BioDrugs

, Volume 15, Issue 2, pp 81–86 | Cite as

The Potential Role of Tocopherol in Asthma and Allergies

Modification of the Leukotriene Pathway
  • Stefano Centanni
  • Pierachille Santus
  • Fabiano Di Marco
  • Francesca Fumagalli
  • Simona Zarini
  • Angelo Sala
Leading Article

Abstract

Metabolism of arachidonic acid via the 5-lipoxygenase (5-LO) pathway leads to the formation of hydroperoxyeicosatetraenoic acids (HPETEs) and leukotriene (LT) A4. This unstable allylic epoxide can be further converted by secondary enzymes into LTB4 and cysteinyl LTs. LTs represent a family of potent biologically active compounds synthesised by specific cell types and by transcellular biosynthetic mechanisms. Cysteinyl LTs are involved in the pathogenesis of asthma, and recent data indicate that individuals with asthma may have enhanced basal excretion of urinary LTE4 compared with normal individuals.

Tocopherol (vitamin E) and tocopherol acetate strongly inhibit potato 5-LO in an irreversible and noncompetitive way, and, by affecting the redox state of cells possessing 5-LO, they may influence the production of biologically active LTs. It has been reported that normal plasma levels of tocopherol may enhance the lipoxygenation of arachidonic acid, whereas higher tocopherol levels exert a suppressive effect that is consistent with its role as a hydroperoxide scavenger.

Receptor-mediated activation of neutrophils in individuals with asthma results in the synthesis of LTs. This activation is inhibited by tocopherol in a concentration-dependent manner. Additional controlled studies are needed to assess the effect of tocopherol on leukotriene production in asthmatic individuals. The results of these studies may be useful in developing new therapeutic approaches in asthmatic/allergic patients.

References

  1. 1.
    Dennis E. Diversity of group types, regulation and function of phospholipases A2. J Biol Chem 1994; 269: 13057–60PubMedGoogle Scholar
  2. 2.
    Samuelsson B, Goldyne NE, Granstrom E, et al. Prostaglandins and thromboxane. Annu Rev Biochem 1978; 47: 997–1003PubMedCrossRefGoogle Scholar
  3. 3.
    Ford-Hutchinson A, Gresser M, Young R. 5-Lipoxygenase. Annu Rev Biochem 1994; 63: 383–417PubMedCrossRefGoogle Scholar
  4. 4.
    Kuhn H, Thiele BJ. Arachidonate 15-lipoxygenase. J Lipid Mediat Cell Signal 1995; 12: 157–70PubMedCrossRefGoogle Scholar
  5. 5.
    Miller DK, Gillard JW, Vickers PJ, et al. Identification and isolation of a membrane protein necessary for leukotriene production. Nature 1990; 343: 278–81PubMedCrossRefGoogle Scholar
  6. 6.
    Murphy RC, Hammarstrom S, Samuelsson B. Leukotriene C: a slow reacting substance (SRS) from murine mastocytoma cells. Proc Natl Acad Sci USA 1979; 76: 4275–9PubMedCrossRefGoogle Scholar
  7. 7.
    Drazen JM, Austen KF, Lewis RA, et al. Comparative airway and vascular activities of leukotrienes C-1 and D in vivo and in vitro. Proc Natl Acad Sci USA 1980; 77: 4354–8PubMedCrossRefGoogle Scholar
  8. 8.
    Hedqvist P, Dahlén SE, Gustafsson LE, et al. Biological profile of leukotrienes C4 and D4. Acta Physiol Scand 1980; 110: 331–3PubMedCrossRefGoogle Scholar
  9. 9.
    Dahlén SE, Hedqvist P, Hammarstrom S, et al. Leukotrienes are potent constrictors of human bronchi. Nature 1980; 288: 484–6PubMedCrossRefGoogle Scholar
  10. 10.
    Hanna CJ, Bach MK, Pare PD, et al. Slow reacting substances (leukotrienes) contract human airway and pulmonary vascular smooth muscle. Nature 1981; 290: 343–4PubMedCrossRefGoogle Scholar
  11. 11.
    Jones TR, Davies C, Daniel EE. Pharmacological study of the contractile activity of leukotriene C4 and D4 on isolated human airway smooth muscle. Can J Physiol Pharmacol 1982; 60: 638–43PubMedCrossRefGoogle Scholar
  12. 12.
    Borgeat P, Samuelsson B. Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes. Formation of a novel dihydroxy eicosanoic acid. J Biol Chem 1979; 254: 2643–6PubMedGoogle Scholar
  13. 13.
    Borgeat P, Hamberg M, Samuelsson B. Transformation of arachidonic acid and homo-τ-linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxyacids from novel lipoxygenases. J Biol Chem 1977; 252: 8772Google Scholar
  14. 14.
    Sirois P, Roy S, Borgeat P, et al. Evidence for a mediator role of thromboxane A2 in the myotropic action of leukotriene B4 (LTB4) on the guinea-pig lung. Prostaglandins Leukot Med 1982; 8: 157–70PubMedCrossRefGoogle Scholar
  15. 15.
    Ford-Hutchinson AW, Brey MA, Doig MV, et al. Leukotriene B4, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 1980; 286: 264–5PubMedCrossRefGoogle Scholar
  16. 16.
    Dahlén SE, Bjork J, Hedqvist P, et al. Leukotrienes promote plasma leakage and leukocyte adhesion in post capillary venules: in vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci USA 1981; 78: 3387–91CrossRefGoogle Scholar
  17. 17.
    Hafström I, Palmblad J, Malmsten C, et al. Leukotriene B4 — a stereospecific stimulator for release of lysosomal enzymes from neutrophils. FEBS Lett 1981; 130: 146–8PubMedCrossRefGoogle Scholar
  18. 18.
    Rae SA, Smith MJH. The stimulation of lysosomal enzyme secretion from human polymorphonuclear leukocytes by leukotriene B4. J Pharm Pharmacol 1981; 33: 616–8PubMedCrossRefGoogle Scholar
  19. 19.
    Claesson HE, Odlander B, Jakobsson PJ, et al. Leukotriene B4 in the immune system. Int J Immunopharmacol 1982; 14: 441–9CrossRefGoogle Scholar
  20. 20.
    Yamaoka KA, Dugas B, Paul-Eugene N, et al. Leukotriene B4 enhances IL-4-induced IgE production from normal human lymphocytes. Cell Immunol 1994; 156: 124–34PubMedCrossRefGoogle Scholar
  21. 21.
    Davidson AE, Lee TH, Scanlon PD, et al. Bronchoconstrictor effects of LTE4 in normal and asthmatic subjects. Am Rev Respir Dis 1987; 135:333–7PubMedGoogle Scholar
  22. 22.
    Israel E, Fisher AR, Rosenberg MA, et al. The pivotal role of 5-lipoxygenase products in the reaction of aspirin-sensitive asthmatics to aspirin. Am Rev Respir Dis 1993; 148: 1447–51PubMedCrossRefGoogle Scholar
  23. 23.
    Knani J, Campbell A, Enander I, et al. Indirect evidence of nasal inflammation assessed by titration of inflammatory mediators and enumeration of cells in nasal secretion of patients with chronic rhinitis. J Allergy Clin Immunol 1992; 90: 880–90PubMedCrossRefGoogle Scholar
  24. 24.
    Volovitz B, Osur SL, Bernstein JM, et al. Leukotriene C4 release in upper respiratory mucosa during natural exposure to ragweed in ragweed-sensitive children. J Allergy Clin Immunol 1988; 82: 414–8PubMedCrossRefGoogle Scholar
  25. 25.
    Jung TTK, Juhn SK, Hwang D, et al. Prostaglandins, leukotrienes and other arachidonic acid metabolites in nasal polyps and nasal mucosa. Laryngoscope 1987; 97: 184–9PubMedCrossRefGoogle Scholar
  26. 26.
    Criticos PS, Peters SP, Atkinson Jr NF, et al. Petpide leukotriene release after antigen challenge in patients sensitive to ragweed. N Engl J Med 1984; 310: 1626–30CrossRefGoogle Scholar
  27. 27.
    Shaw RJ, Fitzharris P, Cromwell O, et al. Allergen-induced release of sulphidopeptide leukotrienes (SRS-A) and LTB4 in allergic rhinitis. Allergy 1985; 40: 1–6PubMedCrossRefGoogle Scholar
  28. 28.
    Miadonna A, Tedeschi A, Leggieri E, et al. Behaviour and clinical relevance of histamine and leukotrienes C4 and B4 in grass pollen-induced rhinitis. Am Rev Respir Dis 1987; 114: 522–4Google Scholar
  29. 29.
    Liu MC, Dubé LM, Lancaster J, and the zileuton study group. Acute and chronic effects of a 5-lipoxygenase inhibitor in asthma: a 6-month randomized multicenter trial. J Allergy Clin Immunol 1996; 98: 859–71PubMedCrossRefGoogle Scholar
  30. 30.
    Hui KP, Barnes NC. Lung function improvement in asthma with a cysteinyl-leukotriene receptor antagonist. Lancet 1991; 337: 1062–3PubMedCrossRefGoogle Scholar
  31. 31.
    Cluzel M, Damon M, Chanez P, et al. Enhanced alveolar cell luminol-dependent chemiluminescence in asthma. J Allergy Clin Immunol 1987; 80: 195–201PubMedCrossRefGoogle Scholar
  32. 32.
    Gorski F, Krakowiak A, Ruta U, et al. Eosinophil and neutrophil chemiluminescence in patients with atopic asthma and in healthy subjects. Allergol Immunopathol Madr 1993; 21: 71–4PubMedGoogle Scholar
  33. 33.
    Vachier I, Damon M, Le Doucen C, et al. Increased oxygen species generation in blood monocytes of asthmatic patients. Am Rev Respir Dis 1992; 146: 1161–6PubMedGoogle Scholar
  34. 34.
    Montuschi P, Corradi M, Ciabattoni G, et al. Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med 1999; 160: 216–20PubMedGoogle Scholar
  35. 35.
    Kelly FJ, Mudway I, Blomberg A, et al. Altered lung antioxidant status in patients with mild asthma. Lancet 1999; 354: 482–3PubMedCrossRefGoogle Scholar
  36. 36.
    Malmgren R, Unge G, Zetterstrom O, et al. Lowered glutathione peroxidase activity in asthmatic patients with food and aspirin intolerance. Allergy 1986; 41: 43–5PubMedCrossRefGoogle Scholar
  37. 37.
    Pearson DJ, Suarez-Mendez VJ, Day JP, et al. Selenium status in relation to glutathione peroxidase activity in aspirin-sensitive asthma. Clin Exp Allergy 1991; 21: 203–8PubMedCrossRefGoogle Scholar
  38. 38.
    Stone J, Hinks LJ, Beasley R, et al. Reduced selenium status of patients with asthma. Clin Sci 1989; 77: 495–500PubMedGoogle Scholar
  39. 39.
    Flatt A, Pearce N, Thomson CD, et al. Reduced selenium in asthmatic subjects in New Zeland. Thorax 1990; 45: 95–9PubMedCrossRefGoogle Scholar
  40. 40.
    Barnes PJ. New concepts in the pathogenesis of bronchial hyperresponsiveness and asthma. J Allergy Clin Immunol 1989; 83: 1013–26PubMedCrossRefGoogle Scholar
  41. 41.
    Beasley R, Thomson C, Pearce N. Selenium, glutathione peroxidase and asthma. Clin Exp Allergy 1991; 21: 157–9PubMedCrossRefGoogle Scholar
  42. 42.
    Rouzer CA, Matsumoto T, Samuelsson B. Single protein from human leukocytes possesses 5-lipoxygenase and leukotriene A4 synthase activities. Proc Natl Acad Sci USA 1986; 83: 857–61PubMedCrossRefGoogle Scholar
  43. 43.
    Tappel AL. Vitamin E and free radical peroxidation of lipids. Ann N Y Acad Sci 1972; 203: 12–28PubMedCrossRefGoogle Scholar
  44. 44.
    Hoekstra WG. Biochemical function of selenium and its relation to vitamin E. Fed Proc 1975; 34: 2083–9PubMedGoogle Scholar
  45. 45.
    Combs Jr GP, Noguchi T, Scott ML. Mechanism of action of selenium and vitamin E in protection of biological membranes. Fed Proc 1975; 34: 2090–95PubMedGoogle Scholar
  46. 46.
    Goetzl EJ. Vitamin E modulates the lipoxygenation of arachidonic acid in leukocytes. Nature 1980; 288: 183–5PubMedCrossRefGoogle Scholar
  47. 47.
    Harris RE, Boxer LA, Baehner RL. Consequences of vitamin E deficiency on the phagocytic and oxidative functions of the rat polymorphonuclear leukocyte. Blood 1980; 55: 338–43PubMedGoogle Scholar
  48. 48.
    Steiner M, Anastasi J. Vitamin E: an inhibition of the platelet release reaction. J Clin Invest 1976; 57: 732–7PubMedCrossRefGoogle Scholar
  49. 49.
    Hatam LJ, Traber MG, Kaydet HJ. The measurement of nanograms of tocopherol from needle aspiration biopsies of adipose tissue: normal and abetalipoproteinemic subjects. J Lipid Res 1979; 20: 639–45PubMedGoogle Scholar
  50. 50.
    Villa S, Lorico A, Morazzoni G, et al. Vitamin E and vitamin C inhibit arachidonate-induced aggregation of human peripheral blood leukocytes in vitro. Agents Actions 1986; 19: 127–31PubMedCrossRefGoogle Scholar
  51. 51.
    Reddanna P, Rao MK, Reddy CC. Inhibition of 5-lipoxygenase by vitamin E. FEBS Lett 1985; 193: 39–43PubMedCrossRefGoogle Scholar
  52. 52.
    Kuo CF, Cheng S, Burgess JR. Deficiency of vitamin E and selenium enhances calcium-independent phospholipase A2 activity in rat lung and liver. J Nutr 1995; 125: 1419–29PubMedGoogle Scholar
  53. 53.
    Centanni S, Santus P, Carlucci P, et al. Tocopherol inhibits leukotriene production by human neutrophils in asthmatic subjects. Eur Respir J 1999; 14Suppl. 30: 527S–8SGoogle Scholar
  54. 54.
    Luostarinen R, Siegbahn A, Saldeen T. Effects of dietary supplementation with vitamin E on human neutrophil chemotaxis and generation of LTB4. Ups J Med Sci 1991; 96: 103–11PubMedCrossRefGoogle Scholar
  55. 55.
    Hansson G, Lindgren JÅ, Dahlén S-E, et al. Identification and biological activity of novel ω-oxidized metabolites of leukotriene B4 from human leukocytes. FEBS Lett 1981; 130: 107–12PubMedCrossRefGoogle Scholar
  56. 56.
    Kohlschütter A, Mayatepek E, Finckh B, et al. T. Effect of plasma α-tocopherol on leukotriene E4 excretion in genetic vitamin E deficiency. J Inherit Metab Dis 1997; 20: 581–6PubMedCrossRefGoogle Scholar
  57. 57.
    Suzuki N, Hishinuma T, Abe F, et al. Difference in urinary LTE4 and 11-dehydro-TXBZ excretion in asthmatic patients. Prostaglandins 2000; 62(4): 395–403CrossRefGoogle Scholar

Copyright information

© Adis International Limited 2001

Authors and Affiliations

  • Stefano Centanni
    • 1
  • Pierachille Santus
    • 1
  • Fabiano Di Marco
    • 3
  • Francesca Fumagalli
    • 2
  • Simona Zarini
    • 2
  • Angelo Sala
    • 2
  1. 1.Respiratory UnitSan Paolo Hospital, University of MilanMilanItaly
  2. 2.Centre for Cardiopulmonary PharmacologyUniversity of MilanMilanItaly
  3. 3.Institute of Lung Disease, IRCCS Policlinico HospitalUniversity of MilanMilanItaly

Personalised recommendations