Clinical Drug Investigation

, Volume 27, Issue 3, pp 163–195 | Cite as

Diclofenac Potassium 12.5mg Tablets for Mild to Moderate Pain and Fever

A Review of Its Pharmacology, Clinical Efficacy and Safety
  • Nicholas MooreEmail author
Review Article


Non-prescription (over-the-counter [OTC]) analgesics are used for the short-term treatment of acute painful conditions of mild to moderate intensity in everyday life. Well documented safety and efficacy, a rapid onset of action and a flexible daily dosing regimen are essential in this context. Film-coated, immediate-release, low-dose diclofenac potassium, developed for OTC use, offers a flexible daily dosing regimen with an initial dose of two tablets (2 × 12.5mg) followed by one or two tablets up to a maximum daily dose of six tablets (75 mg/day). The maximum plasma drug concentration is reached 30 minutes after administration, and the mean terminal half-life is 1-2 hours, allowing a 4-to 6-hour duration of activity, depending on the condition.

Thirteen randomised, double-blind trials with both placebo and active controls have demonstrated the efficacy of diclofenac potassium 12.5mg tablets in conditions suitable for treatment with OTC medication, for example, acute lower back pain, headache, acute pain after dental extraction, symptoms of cold and influenza (including fever), and dysmenorrhoea. A single dose of diclofenac potassium 12.5mg is the lowest recommended effective dose. A two-tablet single dose of 25mg is at least as effective as ibuprofen 400mg. A flexible dosing regimen of an initial two tablets followed by one or two tablets up to a total daily dose of 75mg is as effective as ibuprofen used in comparable fashion up to a total daily dose of 1200mg.

The incidence of adverse events in patients taking single or multiple doses of diclofenac potassium is similar to that of ibuprofen and placebo. In a safety study conducted to compare diclofenac potassium with ibuprofen for up to 3 months in patients with osteoarthritis of the knee, no differences in the pattern of adverse events were noted. There was no evidence of either hepatic injury or cardiovascular safety-related issues at any time during the study.

Patients are generally capable of taking diclofenac potassium appropriately. A maximum OTC treatment duration of 5 days for pain and 3 days for fever is recommended.


Ibuprofen Naproxen Rofecoxib Acute Lower Back Pain Ibuprofen Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank Novartis Consumer Health for providing the data used to prepare this review, and Drs Ackerman, Unkauf and Farrenkopf for their assistance in preparing the manuscript. The persons acknowledged here are employees of Novartis or were commissioned by Novartis to provide the data used in this review. The author received no funding in relation to the preparation, submission or acceptance of this paper. The author has no conflicts of interest that are directly relevant to the contents of this review.


  1. 1.
    Ku EC, Lee W, Kothari HV, et al. Effect of diclofenac sodium on the arachidonic acid cascade. Am J Med 1986; 80: 18–23PubMedCrossRefGoogle Scholar
  2. 2.
    Sacerdote P, Carrabba M, Galante A, et al. Plasma and synovial fluid interleukin-1, interleukin-6 and substance P concentrations in rheumatoid arthritis patients: effect of the nonsteroidal anti inflammatory drugs indomethacin, diclofenac and naproxen. Inflamm Res 1995; 44: 486–90PubMedCrossRefGoogle Scholar
  3. 3.
    Warner TD, Giuliano F, Vojnovic I, et al. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci U S A 1999; 96: 7563–8PubMedCrossRefGoogle Scholar
  4. 4.
    Definitive dose proportionality trial of diclofenac potassium one-, two-, and four-12,5-mg tablets. Summit (NJ): Ciba-Geigy Corporation, Bioanalytics & Pharmacokinetics, 1997. P33 (Data on file)Google Scholar
  5. 5.
    Day RO, McLachlan AJ, Graham GG, et al. Pharmacokinetics of nonsteroidal anti-inflammatory drugs in synovial fluid. Clin Pharmacokinet 1999; 36(3): 191–210PubMedCrossRefGoogle Scholar
  6. 6.
    Liauw HL, Ku E, Brandt KD, et al. Effects of Voltaren on arachidonic acid metabolism in arthritis patients. Agents Actions 1985; 17 Suppl.: 195–9CrossRefGoogle Scholar
  7. 7.
    Dionne R. Relative efficacy of selective COX-2 inhibitors compared with over-the-counter ibuprofen. Int J Clin Pract Suppl 2003; 135: 18–22PubMedGoogle Scholar
  8. 8.
    Biopharmaceutical comparison of oral dosage forms of Voltaren and Cataflam R and of their active ingredients in man. Basle: Ciba-Geigy Ltd, Pharma Research and Development, 1986. B113 (Data on file)Google Scholar
  9. 9.
    Davies NM, Anderson KE. Clinical pharmacokinetics of diclofenac: therapeutic insights and pitfalls. Clin Pharmacokinet 1997; 33: 184–213PubMedCrossRefGoogle Scholar
  10. 10.
    Hinz B, Chevts J, Renner B, et al. Bioavailability of diclofenac potassium at low dose. Br J Clin Pharmacol 2005; 59(1): 80–4PubMedCrossRefGoogle Scholar
  11. 11.
    John VA. The pharmacokinetics and metabolism of diclofenac sodium (Voltarol) in animals and man. Rheumatol Rehabil 1979 Suppl.; 2: 22-37Google Scholar
  12. 12.
    Willis JV, Kendall MJ, Flinn RM, et al. The pharmacokinetics of diclofenac sodium following intravenous and oral administration. Eur J Clin Pharmacol 1979; 16: 405–10PubMedCrossRefGoogle Scholar
  13. 13.
    CPMP note for guidance on the investigation of bioavailability and bioequivalence [online]. Available from URL: [Accessed 2002 Jan]
  14. 14.
    Comparative bioavailability trial of 2 immediate-release diclofenac potassium 12.5mg tablets after single dose administration. Novartis Consumer Health SA, Clinical Research, 1996. 17727A-TA-12-95-B (Data on file)Google Scholar
  15. 15.
    Randomised crossover trial on the influence of food on the plasma pharmacokinetics of diclofenac potassium 12.5mg film-coated tablet, after single oral dose administration in 24 healthy male and female volunteers. Nyon: Novartis Consumer Health SA, Clinical Research, 1998. 17727A-TA-17-97-B (Data on file)Google Scholar
  16. 16.
    A definitive single oral dose bioequivalence study in healthy subjects comparing 2 × 12.5-mg diclofenac potassium brown tablets and 2 × 12.5-mg, and 1 × 25-mg capsules, and 1 × 25-mg Cataflam® tablet. Summit (NJ): Ciba Geigy Corporation, Clinical Research, 1996: 30 (Data on file)Google Scholar
  17. 17.
    Riess W, Stierlin H, Degen P, et al. Pharmacokinetics and metabolism of the anti-inflammatory agent Voltaren. Scand J Rheumatol Suppl 1978; 22: 17–29PubMedCrossRefGoogle Scholar
  18. 18.
    Willis JV, Kendall MJ. Pharmacokinetic studies on diclofenac sodium in young and old volunteers. Scand J Rheumatol 1978; 22: 36–41CrossRefGoogle Scholar
  19. 19.
    Yasar Ü, Eliasson E, Forslund-Bergengren C, et al. The role of CYP2C9 genotype in the metabolism of diclofenac in vivo and in vitro. Eur J Clin Pharmacol 2001; 57: 729–35PubMedCrossRefGoogle Scholar
  20. 20.
    Stierlin H, Faigle JW, Colombi A. Pharmacokinetics of diclofenac sodium (Voltaren) and metabolites in patients with impaired renal function. Scand J Rheumatol Suppl 1978; 22: 30–5PubMedCrossRefGoogle Scholar
  21. 21.
    Zimmerer VJ, Tittor W, Degen P. Plasmaspiegel von diclofenac und Urinausscheidung von diclofenac und Metabolism bei leberkranken Patienten. Forschr Med 1982; 100(86): 683–8Google Scholar
  22. 22.
    Lill JS, O’Sullivan T, Bauer LA, et al. Pharmacokinetics of diclofenac sodium in chronic active hepatitis and alcoholic cirrhosis. J Clin Pharmacol 2000; 40: 1–8Google Scholar
  23. 23.
    Ostensen M. Nonsteroidal anti-inflammatory drugs during pregnancy. Scand J Rheumatol Suppl 1998; 107: 128–32PubMedGoogle Scholar
  24. 24.
    GP 45 840, diclofenac sodium, Voltaren. Plasma and breast milk concentrations of unchanged diclofenac during repeated oral administration of 50 mg Voltaren enteric coated tablets. Basel, Switzerland: Ciba-Geigy Ltd; 1983 Nov 29: Report B 100/1983Google Scholar
  25. 25.
    Makela AL, Lempiainen M, Ylijoki H. Ibuprofen levels in serum and synovial fluid. Scand J Rheumatol Suppl 1981; 39: 15–7PubMedCrossRefGoogle Scholar
  26. 26.
    Avgerinos A, Hutt AJ. Interindividual variability in the enantiomeric disposition of ibuprofen following the oral administration of the racemic drug to healthy volunteers. Chirality 1990; 2(4): 249–56PubMedCrossRefGoogle Scholar
  27. 27.
    Geisslinger G, Schuster O, Stock KP, et al. Pharmacokinetics of S (+)-and R (−)-ibuprofen in volunteers and first clinical experience of S (+)-ibuprofen in rheumatoid arthritis. Eur J Clin Pharmacol 1990; 38: 493–7PubMedCrossRefGoogle Scholar
  28. 28.
    Bannwarth B, Lapicque F, Pehourcq F, et al. Stereoselective disposition of ibuprofen enantiomers in human cerebrospinal fluid. Br J Clin Pharmacol 1995 Sep; 40(3): 266–9PubMedCrossRefGoogle Scholar
  29. 29.
    Tan SC, Patel BK, Jackson SH, et al. Stereoselectivity of ibuprofen metabolism and pharmacokinetics following the administration of the racemate to healthy volunteers. Xenobiotica 2002; 32: 683–97PubMedCrossRefGoogle Scholar
  30. 30.
    Toothaker RD, Barker SH, Gillen MV, et al. Absence of pharmacokinetic interaction between orally co-administered naproxen sodium and diphenhydramine hydrochloride. Biopharm Drug Dispos 2000 Sep; 21(6): 229–33PubMedCrossRefGoogle Scholar
  31. 31.
    Jung D, Schwartz KE. Steady-state pharmacokinetics of enteric-coated naproxen tablets compared with standard naproxen tablets. Clin Ther 1994 Nov–Dec; 16(6): 923–9PubMedGoogle Scholar
  32. 32.
    Vree TB, van den Biggelaar-Martea M, Verwey-van Wissen CP, et al. Pharmacokinetics of naproxen, its metabolite O-desmethylnaproxen, and their acyl glucuronides in humans. Biopharm Drug Dispos 1993 Aug; 14(6): 491–502PubMedCrossRefGoogle Scholar
  33. 33.
    Li G, Treiber G, Maier K, et al. Disposition of ibuprofen in patients with liver cirrhosis: stereochemical considerations. Clin Pharmacokinet 1993; 25: 154–63PubMedCrossRefGoogle Scholar
  34. 34.
    Boghdady W, Lotfy M, William E. Diclofenac potassium in the management of dental pain: a multicenter double-blind comparison with glafenine. Egypt Dent J 1993; 39: 461–6PubMedGoogle Scholar
  35. 35.
    Faigle JW. Expertise on the onset and rate of absorption of low-dose diclofenac-K following oral administration in humans. Nyon: Novartis Consumer Health SQA, 2002. GP 45 840 B (Data on file)Google Scholar
  36. 36.
    McNeely W, Goa KL. Diclofenac-potassium in migraine: a review. Drugs 1999; 57: 991–1003PubMedCrossRefGoogle Scholar
  37. 37.
    Olson NZ, Sunshine A, Zighelboim I, et al. Onset and duration of analgesia of diclofenac potassium in the treatment of postepisiotomy pain. Am J Ther 1997; 4: 239–46PubMedCrossRefGoogle Scholar
  38. 38.
    Lee EJ, Williams K, Day R, et al. Stereoselective disposition of ibuprofen enantiomers in man. Br J Clin Pharmacol 1985; 19: 669–74PubMedCrossRefGoogle Scholar
  39. 39.
    Evans AM. Comparative pharmacology of S (+)-ibuprofen and (RS)-ibuprofen. Clin Rheumatol 2001; 20Suppl. 1: S9–14PubMedGoogle Scholar
  40. 40.
    Mayer JM, Testa B. Pharmacodynamics, pharmacokinetics and toxicity of ibuprofen enantiomers. Drugs Future 1997; 22: 1347–66Google Scholar
  41. 41.
    Knadler MP, Hall SD. Stereoselective arylpropionyl-CoA thioester formation in vitro. Chirality 1990; 2: 67–73PubMedCrossRefGoogle Scholar
  42. 42.
    Tracy TS, Wirthwein DP, Hall SD. Metabolic inversion of (R)-ibuprofen: formation of ibuprofenyl-coenzyme A. Drug Metab Dispos 1993; 21: 114–20PubMedGoogle Scholar
  43. 43.
    Freneaux E, Fromenty B, Berson A, et al. Stereoselective and nonstereoselective effects of ibuprofen enantiomers on mito-chondrial beta-oxidation of fatty acids. J Pharmacol Exp Ther 1990; 255: 529–35PubMedGoogle Scholar
  44. 44.
    Ito S, Oka R, Tsuchida A, et al. Disposition of single-dose intravenous and oral aspirin in children. Dev Pharmacol Ther 1991; 17: 180–6PubMedGoogle Scholar
  45. 45.
    Petersen T, Husted SE, Pedersen AK, et al. Systemic availability of acetylsalicylic acid in human subjects after oral ingestion of three different formulations. Acta Pharmacol Toxicol (Copenh) 1982; 51: 285–91CrossRefGoogle Scholar
  46. 46.
    Needs CJ, Brooks PM. Clinical pharmacokinetics of the salicy-lates. Clin Pharmacokinet 1985; 10: 164–77PubMedCrossRefGoogle Scholar
  47. 47.
    Scharf S, Kwiatek R, Ugoni A, et al. NSAIDs and faecal blood loss in elderly patients with osteoarthritis: is plasma half-life relevant? Aust N Z J Med 1998; 28: 436–9PubMedCrossRefGoogle Scholar
  48. 48.
    Kubitzek F, Ziegler G, Gold MS, et al. Analgesic efficacy of low-dose diclofenac versus paracetamol and placebo in postoperative dental pain. J Orofac Pain 2003; 17: 237–44PubMedGoogle Scholar
  49. 49.
    A double-blind pharmacokinetic and pharmacodynamic study of single oral doses of diclofenac potassium 12.5, 25, and 50mg, aspirin 650mg, and placebo in the treatment of moderate or severe pain secondary to dental impaction surgery. Summit (NJ): Ciba-Geigy Corporation, Clinical Research, 1993. P21 (Data on file)Google Scholar
  50. 50.
    A double-blind, single dose, parallel trial comparing the efficacy and safety of diclofenac potassium 6.25mg, 12.5mg, and 25g, aspirin 650mg and placebo in the treatment of moderate or severe pain secondary to dental impaction surgery. Summit (NJ): Ciba-Geigy Corporation, Clinical Research, 1994. P22 (Data on file)Google Scholar
  51. 51.
    A double-blind, single dose, parallel trial comparing the efficacy and safety of diclofenac potassium 6.25mg, 12.5mg, and 25mg, ibuprofen 200mg and placebo in the treatment of moderate or severe pain secondary to dental impaction surgery. Summit (NJ): Ciba-Geigy Corporation, Clinical Research, 1993. P23 (Data on file)Google Scholar
  52. 52.
    A double-blind, single dose, parallel trial comparing the efficacy and safety of diclofenac potassium 6.25mg, 12.5mg, and 25mg, ibuprofen 200mg and placebo in the treatment of moderate or severe pain secondary to dental impaction surgery. Summit (NJ): Ciba-Geigy Corporation, Clinical Research, 1994. P24 (Data on file)Google Scholar
  53. 53.
    DeSola Pool N, Ionescu E, Gold MS, et al. Single low-dose diclofenac potassium in the treatment of episodic tension-type headache [abstract]. Presented at Deutscher Schmerztag; 2003 Mar 13–15; FrankfurtGoogle Scholar
  54. 54.
    Kubitzek F, Ziegler G, Gold MS, et al. Low-dose diclofenac potassium in the treatment of episodic tension-type headache. Eur J Pain 2003; 7(2): 155–62PubMedCrossRefGoogle Scholar
  55. 55.
    A double-blind, randomized, parallel, comparative trial of diclofenac potassium, paracetamol/acetaminophen, and placebo in patients with pain secondary to tension-type headache. Summit (NJ): Ciba-Geigy Corporation, 1996. P32 (Data on file)Google Scholar
  56. 56.
    A multicentre, double-blind, double-dummy, randomized placebo-controlled, active-controlled (ibuprofen), parallel group trial to determine the efficacy and safety of diclofenac potassium 12.5mg in the treatment of select influenza/influenza-like symptoms, including reduction of fever/feverishness. Nyon: Novartis Consumer Health, 1997. P36 (Data on file)Google Scholar
  57. 57.
    Grebe W, Ionescu E, Gold MS, et al. A multicenter, randomized, double-blind, double-dummy, placebo-and active-controlled parallel-group comparison of diclofenac-K and ibuprofen for the treatment of adults with influenza-like symptoms. Clin Ther 2003; 25(2): 444–59PubMedCrossRefGoogle Scholar
  58. 58.
    Gehanno P, Dreiser RL, Ionescu E, et al. Lowest effective single dose of diclofenac for antipyretic and analgesic effects in acute febrile sore throat. Clin Drug Invest 2003; 23(4): 263–71CrossRefGoogle Scholar
  59. 59.
    Dreiser RL, Marty M, Ionescu E, et al. Relief of acute low-back pain with diclofenac-K 12.5-mg tablets: a flexible dose, ibuprofen 200mg and placebo-controlled clinical trial. Int J Clin Pharmacol Ther 2003; 41(9): 375–85PubMedGoogle Scholar
  60. 60.
    A double-blind, randomized 3-way crossover, multicentre comparative trial of diclofenac potassium, ibuprofen, and placebo, in patients with pain secondary to primary dysmenorrhoea. Summit (NJ): Ciba Geigy Corporation, Clinical Research, 1996. P26 (Data on file)Google Scholar
  61. 61.
    Boureau F, Pelen F, Verriere F, et al. Evaluation of ibuprofen vs paracetamol analgesic activity using a sore throat pain model. Clin Drug Invest 1999; 17: 1–8CrossRefGoogle Scholar
  62. 62.
    Schachtel BP, Fillingim JM, Thoden WR, et al. Sore throat pain in the evaluation of mild analgesics. Clin Pharmacol Ther 1988; 44: 704–11PubMedCrossRefGoogle Scholar
  63. 63.
    Moore N, Van Ganse E, Le Parc J-M, et al. The PAIN study: Paracetamol, Aspirin and Ibuprofen New tolerability study. A large-scale, randomised clinical trial comparing the tolerability of aspirin, ibuprofen and paracetamol for short-term analgesia. Clin Drug Invest 1999; 18(2): 89–98CrossRefGoogle Scholar
  64. 64.
    Hasford J, Moore N, Hoye K. Safety and usage pattern of low-dose diclofenac when used as an over-the-counter medication: results of an observational cohort study in a community-based pharmacy setting. Int J Clin Pharmacol Ther 2004; 42(8): 415–22PubMedGoogle Scholar
  65. 65.
    A single blind, randomized, parallel trial comparing the safety of diclofenac potassium 37.5mg, 75mg, 150mg, and ibuprofen 1200mg total daily dose in patients with mild or moderate OA, and open label Voltaren® XR 300mg total daily dose in patients with severe OA. Summit (NJ): Ciba-Geigy Corporation, 1995. P29 (Data on file)Google Scholar
  66. 66.
    Mahé I, Mouly S, Mahé E, et al. Endoscopic evaluation of the gastrotolerance of short-term antalgic treatment with low-dose K-diclofenac: a comparison of ibuprofen and aspirin. Fundam Clin Pharmacol 2001; 15: 61–3PubMedCrossRefGoogle Scholar
  67. 67.
    Supportive safety study in patients with osteoarthritis with diclofenac-K 50mg tablets. Summit (NJ): Ciba-Geigy Corporation, 1995. P8 (Data on file)Google Scholar
  68. 68.
    Kellstein DE, Wakeman JA, Furey SA, et al. The safety profile of nonprescription ibuprofen in multiple-dose: a meta-analysis. J Clin Pharmacol 1999; 39: 520–32PubMedGoogle Scholar
  69. 69.
    Doyle G, Furey S, Berlin R, et al. Gastrointestinal safety and tolerance of ibuprofen at maximum over-the-counter dose. Aliment Pharmacol Ther 1999; 13(7): 897–906PubMedCrossRefGoogle Scholar
  70. 70.
    Furey SA, Waksman JA, Dash BA. Nonprescription ibuprofen: side effect profile. Pharmacotherapy 1992; 12(5): 403–7PubMedGoogle Scholar
  71. 71.
    Henry D, Lim LLY, Garcia Rodriguez LA, et al. Variability in risk of gastrointestinal complications with individual non-steroidal anti-inflammatory drugs: results of a collaborative meta-analysis. BMJ 1996; 312: 1563–6PubMedCrossRefGoogle Scholar
  72. 72.
    Lanza FL. Endoscopic studies of gastric and duodenal injury after the use of ibuprofen, aspirin, and other nonsteroidal anti-inflammatory agents. Am J Med 1984; 77(1A): 19–24PubMedCrossRefGoogle Scholar
  73. 73.
    Lanza FL, Rack MF, Lynn M, et al. An endoscopic comparison of the effects of etodolac, indomethacin, ibuprofen, naproxen, and placebo on the gastrointestinal mucosa. J Rheumatol 1987; 14: 338–41PubMedGoogle Scholar
  74. 74.
    Bergmann JF, Chassany O, Genève J, et al. Endoscopic evaluation of the effect of ketoprofen, ibuprofen and aspirin on the gastroduodenal mucosa. Eur J Clin Pharmacol 1992; 42: 685–8PubMedCrossRefGoogle Scholar
  75. 75.
    Lanza FL. A review of gastric ulcer and gastrointestinal injury in normal volunteers receiving aspirin and other non-steroidal anti-inflammatory drugs. Scand J Gastroenterol 1989; 24Suppl. 163: 24–31CrossRefGoogle Scholar
  76. 76.
    Perez-Gutthann S, Garcia-Rodriguez LA, Duque-Oliart A, et al. Low-dose diclofenac, naproxen, and ibuprofen cohort study. Pharmacotherapy 1999; 19(7): 854–9PubMedCrossRefGoogle Scholar
  77. 77.
    Garcia Rodriguez LA, Cattaruzzi C, Troncon MG, et al. Risk of hospitalization for upper gastrointestinal tract bleeding associated with ketorolac, other nonsteroidal anti-inflammatory drugs, calcium antagonists, and other antihypertensive drugs. Arch Intern Med 1998; 158: 33–9CrossRefGoogle Scholar
  78. 78.
    Garcia Rodriguez LA. Results of the GPRD study on the risk of individual NSAIDs and upper gastrointestinal haemorrhage and perforation. Madrid: CEIFE, Spanish Center for Pharmacoepidemiology Research, 1999Google Scholar
  79. 79.
    Wang J, McDonald TM, Wei L, et al. Drug safety cohort study to compare the upper gastrointestinal toxicity of dispensed diclofenac, with ibuprofen and naproxen. MEMO, Department of Clinical Pharmacology, University of Dundee (UK): 09.09.1999Google Scholar
  80. 80.
    Laporte JR, Ibanez L, Vidal X, et al. Upper gastrointestinal bleeding associated with the use of NSAIDs: newer versus older agents. Drug Saf 2004; 27(6): 411–20PubMedCrossRefGoogle Scholar
  81. 81.
    de Abajo FJ, Dolores M, Madurga M, et al. Acute and clinically relevant drug-induced liver injury: a population based case-control study. Br J Clin Pharmacol 2004; 58(1): 71–80PubMedCrossRefGoogle Scholar
  82. 82.
    PhRMA/FDA/AASLD drug induced hepatotoxicity white paper postmarketing considerations [online]. Available from [Accessed 2007 Jan 23]
  83. 83.
    Anonymous. Criteria of drug-induced liver disorders: report of an international consensus meeting. J Hepatol 1990; 11: 272-6Google Scholar
  84. 84.
    Lee WM. Drug-induced hepatotoxicity. N Engl J Med 1995; 333(17): 1118–27PubMedCrossRefGoogle Scholar
  85. 85.
    Zimmerman HJ. Update of hepatotoxicity due to classes of drugs in common clinical use: non-steroidal drugs, anti-inflammatory drugs, antibiotics, antihypertensives, and cardiac and psychotropic agents. Semin Liver Dis 1990; 10(4): 322–38PubMedCrossRefGoogle Scholar
  86. 86.
    Babany G, Pessayre D. Hépatites dues aux nouveaux anti-inflammatoires non stéroïdiens. Gastroenterol Clin Biol 1984; 8: 523–9PubMedGoogle Scholar
  87. 87.
    Fry SW, Seeff LB. Hepatotoxicity of analgesics and anti-inflammatory agents. Gastroenterol Clin North Am 1995; 24(4): 875–905PubMedGoogle Scholar
  88. 88.
    Lewis JH. Hepatic toxicity of nonsteroidal anti-inflammatory drugs. Clin Pharm 1984; 3: 128–38PubMedGoogle Scholar
  89. 89.
    Mallat A. Hépatites médicamenteuses: diagnostic et prise en charge. Gastroenterol Clin Biol 1999; 23: 906–14PubMedGoogle Scholar
  90. 90.
    Pessayre D, Larrey D, Benhamou JP. Hépatites médicamenteuses. Sem Hop Paris 1985; 28: 2049–70Google Scholar
  91. 91.
    Friis H, Andreasen PB. Drug-induced hepatic injury: an analysis of 1100 cases reported to the Danish Committee on Adverse Drug Reactions between 1978 and 1987. J Intern Med 1992; 232: 133–8PubMedCrossRefGoogle Scholar
  92. 92.
    Halpern SM, Fitzpatrick R, Volans GN. Ibuprofen toxicity: a review of adverse reactions and overdose. Toxicol Rev 1993; 12(2): 107–28Google Scholar
  93. 93.
    Laurent S, Rahier J, Geubel AP, et al. Subfulminant hepatitis requiring liver transplantation following ibuprofen overdose. Liver 2000; 20: 93–4PubMedCrossRefGoogle Scholar
  94. 94.
    Riley TR, Smith JP. Ibuprofen-induced hepatotoxicity in patients with chronic hepatitis C: a case series. Am J Gastroenterol 1998; 93(9): 1563–5PubMedGoogle Scholar
  95. 95.
    Stempel DA, Miller JJ. Lymphopenia and hepatic toxicity with ibuprofen. J Pediatr 1977; 90(4): 657–8PubMedCrossRefGoogle Scholar
  96. 96.
    Lacroix I, Lapeye-Mestre M, Bagheri H, et al. Nonsteroidal anti-inflammatory drug-induced liver injury: a case-control study in primary care. Fundam Clin Pharmacol 2004; 18: 201–6PubMedCrossRefGoogle Scholar
  97. 97.
    Traversa G, Bianchi C, Da Cas R, et al. Cohort study of hepatotoxicity associated with nimesulide and other non-steroidal anti-inflammatory drugs. BMJ 2003; 327: 18–22PubMedCrossRefGoogle Scholar
  98. 98.
    Bareille MP, Montastruc JL, Lapeye-Mestre M. Atteints hépatiques et médicaments anti-inflammatoires non stéroïdiens: étude cas/non cas dans la Banque nationale de Pharmacovigilance. Thérapie 2001; 56(1): 51–5PubMedGoogle Scholar
  99. 99.
    Boelsterli UA, Zimmerman HJ, Kretz-Rommel A. Idiosyncratic liver toxicity of nonsteroidal antiinflammatory drugs: molecular mechanisms and pathology. Crit Rev Toxicol 1995; 25(3): 207–35PubMedCrossRefGoogle Scholar
  100. 100.
    Jick H, Derby LE, Garcia Rodriguez LA, et al. Liver disease associated with diclofenac, naproxen and piroxicam. Pharmacotherapy 1992; 12(3): 207–12PubMedGoogle Scholar
  101. 101.
    Flamenbaum M, Abergel A, Marcato N, et al. Hépatite fulminante régressive, pancréatite aiguë et insuffisance rénale après prise de kétoprofène. Gastroenterol Clin Biol 1998; 22: 975–6PubMedGoogle Scholar
  102. 102.
    Barker JD, De Carle DJ, Anuras S. Chronic excessive acetaminophen use and liver damage. Ann Intern Med 1997; 87: 299–301Google Scholar
  103. 103.
    Wade LT, Kenna JG, Caldwell J. Immunochemical identification of mouse hepatic protein derived from the nonsteroidal anti-inflammatory drugs diclofenac, sulindac and ibuprofen. Chem Res Toxicol 1997; 10: 546–55PubMedCrossRefGoogle Scholar
  104. 104.
    Pumford NR, Halmes C. Protein targets of xenobiotic reactive intermediates. Ann Rev Pharmacol Toxicol 1997; 37: 91–117CrossRefGoogle Scholar
  105. 105.
    Shen S, Marchick MR, Davis MR, et al. Metabolic activation of diclofenac by human cytochrome P450 3A4: role of 5-hydroxydiclofenac. Chem Res Toxicol 1999; 12: 214–22PubMedCrossRefGoogle Scholar
  106. 106.
    Bort R, Macé K, Boobis A, et al. Hepatic metabolism of diclofenac: role of human CYP in the minor oxidative pathways. Biochem Pharmacol 1999; 58: 787–96PubMedCrossRefGoogle Scholar
  107. 107.
    Garcia R, Luis A, Perez G, et al. The role of non-steroidal anti-inflammatory drugs in acute liver injury. BMJ 1992; 305: 865–8CrossRefGoogle Scholar
  108. 108.
    Garcia R, Williams R, Derby LE, et al. Acute liver injury associated with non-steroidal anti-inflammatory drugs and the role of risk factors. Arch Intern Med 1994; 154: 311–6CrossRefGoogle Scholar
  109. 109.
    Jick H, Derby LE, Garcia R, et al. Liver disease associated with diclofenac, naproxen and piroxicam. Pharmacotherapy 1992; 12(3): 207–12PubMedGoogle Scholar
  110. 110.
    Lanza LL, Walker AM, Bortnichak EA, et al. Incidence of symptomatic liver function abnormalities in a cohort of NSAID users. Pharmacoepidemiol Drug Saf 1995; 4: 231–7CrossRefGoogle Scholar
  111. 111.
    Bombardier C, Laine L, Reicin A, et al. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis: VIGOR Study Group. N Engl J Med 2000; 343: 1520–8PubMedCrossRefGoogle Scholar
  112. 112.
    Catella-Lawson F, Reilly MP, Kapoor SC, et al. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N Engl J Med 2001; 345: 1809–17PubMedCrossRefGoogle Scholar
  113. 113.
    MacDonald TM, Wei L. Effect of ibuprofen on cardioprotective effect of aspirin. Lancet 2003; 361: 573–4PubMedCrossRefGoogle Scholar
  114. 114.
    Loll PJ, Picot D, Ekabo O, et al. Synthesis and use of iodinated nonsteroidal antiinflammatory drug analogs as crystallographic probes of the prostaglandin H2 synthase cyclooxygenase active site. Biochemistry 1996; 35(23): 7330–40PubMedCrossRefGoogle Scholar
  115. 115.
    Greig GM, Francis DA, Falgueyret JP, et al. The interaction of arginine 106 of human prostaglandin G/H synthase-2 with inhibitors is not a universal component of inhibition mediated by nonsteroidal anti-inflammatory drugs. Mol Pharmacol 1997; 52: 829–38PubMedGoogle Scholar
  116. 116.
    Solomon DH, Schneeweis S, Glynn RJ, et al. Relationship between selective cyclooxygenase-2 inhibitors and myocardial infarction in older adults. Circulation 2004; 109: 2068–73PubMedCrossRefGoogle Scholar
  117. 117.
    Bresalier RS, Sandier RS, Quan H, et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemo-prevention trial. N Engl J Med 2005; 352(11): 1092–102PubMedCrossRefGoogle Scholar
  118. 118.
    Silverstein FE, Faich G, Goldstein JL, et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study. A randomized controlled trial. Celecoxib Long Arthritis Safety Study. JAMA 2000; 284: 1247–55PubMedCrossRefGoogle Scholar
  119. 119.
    EMEA: public statement of 17 Feb 2005 on COX-2 inhibitors [online]. Available from URL: [Accessed 2007 Jan 23]
  120. 120.
    Schlienger RG, Jick H, Meier CR. Use of nonsteroidal anti-inflammatory drugs and the risk of first-time acute myocardial infarction. Br J Clin Pharmacol 2002; 54: 327–32PubMedCrossRefGoogle Scholar
  121. 121.
    Solomon DH, Glynn RJ, Levin R. Nonsteroidal anti-inflammatory drug use and acute myocardial infarction. Arch Intern Med 2002; 162: 1099–104PubMedCrossRefGoogle Scholar
  122. 122.
    Rodriguez LAG, Varas-Lorenzo C, Maguir A, et al. Nonsteroidal antiinflammatory drugs and the risk of myocardial infarction in the general population. Circulation 2004; 109: 3000–6CrossRefGoogle Scholar
  123. 123.
    Graham DJ, Campen D, Hui R, et al. Risk of acute myocardial infarction and sudden cardiac death in patients treated with cyclo-oxygenase 2 selective and non-selective non-steroidal anti-inflammatory drugs: nested case-control study. Lancet 2005; 365: 475–81PubMedGoogle Scholar
  124. 124.
    Bak S, Andersen M, Tsiropoulos I, et al. Risk of stroke associated with nonsteroidal anti-inflammatory drugs: a nested case-control study. Stroke 2003; 34: 379–86PubMedCrossRefGoogle Scholar
  125. 125.
    Fischer LM, Schlienger RG, Matter CM, et al. Current use of nonsteroidal antiinflammatory drugs and risk of acute myocardial infarction. Pharmacotherapy 2005; 25(4): 503–10PubMedCrossRefGoogle Scholar
  126. 126.
    Rodriguez LAG, Hernandez-Diaz S. Nonsteroidal anti-inflammatory drugs as a trigger of clinical heart failure. Epidemiology 2003; 14: 240–6Google Scholar
  127. 127.
    White WB, Faich G, Whelton A, et al. Comparison of thromboembolic events in patients treated with celecoxib, a cyclooxygenase-2 specific inhibitor, versus ibuprofen or diclofenac. Am J Cardiol 2002; 89: 425–30PubMedCrossRefGoogle Scholar
  128. 128.
    White WB, Faich G, Borer JS, et al. Cardiovascular thrombotic events in arthritis trials of the cyclooxygenase-2 inhibitor celecoxib. Am J Cardiol 2003; 92: 411–8PubMedCrossRefGoogle Scholar
  129. 129.
    Gertz BJ, KrupaD,Bolognese JA, Sperling RS, et al. A comparison of adverse renovascular experiences among osteoarthritis patients treated with rofecoxib and comparator non-selective non-steroidal anti-inflammatory agents. Curr Med Res Opin 2002; 18(2): 82–91PubMedCrossRefGoogle Scholar
  130. 130.
    McGettigan P, Henry D. Cardiovascular risk and inhibition of cyclooxygenase 2. JAMA 2006; 296(13): 1633–44PubMedCrossRefGoogle Scholar
  131. 131.
    Singh G, Wu O, Langhorne P, et al. Risk of acute myocardial infarction with non-selective non-steroidal anti-inflammatory drugs: a meta-analysis. Arthritis Res Ther 2006; 22; 8(5): R153CrossRefGoogle Scholar
  132. 132.
    Jick H, Kaye JA, Russmann S, et al. Nonsteroidal anti-inflammatory drugs and acute myocardial infarction in patients with no major risk factors. Pharmacotherapy 2006; 26(10): 1379–87PubMedCrossRefGoogle Scholar
  133. 133.
    EMEA: public statement of 2 August 2005 on NSAIDs [online]. Available from URL: [Accessed 2007 Jan 23]

Copyright information

© Adis Data Information BV 2007

Authors and Affiliations

  1. 1.Department of PharmacologyUniversité Victor SegalenBordeauxFrance
  2. 2.CHU de BordeauxBordeauxFrance

Personalised recommendations