Clinical Drug Investigation

, Volume 23, Issue 5, pp 287–322 | Cite as

Conventional and Atypical Antipsychotics in the Elderly

A Review
  • Pietro Gareri
  • Pasquale De Fazio
  • Mariagrazia Stilo
  • Guido Ferreri
  • Giovambattista De Sarro
Review Article


Psychoses are major mental disorders marked by derangement of personality and loss of contact with reality, and are common in the elderly. Various hypotheses suggest the pivotal role of abnormal neurotransmitter and neuropeptide systems in psychotic patients, the most studied of which are the dopaminergic, serotonergic and glutamatergic systems. In particular, long-term treatment with antagonists at dopamine (D) and serotonin (5-hydroxytryptamine; 5-HT) receptors and agonists at glutamate receptors may improve symptoms. Treatment with antipsychotics is very common in the elderly and often indispensable. However, for successful treatment it is essential to have an adequate multidimensional assessment of the geriatric patient and of his or her polypathology and polypharmacy, together with knowledge of age-dependent pharmacokinetics and pharmacodynamic changes and drug-drug interactions.

Conventional antipsychotics such as haloperidol, chlorpromazine, promazine, tiapride and zuclopenthixol are D2-receptor antagonists and inhibit dopaminergic neurotransmission in a dose-related manner. They decrease the intensity of all psychotic symptoms, although not necessarily to the same extent and with the same time course. Negative symptoms may persist to a much more striking extent than delusions, hallucinations and thought disorders, and there is a dose-related incidence of extrapyramidal side effects (EPS). Newer antipsychotics, such as clozapine, olanzapine, risperidone, quetiapine and ziprasidone, have a different receptor-binding profile, interacting with both D and 5-HT receptors; they less frequently cause EPS and are better tolerated in the elderly. Their use is advantageous because they are effective both on positive and negative symptoms of schizophrenia and may also be used in the treatment of behavioural disturbances in elderly and/or demented individuals. The use of clozapine is limited by the onset of agranulocytosis, whereas olanzapine, risperidone, quetiapine and, more recently, ziprasidone are widely used, with good results in the above-mentioned diseases.


  1. 1.
    Keverne EB. GABA-ergic neurons and the neurobiology of schizophrenia and other psychoses. Brain Res Bull 1999; 48: 467–73PubMedCrossRefGoogle Scholar
  2. 2.
    Gavrilova SI, Kalyn IB. Social and environmental factors and mental health in the elderly. Vestn Ross Akad Med Nauk 2002: 9: 15–20PubMedGoogle Scholar
  3. 3.
    Ostling S, Skoog I. Psychotic symptoms and paranoid ideation in a nondemented population-based sample of the very old. Arch Gen Psychiatr 2002; 59: 60–1CrossRefGoogle Scholar
  4. 4.
    Leysen JE, Janssen PMF, Heylen L, et al. Receptor interactions of new antipsychotics: relation to pharmacodynamic and clinical effects. Int J Psychiatr Clin Pract 1998; 2: S3–S17CrossRefGoogle Scholar
  5. 5.
    Delay J, Deniker P, Harl JM. Traitements d’etats confusionnels par le chlorhydrate de diethylaminopropyl-N-chlorophenothiazine (4560 RP). Ann Med Psychol 1952; 110: 398–403Google Scholar
  6. 6.
    Carlsson A, Lindqvist M. Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 1963; 20: 140–4CrossRefGoogle Scholar
  7. 7.
    Toru M. Biological research on schizophrenia. Psychiatry Clin Neurosci 1998; 52 Suppl. : 170–2Google Scholar
  8. 8.
    van Rossum JM. The significance of dopamine receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther 1966; 160: 492–4PubMedGoogle Scholar
  9. 9.
    Randrup A, Munkvad I. Influence of amphetamines on animal behavior: stereotypy, functional impairment and possible animal-human correlations. Psychiatr Neurol Neurochir 1972; 75: 193–202PubMedGoogle Scholar
  10. 10.
    Egan MF. Weinberger DR. Neurobiology of schizophrenia. Curr Opin Neurobiol 1997; 7: 701–7PubMedCrossRefGoogle Scholar
  11. 11.
    Grandy DK, Zhang Y, Bouvier C, et al. Multiple human D5 dopamine receptor genes: a functional receptor and two pseudogenes. Proc Natl Acad Sci U S A 1991; 88: 9175–9PubMedCrossRefGoogle Scholar
  12. 12.
    Jackson DM, Westlind-Danielson A. Dopamine receptors: molecular biology, biochemistry and behavioral aspects. Pharmacol Ther 1994; 64: 291–369PubMedCrossRefGoogle Scholar
  13. 13.
    Gerfen CR, Engber TM, Mahan LC, et al. Dl and D2 dopamine receptor-regulated gene expression of nigrostriatal and striatopallidal neurons. Science 1990; 250: 1429–32PubMedCrossRefGoogle Scholar
  14. 14.
    Gingrich JA, Caron MG. Recent advances in the molecular biology of dopamine receptors. Ann Rev Neurosci 1993; 16: 299–321PubMedCrossRefGoogle Scholar
  15. 15.
    Jaber M, Robinson SW, Missale C, et al. Dopamine receptors and brain function. Neuropharmacology 1996; 35: 1503–19PubMedCrossRefGoogle Scholar
  16. 16.
    Creese I, Schneider R, Snyder SH. [3H]-spiperone labels dopamine receptors in pituitary and brain. Eur J Pharmacol 1977; 46: 377–81PubMedCrossRefGoogle Scholar
  17. 17.
    Demchyshyn LL, Sugamori KS, Lee FJS, et al. The dopamine D1D receptor: cloning and characterization of three pharmacologically distinct D1-like receptors from Gallus domesticus. J Biol Chem 1995; 270: 72–6Google Scholar
  18. 18.
    Tauscher J, Kufferle B, Asenbaum S, et al. Striatal dopamine-2 receptor occupancy as measured with [123I]iodobenzamide and SPECT predicted the occurrence of EPS in patients treated with atypical antipsychotics and haloperidol. Psychopharmacology 2002; 162: 42–9PubMedCrossRefGoogle Scholar
  19. 19.
    Hersch SM, Ciliax BJ, Gutekunst CA, et al. Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationship with motor corticostriatal afferents. J Neurosci 1995; 15: 5222–37PubMedGoogle Scholar
  20. 20.
    Nyberg S, Nakashima Y, Nordstrom AL, et al. Positron emission tomography of in vivo binding characteristic of atypical antipsychotic drugs: review of D2 and 5-HT2 receptor occupancy studies and clinical response. Br J Psychiatry 1996; 168: 40–4Google Scholar
  21. 21.
    Farde L, Halldin C. D2 dopamine receptors in schizophrenia. In: Fog R, Garlach J, Hemmingsen R, editors. Alfred Benzon symposium 38: Schizophrenia, an integrated view. Copenhagen: Munksgaard, 1995: 190–9Google Scholar
  22. 22.
    Diaz J, Levesque D, Griffon N, et al. Phenotypical characterization of neurons expressing the dopamine D3 receptor in the rat brain. Neuroscience 1995; 65: 731–45PubMedCrossRefGoogle Scholar
  23. 23.
    Bristow LJ, Kramer MS, Kulagowski J, et al. Schizophrenia and L-745870, a novel dopamine D4 receptor antagonist. Trends Pharmacol Sci 1997; 18: 186–8PubMedGoogle Scholar
  24. 24.
    Deberdt R. Pipamperone in the treatment of behavior disorders: a large scale multicentre evaluation. Acta Psyciatr Belg 1976: 76: 157–66Google Scholar
  25. 25.
    Ansoms C, De Backer-Dierick G, Vereecken JLTM. Sleep disorders in patients with severe mental depression: double-blind placebo-controlled evaluation of the value of pipamperone. Acta Psychiatr Scand 1977; 55: 116–22PubMedCrossRefGoogle Scholar
  26. 26.
    Leysen JE, Gommeren W, Van Gompel P. Receptor binding properties in vitro and in vivo of ritanserin: a very potent and long acting serotonin-S2 antagonist. Mol Pharmacol 1985; 27: 600–11PubMedGoogle Scholar
  27. 27.
    Bersani G, Grispini A, Marini S, et al. 5-HT2 antagonist ritanserin in neuroleptic-induced parkinsonism: a double-blind comparison with orphenadrine and placebo. Clin Neuropharmacol 1990; 13: 500–6PubMedCrossRefGoogle Scholar
  28. 28.
    Leysen JE, Janssen PM, Gommeren W, et al. In vitro and in vivo receptor binding and effects on monoamine turnover in rat brain regions of the novel antipsychotic risperidone and ocaperidone. Mol Pharmacol 1992; 41: 494–508PubMedGoogle Scholar
  29. 29.
    Megens AA, Awouters FH, Schotte A, et al. Survey on the pharmacodynamics of the new antipsychotic risperidone. Psychopharmacology 1994; 114: 9–23PubMedCrossRefGoogle Scholar
  30. 30.
    Janssen PA, Niemegeers CJ, Awouters F, et al. Pharmacology of risperidone (R64766), a new antipsychotic with serotonin-S2 and dopamine-D2 antagonistic properties. J Pharmacol Exp Ther 1998; 244: 685–93Google Scholar
  31. 31.
    Davis JM, Janicak PG. Risperidone: a new, novel (and better?) antipsychotic? Psychiatr Ann 1996; 26: 9–23Google Scholar
  32. 32.
    Gallhofer B, Bayer U, Lis S, et al. Cognitive dysfunction in schizophrenia: comparison of treatment with atypical antipsychotic agents and conventional neuroleptic drugs. Eur Neuropsychopharmacol 1996; 6: S13–20PubMedCrossRefGoogle Scholar
  33. 33.
    Katz R, Jeste DV, Mintzer JE, et al. Comparison of risperidone and placebo for psychosis and behavioral disturbance associated with dementia: a randomized, double-blind trial. J Clin Psychiatr 1999; 60: 107–15CrossRefGoogle Scholar
  34. 34.
    Leysen JE, Janssen PM, Schotte A, et al. Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacological and clinical effects: role of 5-HT2 receptors. Psychopharmacology 1993; 112: S40–54PubMedCrossRefGoogle Scholar
  35. 35.
    Leysen JE, Gommeren W, Mertens J, et al. Comparison of in vitro binding properties of a series of dopamine antagonists and agonists for cloned human dopamine D2S and D2L receptors and for D2 receptors and for D2 receptors in rat striatal and mesolimbic tissues using [125I]2′-iodospiperone. Psychopharmacology 1993; 110: 27–36PubMedCrossRefGoogle Scholar
  36. 36.
    Gellman RL, Aghajanian GK. Serotonin2 receptor-mediated excitation of interneurons in piriform cortex: antagonism by atypical antipsychotic drugs. Neuroscience 1994; 58: 515–25PubMedCrossRefGoogle Scholar
  37. 37.
    Meltzer HY, Nash JF. Effects of antipsychotic drugs on serotonin receptors. Pharmacol Rev 1991; 43: 587–604PubMedGoogle Scholar
  38. 38.
    Hoyer D, Clarke DE, Fozard JR, et al. International Union of Pharmacology classification of receptors for 5-hydroxy-tryptamine (serotonin). Pharmacol Rev 1994; 46: 157–203PubMedGoogle Scholar
  39. 39.
    Hoyer D, Martin G. R. Classification and nomenclature of 5-HT receptors: a comment on current issues. Behav Brain Res 1996; 73: 263–8PubMedCrossRefGoogle Scholar
  40. 40.
    To Z. P, Bonhaus DW, Eglen RM, et al. Characterization and distribution of putative 5-HT7 receptors in guinea pig brain. Br J Pharmacol 1995; 115: 107–16PubMedCrossRefGoogle Scholar
  41. 41.
    Tamminga CA. Schizophrenia and glutamatergic transmission. Crit Rev Neurobiol 1998; 12: 21–36PubMedCrossRefGoogle Scholar
  42. 42.
    Lidsky TI, Bannerjce SP. Contribution of glutamatergic dysfunction to schizophrenia. Drug News Perspect 1996; 9: 453–9Google Scholar
  43. 43.
    Kim JS, Kornhuber HH, Schmid-Burgk W, et al. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 1980; 20: 379–82PubMedCrossRefGoogle Scholar
  44. 44.
    Toru M, Watanabe S, Shibuya H, et al. Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients. Acta Psychiatr Scand 1988; 78: 121–37PubMedCrossRefGoogle Scholar
  45. 45.
    Sherman AD, Davidson AT, Baruah S, et al. Evidence of glutamatergic deficiency in schizophrenia. Neurosci Lett 1991; 121: 77–80PubMedCrossRefGoogle Scholar
  46. 46.
    Sherman AD, Hegwood TS, Baruah S, et al. Deficient NMDA-mediated glutamate release from synaptosomes of schizophrenics. Biol Psychiatry 1991; 30: 1191–8PubMedCrossRefGoogle Scholar
  47. 47.
    Melby Jr EC, Baker HJ. Phencyclidine for analgesia and anesthesia in simian primates. J Am Vet Med Assoc 1965; 147: 1068–72PubMedGoogle Scholar
  48. 48.
    Anis NA, Berry SC, Burton NR, et al. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 1983; 79: 565–75PubMedCrossRefGoogle Scholar
  49. 49.
    Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991; 148: 1301–8PubMedGoogle Scholar
  50. 50.
    Allen RM, Young SJ. Phencyclidine-induced psychosis. Am J Psychiatry 1978; 135: 1081–4PubMedGoogle Scholar
  51. 51.
    Simpson MD, Slater P, Royston MC, et al. Alterations in phencyclidine and sigma binding sites in schizophrenic brains: effects of disease process and neuroleptic medication. Scizophr Res 1991; 6: 41–8CrossRefGoogle Scholar
  52. 52.
    Snyder SH. Phencyclidine. Nature 1980; 285: 355–6PubMedCrossRefGoogle Scholar
  53. 53.
    Luisada PV. The phencyclidine psychosis: phenomenology and treatment. NIDA Res. Monogr 1978; 21: 241–53Google Scholar
  54. 54.
    Petersen R. C, Stillman R. C. Phencyclidine: an overview. NIDA Res Monogr 1978; 21: 1–17PubMedGoogle Scholar
  55. 55.
    Nishikawa T, Takashima M, Tora M. Increased [3H] kainic acid binding in the prefrontal cortex in schizophrenia. Neurosci Lett 1983; 40: 245–50PubMedCrossRefGoogle Scholar
  56. 56.
    Healy DJ, Haroutunian V, Powchik P, et al. AMPA receptor binding and subunit mRNA expression in prefrontal cortex and striatum of elderly schizophrenics. Neuropsychopharmacology 1998; 19: 278–86PubMedGoogle Scholar
  57. 57.
    Rogers GA, Thorell JO, Johnstrom P, et al. Ampakines: labelling with 11C for PET distribution studies. J Labelled Comp Radiopharm 1997; 40: 645–7Google Scholar
  58. 58.
    Araj A, Kessler M, Rogers G, et al. Effects of a memory-enhancing drug on DL-[Unsupported Character]-ami-no-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor currents and synaptic transmission in hippocampus [abstract]. J Pharmacol Exp Ther 1996; 278: 627–38Google Scholar
  59. 59.
    Staubli U, Perez Y, Xu FB, et al. Centrally active modulators of glutamate receptors facilitate the induction of long-term potentiation in vivo [abstract]. Proc Natl Acad Sci U S A 1994; 91: 11158–62PubMedCrossRefGoogle Scholar
  60. 60.
    Staubli U, Rogers G, Lynch G. Facilitation of glutamate receptors enhances memory [abstract]. Proc Natl Acad Sci U S A 1994; 91: 777–81PubMedCrossRefGoogle Scholar
  61. 61.
    Ingvar M, Ambros-Ingerson J, Davis M, et al. Enhancement by an ampakine of memory encoding in humans. Exp Neurol 1997; 146: 553–9PubMedCrossRefGoogle Scholar
  62. 62.
    Larson J, Quach CN, LeDuc BQ, et al. Effects of an AMPA receptor modulator on metamphetamine-induced hyperactivity in rats. Brain Res 1996; 738: 353–6PubMedCrossRefGoogle Scholar
  63. 63.
    Goff DC, Leahy L, Berman I, et al. A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. J Clin Psychopharmacol 2001; 21: 484–7PubMedCrossRefGoogle Scholar
  64. 64.
    Komhuber J, Mack-Burkhardt F, Riederer P, et al. [3H]-801 binding sites in postmortem brain regions of schizophrenic patients. J Neural Transm 1989; 77: 231–6CrossRefGoogle Scholar
  65. 65.
    Toru M, Kurumaji A, Ishimaru M. Excitatory amino acids: implications for psychiatric disorders research. Life Sci 1994; 55: 1683–99PubMedCrossRefGoogle Scholar
  66. 66.
    Ishimaru M, Kurumaji A, Tora M. NMDA-associated glycine binding site increases in schizophrenic brains. Biol Psychiatry 1992; 32: 379–81PubMedCrossRefGoogle Scholar
  67. 67.
    Mitchell PR, Doggett N S. Modulation of striatal [3H]-glutamic acid release by dopaminergic drags. Life Sci 1980; 26: 2073–81PubMedCrossRefGoogle Scholar
  68. 68.
    Maura G, Carbone R, Raiteri M. Aspartate-releasing nerve terminals in rat striatum possess D2 dopamine receptors mediating inhibition of release. J Pharmacol Exp Ther 1989; 251: 1142–6PubMedGoogle Scholar
  69. 69.
    Yamamoto BK, Davy S. Dopaminergic modulation of glutamate release in striatum as measured by microdialysis. J Neurochem 1992; 58: 1736-42Google Scholar
  70. 70.
    Chesselet MF. Presynaptic regulation of neurotransmitter release in the brain: facts and hypothesis. Neuroscience 1984; 12: 347–75PubMedCrossRefGoogle Scholar
  71. 71.
    Giorguieff MF, Le Floc’h ML, Glowinski J, et al. Involvement of cholinergic presynaptic receptors of nicotinic and muscarinic types in the control of the spontaneous release of dopamine from striatal dopaminergic terminals in the rat. J Pharmacol Exp Ther 1977; 200: 535–44PubMedGoogle Scholar
  72. 72.
    Roberts PJ, Anderson SD. Stimulatory effect of L-glutamate and related amino acids on [3H]-dopamine release from rat striatum: an in vitro model for glutamate actions. J Neurochem 1979; 32: 1539–45PubMedCrossRefGoogle Scholar
  73. 73.
    Cheramy A, Romo R, Godeheu G, et al. In vitro presynaptic control of dopamine release in the cat caudate nucleus: II. facilitatory or inhibitory influence of L-glutamate. Neuroscience 1986; 19: 1081–90PubMedCrossRefGoogle Scholar
  74. 74.
    Deutsch SI, Mastropaolo J, Schwartz BL, et al. A “glutamatergic hypothesis” of schizophrenia: rationale for pharmacotherapy with glycine. Clin Neuropharmacol 1989; 12: 1–13PubMedCrossRefGoogle Scholar
  75. 75.
    Deutsch DG, Koul O, Kersten RS. Phencyclidine and analogues: effects on brain protein synthesis. J Neurochem 1984; 42: 407–11PubMedCrossRefGoogle Scholar
  76. 76.
    Csernansky JG, Kaplan J, Hollister LE. Problems in classification of schizophrenics as neuroleptic responders and nonresponders. J Nerv Ment Dis 1985; 173: 325–31PubMedCrossRefGoogle Scholar
  77. 77.
    Andreasen NC, Olsen S. Negative vs positive schizophrenia: definition and validation. Arch Gen Psychiatry 1982; 39: 789–94PubMedCrossRefGoogle Scholar
  78. 78.
    Coyle JT. The glutamatergic dysfunction hypothesis for schizophrenia. Harv Rev Psychiatry 1996; 3: 241–53PubMedCrossRefGoogle Scholar
  79. 79.
    Davis JM, Andriukaitis S. The natural course of schizophrenia and effective maintenance drag treatment. J Clin Psychopharmacol 1986; 6: 2S–10SPubMedCrossRefGoogle Scholar
  80. 80.
    Bazire S. Psychotropic drug directory 2001/2002. Snow Hill, Dinton, UK: Mark Allen Publishing Ltd, 2001Google Scholar
  81. 81.
    Sanders-Bush E, Sulser F. Drags used for the treatment of affective disorders. In: Munson PL, editor. Principles of pharmacology, basic concepts & clinical application. New York: Chapman & Hall, 1995: 309–24Google Scholar
  82. 82.
    Martin P, Gozlan H, Puech A. J 5-HT3 receptor antagonists reverse helpless behaviour in rats. Eur J Pharmacol 1992; 212: 73–8PubMedCrossRefGoogle Scholar
  83. 83.
    Amery W, Marder SR. Safety and switching issues of novel antipsychotics. Int J Psychiatry Clin Pract 1998; 2: S43–9Google Scholar
  84. 84.
    Janssen PA, Awouters F. Antipsychotic drags. In: Munson PL, editor. Principles of pharmacology, basic concepts & clinical application. New York: Chapman & Hall, 1995: 289–308Google Scholar
  85. 85.
    Gareri P, Falconi U, De Fazio P, et al. Conventional and new antidepressant drags in the elderly. Prog Neurobiol 2000; 61: 353–96PubMedCrossRefGoogle Scholar
  86. 86.
    Galeotta G, Paoletti V, Mammarella A, et al. La terapia farmacologica nel paziente anziano. Clin Ter 1990; 135: 181–92PubMedGoogle Scholar
  87. 87.
    Voltz HP, Moeller HJ Antidepressant drug therapy in the elderly: a critical review of the controlled clinical trials conducted since 1980. Pharmacopsychiatry 1994; 27: 93–100CrossRefGoogle Scholar
  88. 88.
    Baumann P. Care of depression in the elderly: comparative pharmacokinetics of SSRIs. Int Clin Psychopharmacol 1998: 13: 35–43CrossRefGoogle Scholar
  89. 89.
    Greenblatt DJ, Sellers EM, Shader RI. Drug disposition in old age. N Engl J Med 1982; 306: 1081–8PubMedCrossRefGoogle Scholar
  90. 90.
    Safar M. Ageing and its effects on the cardiovascular system. Drugs 1990; 39: 1–8PubMedCrossRefGoogle Scholar
  91. 91.
    Bruinink A, Lichtensteiger W. Effects of pH and ascorbic acid on 3H-spiperone and 3H-dihydroalprenolol binding in rat forebrain homogenates. J Recept Res 1984; 4: 127–39PubMedGoogle Scholar
  92. 92.
    Furlanut M, Benetello P. The pharmacokinetics of tricyclic antidepressant drugs in the elderly. Pharmacol Res 1990; 22: 15–25PubMedCrossRefGoogle Scholar
  93. 93.
    Gareri P, Stilo G, Bevacqua I, et al. Antidepressant drugs in the elderly. Gen Pharmacol 1998; 30: 465–75PubMedCrossRefGoogle Scholar
  94. 94.
    Montamat SC, Cusack BJ, Yestal RE. Management of drug therapy in the elderly. N Engl J Med 1989; 321: 303–9PubMedCrossRefGoogle Scholar
  95. 95.
    Mannens G, Meuldermans W, Snoeck E, et al. Plasma protein binding of risperidone and its distribution in blood. Psychopharmacology (Berl) 1994; 114: 566–72CrossRefGoogle Scholar
  96. 96.
    Rubin EH. Terapia con farmaci psicotropi: precauzioni particolari nell’anziano. Minuti 1987; 5: 11–21Google Scholar
  97. 97.
    Verbeeck RK, Cardinal JA, Wallace SM. Effect of age and sex on the plasma binding of acidic and basic drugs. Eur J Clin Pharmacol 1984; 27: 91–7PubMedGoogle Scholar
  98. 98.
    Alexanderson B, Price Evans DA, Sjoqvist F. Steady state plasma levels of nortriptyline in twins: influence of genetic factors and drug therapy. BMJ 1969; 2: 764–8CrossRefGoogle Scholar
  99. 99.
    Clark DWJ. Genetically determined variability in acetylation and oxidation: therapeutic implications. Drugs 1985; 29: 342–75PubMedCrossRefGoogle Scholar
  100. 100.
    Kirchheiner J, Brosen K, Dahl ML, et al. CYP2D6 and CYP2D19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001; 104: 173–92PubMedCrossRefGoogle Scholar
  101. 101.
    Bertilsson L, Dahl ML, Sjoqvist F, et al. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine [letter]. Lancet 1993; 341: 63PubMedCrossRefGoogle Scholar
  102. 102.
    DeVane CL. Pharmacogenetics and metabolism of newer antidepressant agents. J Clin Psychiatry 1994; 55(12 Suppl. ): 38–45PubMedGoogle Scholar
  103. 103.
    Gonzalez FJ, Skoda RC, Kinenza S. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 1988; 331: 442–6PubMedCrossRefGoogle Scholar
  104. 104.
    Gonzalez FJ, Korzekwa KR. Cytochromes P450 expression sites. Ann Rev Pharmacol Toxicol 1995; 35: 369–90CrossRefGoogle Scholar
  105. 105.
    Baumann P. Pharmacokinetic pharmacodynamic relationship of the selective serotonin reuptake inhibitors. Clin Pharmacokinet 1996; 31: 444–69PubMedCrossRefGoogle Scholar
  106. 106.
    Brosen K. Drug-metabolizing enzymes and therapeutic drug monitoring in psychiatry. Ther Drug Monit 1996; 18: 393–6PubMedCrossRefGoogle Scholar
  107. 107.
    Crewe HK, Lennard MS, Tucker GT, et al. The effect of selective serotonin reuptake inhibitors on cytochrome P450 2D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol 1992; 34: 262–5PubMedCrossRefGoogle Scholar
  108. 108.
    Ereshefsky L. Drug-drug interactions involving antidepressants: focus on venlafaxine. J Clin Psychopharmacol 1996; 16: 37S–50SPubMedCrossRefGoogle Scholar
  109. 109.
    Brunello N. Interazioni farmacocinetiche degli antidepressivi. In: Vella G, Siracusano A, editors. La depressione nell’anziano, Il Pensiero Scientifico editore. NOOS, Rome 1998; 4: 16–28Google Scholar
  110. 110.
    Lamy PP. Geriatric drug therapy. Am Fam Phys 1986; 34: 118–24Google Scholar
  111. 111.
    Beers MH, Ouslander JG. Risk factors in geriatric drug prescribing. Drugs 1989; 37: 105–12PubMedCrossRefGoogle Scholar
  112. 112.
    Friedman JR, Norman DC, Yoshikawa TT. Correlation of estimated renal function parameters versus 24-hour creatinine clearance in ambulatory elderly. JAGS 1989; 37: 145–9Google Scholar
  113. 113.
    Swift M. The family history in clinical psychiatric practice. Am J Psychiatry 1987; 144: 628–9PubMedGoogle Scholar
  114. 114.
    Micromedex® Healthcare Series. Englewood (CO): MICROMEDEX Inc: 2001Google Scholar
  115. 115.
    Gilman JT, Tuchman RF. Autism and associated behavioral disorders: pharmacotherapeutic intervention. Ann Pharmacother 1995; 29: 47–56PubMedGoogle Scholar
  116. 116.
    Seneff MG, Mathews RA. Use of haloperidol infusions to control delirium in critically ill adults. Ann Pharmacother 1995; 29: 690–3PubMedGoogle Scholar
  117. 117.
    Tisdale JE, Rasty S, Padhi ID, et al. The effect of intravenous haloperidol on QTc interval dispersion in critically ill patients: comparison with QT interval prolongation for assessment of risk of torsades de pointes. J Clin Pharmacol 2001; 41: 1310–8PubMedCrossRefGoogle Scholar
  118. 118.
    Frenchman IB, Prince T. Clinical experience with risperidone, haloperidol and thioridazine for dementia-associated behavioral disturbances. Int Psychogeriatr 1997; 9: 431–5PubMedCrossRefGoogle Scholar
  119. 119.
    De Deyn PP, Rabheru K, Rasmussen A, et al. A randomised trial of risperidone, placebo and haloperidol for behavioural symptoms of dementia. Neurology 1999; 53: 946–55PubMedCrossRefGoogle Scholar
  120. 120.
    Caligiuri MR, Jeste DV, Lacro JP. Antipsychotic-induced movement disorders in the elderly: epidemiology and treatment recommendations. Drugs Aging 2000; 17: 363–84PubMedCrossRefGoogle Scholar
  121. 121.
    Breier A, Meehan K, Birkett M, et al. A double-blind, placebo-controlled dose-response comparison of intramuscular olanzapine and haloperidol in the treatment of acute agitation in schizophrenia. Arch Gen Psychiatry 2002; 59: 441–8PubMedCrossRefGoogle Scholar
  122. 122.
    Tesar GE, Stern TA. Rapid tranquilization of the agitated intensive care unit patient. J Intensive Care Med 1988; 3: 195–201CrossRefGoogle Scholar
  123. 123.
    Torta R. Prontuario dei farmaci per il Sistema Nervoso Centrale. Turin: Solvay Pharma SPA, 2000Google Scholar
  124. 124.
    Cohen BM, Sommer BR. Metabolism of thioridazine in the elderly. J Clin Psychopharmacol 1988; 8: 336–9PubMedGoogle Scholar
  125. 125.
    Gareri P, Curcio M, Cotroneo A, et al. Efficacy of risperidone vs. promazine in the treatment of behavioral disorders in elderly demented patients [abstract]. International Conference “The role of geriatric departments in general hospitals”; 2002 Apr 17–20; Rome. Geriatria XIV (Suppl) 1: 191Google Scholar
  126. 126.
    McLaren S, Cookson JC, Silverstone T. Positive and negative symptoms, depression and social disability in chronic schizophrenia: a comparative trial of dromperidol and fluphenazine decanoates. Int Clin Psychopharmacol 1992; 7: 67–72PubMedGoogle Scholar
  127. 127.
    Miller RS, Peterson GM, McLean S, et al. Monitoring plasma levels of fluphenazine during chronic therapy with fluphenazine decanoate. J Clin Pharm Ther 1995; 20: 55–62PubMedCrossRefGoogle Scholar
  128. 128.
    Pollock BG, Mulsant BH, Rosen J, et al. Comparison of citalopram, perphenazine and placebo for the acute treatment of psychosis and behavioural disturbances in hospitalised, demented patients. Am J Psychiatr 2002; 159: 460–5PubMedCrossRefGoogle Scholar
  129. 129.
    Claveria LE, Teychenne PF, Calne DB, et al. Tardive dyskinesia treated with pimozide. J Neurol Sci 1975; 24: 393–401PubMedCrossRefGoogle Scholar
  130. 130.
    Wetzel H, Wiesner J, Hiemke C, et al. Acute antagonism of dopamine D2-like receptors by amisulpride: effects on hormone secretion in healthy volunteers. J Psychiatr Res 1994; 28: 461–73PubMedCrossRefGoogle Scholar
  131. 131.
    Pelissolo A, Krebs MO, Olie JP. Traitement des symptomes deficitaires de la schizophrenie par l’amisulpride: revue de la literature. L’Encephale 1996; 22: 215–9PubMedGoogle Scholar
  132. 132.
    Product Information: Solian®, amisulpride tablets. Maidenhead (UK): Lorex Synthelabo, 1999Google Scholar
  133. 133.
    Xiberas X, Martinot JL, Mallet L, et al. In vivo extrastriatal and striatal D2 dopamine receptor blockade by amisulpride in schizophrenia. J Clin Psychopharmacol 2001; 21: 207–14PubMedCrossRefGoogle Scholar
  134. 134.
    Seminara G, Trassari V, Prestifilippo N, et al. Atypical tricyclic neuroleptics for treatment of schizophrenia: clothiapine and clozapine. Minerva Psichiatr 1993; 34: 95–9PubMedGoogle Scholar
  135. 135.
    Taylor D. Pharmacokinetic interactions involving clozapine. Br J Psychiatry 1997; 171: 109–12PubMedCrossRefGoogle Scholar
  136. 136.
    Markowitz JS, Brown CS, Moore TR. Atypical antipsychotics: Part I. pharmacology, pharmacokinetics and efficacy. Ann Pharmacother 1999; 33: 73–85PubMedCrossRefGoogle Scholar
  137. 137.
    Desai HD, Seabolt J, Jann MW. Smoking in patients receiving psychotropic medications: a pharmacokinetic perspective. CNS Drugs 2001; 15: 469–94PubMedCrossRefGoogle Scholar
  138. 138.
    Wirshing DA, Spellberg BJ, Erhart SM, et al. Novel antipsychotics and new onset diabetes. Biol Psychiatry 1998; 44: 778–83PubMedCrossRefGoogle Scholar
  139. 139.
    Bonanno DG, Davydov L, Botts SR. Olanzapine-induced diabetes mellitus. Ann Pharmacother 2001; 35: 563–5PubMedCrossRefGoogle Scholar
  140. 140.
    Mir S, Taylor D. Atypical antipsychotics and hyperglycaemia. Int Clin Psychopharmacol 2001; 16: 63–74PubMedCrossRefGoogle Scholar
  141. 141.
    Gaulin BD, Markowitz JS, Caley CF, et al. Clozapine-associated elevation in serum triglycerides. Am J Psychiatry 1999; 156: 1270–2PubMedGoogle Scholar
  142. 142.
    Ghaeli P, Dufresen RL. Serum triglyceride levels in patients treated with clozapine. Am J Health Syst Pharm 1996; 53: 2079–81PubMedGoogle Scholar
  143. 143.
    Wirshing WC. The new antipsychotic compounds: is a clinical choice algorithm possible? West J Med 1998; 169: 43–4PubMedGoogle Scholar
  144. 144.
    Mukherjee S, Decina P, Bocola V, et al. Diabetes mellitus in schizophrenic patients. Compr Psychiatry 1996; 37: 68–73PubMedCrossRefGoogle Scholar
  145. 145.
    Smith H, Kenney-Herbert J, Knowles L. Clozapine-induced diabetic ketoacidosis. Aust N Z J Psychiatry 1999; 33: 120–1PubMedCrossRefGoogle Scholar
  146. 146.
    Wolters EC, Berendse HW. Management of psychosis in Parkinson’s disease. Curr Opin Neurol 2001; 14: 499–504PubMedCrossRefGoogle Scholar
  147. 147.
    Jeste D. V, Eastham J H, Lohr J B, et al. Treatment of behavioral disorders and psychosis. In: Salzman C, editor. Clinical geriatric psychopharmacology. Baltimore (MD): Williams & Wilkins, 1998; 6: 106–49Google Scholar
  148. 148.
    He H, Richardson JS. A pharmacological, pharmacokinetic and clinical overview of risperidone, a new antipsychotic that blocks serotonin 5-HT2 and dopamine D2 receptors. Int Clin Psychopharmacol 1995; 10: 19–30PubMedCrossRefGoogle Scholar
  149. 149.
    Byerly MJ, De Vane CL. Pharmacokinetics of clozapine and risperidone: a review of recent literature. J Clin Psychopharmacol 1996; 16: 177–87PubMedCrossRefGoogle Scholar
  150. 150.
    Wrighton SA, Brian WR, Sari MA, et al. Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol Pharmacol 1990; 38: 207–13PubMedGoogle Scholar
  151. 151.
    Pollock BG, Laghrissi-Thode F, Wagner WR, et al. Increased PF4 and β-TG in depressed patients with ischemic heart disease [abstract]. Scientific abstract of the 34th Annual Meeting of the American College of Neuropsychopharmacology, San Juan, Puerto Rico; ACNP, Nashville, TN, USA 1995, 101Google Scholar
  152. 152.
    Barak Y, Shamir E, Weizman R. Would a switch from typical antipsychotics to risperidone be beneficial for elderly schizophrenic patients?: a naturalistic, long-term, retrospective, comparative study. J Clin Psychopharmacol 2002; 22: 115–20PubMedCrossRefGoogle Scholar
  153. 153.
    Gareri P, Cotroneo A, Marchisio U, et al. Risperidone in the treatment of behavioral disorders in elderly patients with dementia. Arch Gerontol Geriatr 2001; 33: 173–82CrossRefGoogle Scholar
  154. 154.
    Herrmann N, Rivard MF, Flynn M, et al. Risperidone for the treatment of behavioral disturbances in dementia: a case series. J Neuropsychiatry Clin Neurosci 1998; 10: 220–3PubMedGoogle Scholar
  155. 155.
    Irizarry MC, Ghaemi SN, Lee-Cherry ER, et al. Risperidone treatment of behavioural disturbances in outpatients with dementia. J Neuropsychiatry Clin Neurosci 1999; 11: 336–42PubMedGoogle Scholar
  156. 156.
    Lavretsky H, Sultzer D. A structured trial of risperidone for the treatment of agitation in dementia. Am J Geriatr Psychiatry 1998; 6: 127–35PubMedGoogle Scholar
  157. 157.
    Robertsson B, Karlsson I, Eriksson L, et al. An atypical neuroleptic drug in the treatment of behavioural disturbances and psychotic symptoms in elderly people. Dementia 1996; 7: 142–6PubMedGoogle Scholar
  158. 158.
    Lane HY, Chang YC, Su MH, et al. Shifting from haloperidol to risperidone for behavioral disturbances in dementia: safety, response predictors and mood effects. J Clin Psychopharmacol 2002; 22: 4–10PubMedCrossRefGoogle Scholar
  159. 159.
    Madhusoodanan S, Brecher M, Brenner R, et al. Risperidone in the treatment of elderly patients with psychotic disorders. Am J Psychiatry 1999; 7: 132–8Google Scholar
  160. 160.
    Davidson M, Harvey PD, Vervarcke J, et al. A long-term, multicenter, open-label study of risperidone in elderly patients with psychosis. Int J Geriatr Psychiatry 2000; 15: 506–14PubMedCrossRefGoogle Scholar
  161. 161.
    Borison RL, Diamond B, Pathitaja A, et al. Pharmacokinetics of risperidone in chronic schizophrenic patients. Psychopharmacol Bull 1994; 30: 193–7PubMedGoogle Scholar
  162. 162.
    Jeste DV, Eastham JH, Lacro JP, et al. Management of late-life psychosis. J Clin Psychiatry 1996; 57: 39–45PubMedGoogle Scholar
  163. 163.
    Yerrabolu M, Prabhudesai S, Tawam M, et al. Effect of risperidone on QT interval and QT dispersion in the elderly. Heart Dis 2000; 2: 10–2PubMedGoogle Scholar
  164. 164.
    Wirshing DA, Pierre JM, Eyeler J. Risperidone-associated new-onset diabetes. Biol Psychiatry 2001; 15: 278–82Google Scholar
  165. 165.
    Meehan KM, Wang H, David SR, et al. Comparison of rapidly acting intramuscular olanzapine, lorazepam and placebo: a double blind, randomized study in acutely agitated patients with dementia. Neuropsychopharmacology 2002; 26: 494–504PubMedCrossRefGoogle Scholar
  166. 166.
    Liebzeit KA, Markowitz JS, Caley CF. New onset diabetes and atypical antipsychotics. Eur Neuropsychopharmacol 2001; 11: 25–32PubMedCrossRefGoogle Scholar
  167. 167.
    Kennedy JS, Bymaster FP, Schuh L, et al. A current review of olanzapine’s safety in the geriatric patient: from pre-clinical pharmacology to clinical data. Int J Geriatr Psychiatry 2001; 16: S33–61PubMedCrossRefGoogle Scholar
  168. 168.
    Kennedy JS, Zagar A, Bymaster FP, et al. The central cholinergic system profile of olanzapine compared with placebo in Alzheimer’s disease. Int J Geriatr Psychiatry 2001; 16: S24–32PubMedCrossRefGoogle Scholar
  169. 169.
    Madhusoodanan S, Sinha S, Brenner R, et al. Use of olanzapine for elderly patients with psychotic disorders: a review. Ann Clin Psychiatry 2001; 13: 201–13PubMedGoogle Scholar
  170. 170.
    Seeman P. Atypical antipsychotics: mechanism of action. Can J Psychiatry 2002; 47: 27–38PubMedGoogle Scholar
  171. 171.
    Street JS, Clark WS, Gannon KS, et al. Olanzapine treatment of psychotic and behavioral symptoms in patients with Alzheimer disease in nursing care facilities: a double-blind, randomized, placebo-controlled trial. The HGEU Study Group. Arch Gen Psychiatry 2000; 57: 968–76PubMedCrossRefGoogle Scholar
  172. 172.
    Meltzer HY. The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 1999; 21: 106S–15SPubMedGoogle Scholar
  173. 173.
    Narendran R, Young CM, Valenti AM, et al. Olanzapine therapy in treatment-resistant psychotic mood disorders: a long-term follow-up study. J Clin Psychiatry 2001; 62: 509–16PubMedCrossRefGoogle Scholar
  174. 174.
    Madhusoodanan S, Brenner R, Suresh P, et al. Efficacy and tolerability of olanzapine in elderly patients with psychotic disorders: a prospective study. Ann Clin Psychiatry 2000; 12: 11–8PubMedGoogle Scholar
  175. 175.
    Solomos K, Geiger O. Olanzapine use in the elderly: a retrospective analysis. Can J Psychiatry 2000; 45: 151–5Google Scholar
  176. 176.
    Street JS, Clark WS, Gannon KS, et al. Olanzapine treatment of psychotic and behavioral symptoms in patients with Alzheimer disease in nursing care facilities: a double-blind, randomized, placebo-controlled trial. The HGEU Study Group. Arch Gen Psychiatry 2001; 57: 968–76CrossRefGoogle Scholar
  177. 177.
    Wolters EC, Jansen EN, Tuynman-Qua HG, et al. Olanzapine in treatment of dopaminomimetic psychosis in patients with Parkinson’s disease. Neurology 1996; 47: 1085–7PubMedCrossRefGoogle Scholar
  178. 178.
    Aarsland D, Larsen JP, Lim NG, et al. Olanzapine for psychosis in patients with Parkinson’s disease with and without dementia. J Neuropsychiatry Clin Neurosci 1999; 11: 392–4PubMedGoogle Scholar
  179. 179.
    Pollak PT, Zbuk K. Quetiapine fumarate overdose: clinical and pharmacokinetic lessons from extreme conditions. Clin Pharmacol Ther 2000; 68: 92–7PubMedCrossRefGoogle Scholar
  180. 180.
    McConville BJ, Arvanitis LA, Thyrum PT, et al. Pharmacokinetics, tolerability and clinical effectiveness of quetiapine fumarate: an open-label trial in adolescents with psychotic disorders. J Clin Psychiatry 2000; 61: 252–60PubMedCrossRefGoogle Scholar
  181. 181.
    Brecher M, Rak IW, Melvin K, et al. The long-term effect of quetiapine (Seroquel™) monotherapy on weight in patients with schizophrenia. Int J Psych Clin Pract 2000; 4: 287–91CrossRefGoogle Scholar
  182. 182.
    Madhusoodanan S, Brenner R, Alcantra A. Clinical experience with quetiapine in elderly patients with psychotic disorders. J Geriatr Psychiatry Neurol 2000; 13: 28–32PubMedCrossRefGoogle Scholar
  183. 183.
    McManus DQ, Arvanitis LA, Kowalcyk BB. Quetiapine, a novel antipsychotic: experience in elderly patients with psychotic disorders. Seroquel Trial 48 study Group. J Clin Psychiatry 1999; 60: 292–8PubMedCrossRefGoogle Scholar
  184. 184.
    Tariot PN, Salzman C, Yeung PP, et al. Long-term use of quetiapine in elderly patients with psychotic disorders. Clin Ther 2000; 22: 1068–84PubMedCrossRefGoogle Scholar
  185. 185.
    Green B. Focus on quetiapine. Curr Med Res Opin 1999; 15: 145–51PubMedCrossRefGoogle Scholar
  186. 186.
    Brook S, Lucey JV, Gunn KP. Intramuscular ziprasidone compared with intramuscular haloperidol in the treatment of acute psychosis. Ziprasidone I.M. Study Group. J Clin Psychiatry 2000; 61: 933–41PubMedCrossRefGoogle Scholar
  187. 187.
    Wilner KD, Tensfeldt TG, Baris B, et al. Single- and multiple-dose pharmacokinetics of ziprasidone in healthy young and elderly volunteers. Br J Clin Pharmacol 2000; 49, Suppl. 1: 15S–20SPubMedGoogle Scholar
  188. 188.
    Aweeka F, Jayesekara D, Horton M, et al. The pharmacokinetics of ziprasidone in subjects with normal and impaired renal function. Br J Clin Pharmacol 2000; 49 Suppl. 1: 27S–33SPubMedGoogle Scholar
  189. 189.
    Everson G, Lasseter KC, Anderson KE, et al. The pharmacokinetics of ziprasidone in subjects with normal and impaired renal function. Br J Clin Pharmacol 2000; 49: 21S–6SPubMedCrossRefGoogle Scholar
  190. 190.
    Byerly MJ, Weber MT, Brooks DL, et al. Antipsychotic medications and the elderly: effects on cognition and implications for use. Drugs Aging 2001; 18: 45–61PubMedCrossRefGoogle Scholar
  191. 191.
    Keck Jr PE, McElroy SL, Arnold LM. Ziprasidone: a new atypical antipsychotic. Exert Opin Pharmacother 2001; 2: 1033–42CrossRefGoogle Scholar
  192. 192.
    Goodnick PJ, Kato MM. Antipsychotic medication: effects on regulation of glucose and lipids. Expert Opin Pharmacother 2001; 2: 1571–82PubMedCrossRefGoogle Scholar
  193. 193.
    Stimmel GL, Gutierrez MA, Lee V. Ziprasidone: an atypical antipsychotic drug for the treatment of schizophrenia. Clin Ther 2002; 24: 21–37PubMedCrossRefGoogle Scholar
  194. 194.
    Wilner KD, Tensfeldt TG, Baris B, et al. Single-and multiple-dose pharmacokinetics of ziprasidone in healthy young and elderly volunteers. Br J Clin Pharmacol 2000; 49: 15S–20SPubMedCrossRefGoogle Scholar
  195. 195.
    von Bahr C, Movin G, Yisak WA, et al. Clinical pharmacokinetics of remoxipride. Acta Psychiatr Scand Suppl 1990; 358: 41–4CrossRefGoogle Scholar
  196. 196.
    Movin-Osswald G, Boelaert J, Hammarlund-Udenaes M, et al. The pharmacokinetics of remoxipride and metabolites in patients with various degrees of renal function. Br J Clin Pharmacol 1993; 35: 615–22PubMedCrossRefGoogle Scholar
  197. 197.
    Swift CG, Lee DR, Maskrey VL, et al. Single dose pharmacodynamics of thioridazine and remoxipride in healthy younger and older volunteers. J Psychopharmacol 1999; 13: 159–65PubMedCrossRefGoogle Scholar
  198. 198.
    Hori M, Suzuki T, Sasaki M, et al. Convulsive seizures in schizophrenic patients induced by zotepine administration. Jpn J Psychiatry Neurol 1992; 46: 161–7PubMedGoogle Scholar
  199. 199.
    Pantel J, Schroder J, Eysenbach K, et al. Two cases of deep vein thrombosis associated with a combined paroxetine and zotepine therapy. Pharmacopsychiatry 1997; 30: 109–11PubMedCrossRefGoogle Scholar
  200. 200.
    Cooper SJ, Butler A, Tweed J, et al. Zotepine in the prevention of recurrence: a randomised, double-blind, placebo-controlled study for chronic schizophrenia. Psychopharmacol 2000; 150: 237–43CrossRefGoogle Scholar
  201. 201.
    Goodnick PJ, Jerry J, Parra F. Psychotropic drugs and the ECG: focus on the QTc interval. Expert Opin Pharmacother 2002; 3: 479–98PubMedCrossRefGoogle Scholar
  202. 202.
    Wong SL, Cao G, Mack RJ, et al. Pharmacokinetics of sertindole in healthy young and elderly male and female subjects. Clin Pharmacol Ther 1997; 62: 157–64PubMedCrossRefGoogle Scholar
  203. 203.
    Lewis R, Bagnall AM, Leitner M. Sertindole for schizophrenia. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 2. Oxford: Update Software, 2000Google Scholar
  204. 204.
    Wilton LV, Heeley EL, Pickering RM, et al. Comparative study of mortality rates and cardiac dysrhythmias in post-marketing surveillance studies of sertindole and two other atypical antipsychotic drugs, risperidone and olanzapine. J Psychopharmacol 2001; 15: 120–6PubMedCrossRefGoogle Scholar
  205. 205.
    Inoue A, Nakata Y. Strategy for modulation of central dopamine transmission based on the partial agonist concept in schizophrenia therapy. Jpn. J Pharmacol 2001; 86: 376–80Google Scholar
  206. 206.
    Zanetti O, Binetti G. La terapia farmacologica. In: Trabucchi M, editor. Le demenze. 3rd ed. UTET, Arese (Mi) 2002: 517-38Google Scholar

Copyright information

© Adis Data Information BV 2003

Authors and Affiliations

  • Pietro Gareri
    • 1
  • Pasquale De Fazio
    • 2
  • Mariagrazia Stilo
    • 2
  • Guido Ferreri
    • 1
  • Giovambattista De Sarro
    • 1
  1. 1.Unit of Clinical Pharmacology and Regional Pharmacovigilance Center, Department of Clinical and Experimental Medicine ‘Gaetano Salvatore’„ Faculty of MedicineUniversity ‘Magna Graecia’ Catanzaro, ‘MaterDomini’ University HospitalCatanzaroItaly
  2. 2.Unit of Psychiatry, Department of Clinical and Experimental Medicine ‘Gaetano Salvatore’„ Faculty of MedicineUniversity ‘Magna Graecia’ Catanzaro, ‘MaterDomini’ University HospitalCatanzaroItaly
  3. 3.Department of Clinical and Experimental Medicine ‘Gaetano Salvatore’ Faculty of MedicineUniversity of Catanzaro ‘Magna Graecia’, Policlinico MaterDominiCatanzaroItaly

Personalised recommendations