheum 2000; 43 Suppl.: S228Google Scholar
  64. 64.
    Van de Putte L, Rau R, Breedveld F, et al. One year efficacy results of the fully human anti-TNF antibody D2E7 in rheumatoid arthritis [abstract]. Arthritis Rheum 2000 43; Suppl.: S269Google Scholar
  65. 65.
    Weisman M, Keystone E, Paulus HE, et al. A dose escalation study designed to demonstrate the safety, tolerability and efficacy of the fully human anti-TNF antibody, D2E7, given in combination with methotrexate in patients with active RA [abstract]. Arthritis Rheum 2000; 43 Suppl.: S391CrossRefGoogle Scholar
  66. 66.
    Edwards III CK. PEGylated recombinant human soluble tumour necrosis factor receptor type I (r-Hu-sTNF-RI): novel high affinity TNF receptor de signed for chronic inflammatory diseases. Ann Rheum Dis 1999; 58Suppl. 1:I73–I81PubMedCrossRefGoogle Scholar
  67. 67.
    Davis M, Frazier J, Martin S, et al. Non-immunogenicity of a pegylated soluble tumor necrosis factor receptor type I (PEG sTNF-RI[p55]) [abstract]. Arthritis Rheum 1999; 42 Suppl.: S37Google Scholar

Copyright information

© Adis International Limited 2001

Authors and Affiliations

  1. 1.Department of Medicine, Division of Clinical Immunology and RheumatologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations