Clinical Drug Investigation

, Volume 22, Supplement 2, pp 21–32

Desloratadine in the Treatment of Nasal Congestion in Seasonal Allergic Rhinitis

Preclinical and Clinical Evidence
  • Glenis K. Scadding
Review Article


Nasal congestion, a defining symptom of seasonal allergic rhinitis (SAR), generally responds poorly to antihistamines and may require nasal corticosteroid or sympathomimetic therapy. The current understanding of the pathophysiology of SAR indicates that congestion is caused by persistent allergic inflammation of the nasal mucosa. Allergic inflammation is a complex immunological response that involves preformed (histamine, tryptase) and rapidly produced mediators (prostaglandin D2, leukotriene C4), neurotransmitters (kinins, substance P), cytokines [interleukin (IL)-4, IL-5, IL-13], chemokines (IL-8, eotaxin, RANTES), adhesion molecules (P-selectin, intercellular adhesion molecule-1) and cells (mast cells, eosinophils, basophils). Desloratadine, a potent H1 receptor antagonist that reduces symptoms of SAR, including nasal congestion, has also been shown to inhibit the production and release of many allergic inflammatory mediators in preclinical studies. The combination of potent H1 antagonism with these nonhistamine-related actions might help to explain the efficacy of desloratadine in treating the symptoms of SAR, including nasal congestion.


  1. 1.
    Meltzer EO, Prenner BM, Nayak A and the Desloratadine Study Group. Efficacy and tolerability of once-daily 5 mg desloratadine, an H1 -receptor antagonist, in patients with seasonal allergic rhinitis. Clin Drug Invest 2001; 21(1): 25–32CrossRefGoogle Scholar
  2. 2.
    Ring J, Hein R, Gauger A, et al., and the Desloratadine Study Group. Once-daily desloratadine improves the signs and symptoms of chronic idiopathic urticaria: a randomized, double-blind, placebo-controlled study. Int J Dermatol 2001; 40: 1–5CrossRefGoogle Scholar
  3. 3.
    Nayak A, Lorber R, Salmun LM. Decongestant effects of desloratadine in patients with seasonal allergic rhinitis [abstract]. J Allergy Clin Immunol 2000; 105: S384CrossRefGoogle Scholar
  4. 4.
    Horak F, Stuebner UP, Zieglmayer R, et al. Effect of desloratadine versus placebo on nasal airflow and subjective measure of nasal obstruction in subjects with grass pollen-induced allergic rhinitis in an allergen exposure unit. J Allergy Clin Immunol 2002; 109: 956–61PubMedCrossRefGoogle Scholar
  5. 5.
    Young T, Finn L, Palta M. Chronic nasal congestion at night is a risk factor for snoring in a population-based cohort study. Arch Intern Med 2001 Jun 25; 161(12): 1514–9PubMedCrossRefGoogle Scholar
  6. 6.
    Young T, Finn L, Kim H. Nasal obstruction as a risk factor for sleep-disordered breathing. The University of Wisconsin Sleep and Respiratory Research Group. J Allergy Clin Immunol 1997 Feb; 99(2): S757–62PubMedCrossRefGoogle Scholar
  7. 7.
    Craig TJ, Teets S, Lehman EB, et al. Nasal congestion secondary to allergic rhinitis as a cause of sleep disturbance and daytime fatigue and the response to topical nasal corticosteroids. J Allergy Clin Immunol 1998 May; 101(5): 633–7PubMedCrossRefGoogle Scholar
  8. 8.
    Geha RS, Meltzer EO. Desloratadine: a new nonsedating, oral antihistamine. J Allergy Clin Immunol 2001; 107(4): 751–62PubMedCrossRefGoogle Scholar
  9. 9.
    Berthon B, Taudou G, Combettes L, et al. In vitro inhibition, by loratadine and descarboxyethoxyloratadine, of histamine release from human basophils, and of histamine release and intracellular calcium fluxes in rat basophilic leukemia cells (RBL-2H3). Biochem Pharmacol 1994; 47: 789–94PubMedCrossRefGoogle Scholar
  10. 10.
    Kleine-Tebbe J, Josties C, Frank G, et al. Inhibition of IgE-mediated and IgE-independent histamine release from human basophil leukocytes in vitro by Hi-antagonist, descarboethoxy-loratadine. J Allergy Clin Immunol 1994; 93: 494–500PubMedCrossRefGoogle Scholar
  11. 11.
    Genovese A, Patella V, De Crescenzo G, et al. Loratadine and desethoxylcarbonyl-loratadine inhibit the immunological release of mediators from human Fc epsilon RI+ cells. Clin Exp Allergy 1997; 27: 559–67PubMedCrossRefGoogle Scholar
  12. 12.
    Schroeder JT, Schleimer RP, Lichtenstein LM, et al. Inhibition of cytokine generation and mediator release by human basophils treated with desloratadine. Clin Exp Allergy 2001; 31: 1–10CrossRefGoogle Scholar
  13. 13.
    Molet S, Gosset P, Lasalle P, et al. Inhibitory activity of loratadine and descarboxyethoxyloratadine on histamine-induced activation of endothelial cells. Clin Exp Allergy 1997; 27: 1167–74PubMedCrossRefGoogle Scholar
  14. 14.
    Lippert U, Kruger-Krasagakes S, Möller A, et al. Pharmacological modulation of IL-6 and IL-8 secretion by the H1-antagonist decarboethoxy-loratadine and dexamethasone by human mast and basophilic cell lines. Exp Dermatol 1995; 4: 272–6PubMedCrossRefGoogle Scholar
  15. 15.
    Lippert U, Möller A, Welker P, et al. Inhibition of cytokine secretion from human leukemic mast cells and basophils by H1-and H2 receptor antagonists. Exp Dermatol 2000; 9: 118–24PubMedCrossRefGoogle Scholar
  16. 16.
    Lebel B, Bousquet J, Czarlewski W, et al. Loratadine reduces RANTES release by an epithelial cell line [abstract]. J Allergy Clin Immunol 1997; 99(S444): 1802Google Scholar
  17. 17.
    Vignola AM, Crampette L, Mondain M, et al. Inhibitory activity of loratadine and descarboethoxyloratadine on expression of ICAM-1 and HLA-DR by nasal epithelial cells. Allergy 1995; 50: 200–3PubMedCrossRefGoogle Scholar
  18. 18.
    Papi A, Papadopoulos NG, Stanciu LA, et al. Effect of desloratadine and loratadine on rhinovirus-induced intercellular adhesion molecule 1 upregulation and promoter activation in respiratory epithelial cells. J Allergy Clin Immunol 2001; 108: 221–8PubMedCrossRefGoogle Scholar
  19. 19.
    Broide DH. Molecular and cellular mechanisms of allergic disease. J Allergy Clin Immunol 2001 Aug; 108 Suppl. 2: S65–71PubMedCrossRefGoogle Scholar
  20. 20.
    Kay AB. Advances in immunology: allergy and allergic diseases (part one of two). N Engl J Med 2001; 344(1): 30–7PubMedCrossRefGoogle Scholar
  21. 21.
    Bochner BS. Systemic activation of basophils and eosinophils: markers and consequences. J Allergy Clin Immunol 2000 Nov; 106 Suppl. 5: S292–302PubMedCrossRefGoogle Scholar
  22. 22.
    Broide D, Sriramarao P. Eosinophil trafficking to sites of allergic inflammation. Immunol Rev 2001 Feb; 179: 163–72PubMedCrossRefGoogle Scholar
  23. 23.
    Bochner BS, Schleimer RP. Mast cells, basophils, and eosinophils: distinct but overlapping pathways for recruitment. Immunol Rev 2001 Feb; 179: 5–15PubMedCrossRefGoogle Scholar
  24. 24.
    Clement PA. Rhinomanometry. Allergy 1997; 52: 26–7PubMedCrossRefGoogle Scholar
  25. 25.
    Horak F, Jäger S. Die Wiener Provokations Kammer (Vienna Challenge Chamber) -eine neue Methode des Allergen-expositionstests. Wien Klin Wochenschr 1987; 99: 509–10Google Scholar
  26. 26.
    Horak F, Toth J, Jäger S, et al. Effects of H1-receptor antagonists on nasal obstruction in atopic patients. Allergy 1993; 48(4): 226–9PubMedCrossRefGoogle Scholar
  27. 27.
    Holmstrom M, Scadding GK, Lund VJ, et al. Assessment of nasal obstruction: a comparison between rhinomanometry and nasal inspiratory peak flow. Rhinology 1990 Sep; 28(3): 191–6PubMedGoogle Scholar
  28. 28.
    Wilson A, Dempsey OJ, Sims EJ, et al. Evaluation of treatment response in patients with seasonal allergic rhinitis using domiciliary nasal peak inspiratory flow. Clin Exp Allergy 2000 Jun; 30(6): 833–8PubMedCrossRefGoogle Scholar
  29. 29.
    Wilson AM, Dempsey OJ, Sims EJ, et al. Subjective and objective markers of treatment response in patients with seasonal allergic rhinitis. Ann Allergy Asthma Immunol 2000 Aug; 85(2): 111–4PubMedCrossRefGoogle Scholar
  30. 30.
    Wilson AM, Sims EJ, Orr LC, et al. Effects of topical corticosteroid and combined mediator blockade on domiciliary and laboratory measurements of nasal function in seasonal allergic rhinitis. Ann Allergy Asthma Immunol 2001 Oct; 87(4): 344–9PubMedCrossRefGoogle Scholar
  31. 31.
    Andersson KE, Bende M. Adrenoreceptors in the control of human nasal mucosal blood flow. Ann Otol Rhinol Laryngol 1984; 93: 179–82PubMedGoogle Scholar
  32. 32.
    Roth RP, Cantekin EI, Bluestone CD, et al. Nasal decongestant activity of pseudoephedrine. Ann Otol Rhinol Laryngol 1977; 86: 235–42PubMedGoogle Scholar
  33. 33.
    Togias A, Naclerio RM, Proud D, et al. Mediator release during nasal provocation: a model to investigate the pathophysiology of rhinitis. Am J Med 1985 Dec 20; 79(6A): 26–33PubMedCrossRefGoogle Scholar
  34. 34.
    Lane AP, Drake AF, Warren DW. Perceptual and physiologic effects of histamine challenge on nasal breathing. Am J Rhinol 2000 Jan–Feb; 14(1): 1–5PubMedCrossRefGoogle Scholar
  35. 35.
    Grudemo H, Juto JE. Intranasal histamine challenge in normal subjects and allergic rhinitis before and after intranasal budesonide studied with rhinostereometry and micromanipulator-guided laser Doppler flowmetry. ORL J Otorhino-laryngol Relat Spec 2000 Jan–Feb; 62 (1): 33–8Google Scholar
  36. 36.
    Grudemo H, Juto JE. Rhinostereometry and laser Doppler flowmetry in human nasal mucosa: changes in congestion and microcirculation during intranasal histamine challenge. ORL J Otorhinolaryngol Relat Spec 1997 Jan–Feb; 59(1): 50–6PubMedCrossRefGoogle Scholar
  37. 37.
    McLeod RL, Mingo GG, Herczku C, et al. Changes in nasal resistance and nasal geometry using pressure and acoustic rhinometry in a feline model of nasal congestion. Am J Rhinol 1999 Sep–Oct; 13(5): 375–83PubMedCrossRefGoogle Scholar
  38. 38.
    Erickson CH, McLeod RL, Mingo GG, et al. Comparative oral and topical decongestant effects of phenylpropanolamine and d-pseudoephedrine. Am J Rhinol 2001 Mar–Apr; 15(2): 83–90PubMedCrossRefGoogle Scholar
  39. 39.
    Wang D, Clement P, Smitz J. Effect of H1 and H2 antagonists on nasal symptoms and mediator release in atopic patients after nasal allergen challenge during the pollen season. Acta Otolaryngol 1996; 116: 91–6PubMedCrossRefGoogle Scholar
  40. 40.
    McLeod RL, Mingo GG, Herczku C, et al. Combined histamine H1 and H3 receptor blockade produces nasal decongestion in an experimental model of nasal congestion. Am J Rhinol 1999 Sep–Oct; 13(5): 391–9PubMedCrossRefGoogle Scholar
  41. 41.
    Churchill L, Pongracic JA, Reynolds CJ, et al. Pharmacology of nasal provocation with bradykinin: studies of tachyphylaxis, cyclooxygenase inhibition, alpha-adrenergic stimulation, and receptor subtype. Int Arch Allergy Appl Immunol 1991; 95(4): 322–31PubMedCrossRefGoogle Scholar
  42. 42.
    Rajakulasingam K, Polosa R, Lau LC, et al. Nasal effects of bradykinin and capsaicin: influence on plasma protein leakage and role of sensory neurons. J Appl Physiol 1992 Apr; 72(4): 1418–24PubMedGoogle Scholar
  43. 43.
    Doyle WJ, Boehm S, Skoner DP. Physiologic responses to intranasal dose-response challenges with histamine, methacholine, bradykinin, and prostaglandin in adult volunteers with and without nasal allergy. J Allergy Clin Immunol 1990 Dec; 86(6 Pt 1): 924–35PubMedCrossRefGoogle Scholar
  44. 44.
    Turner P, Dear J, Scadding G, et al. Role of kinins in seasonal allergic rhinitis: icatibant, a bradykinin B2 receptor antagonist, abolishes the hyperresponsiveness and nasal eosinophilia induced by antigen. J Allergy Clin Immunol 2001 Jan; 107(1): 105–13PubMedCrossRefGoogle Scholar
  45. 45.
    Kowalski ML, Dietrich-Milobedzki A, Majkowska-Wojciechowska B, et al. Nasal reactivity to capsaicin in patients with seasonal allergic rhinitis during and after the pollen season. Allergy 1999 Aug; 54(8): 804–10PubMedCrossRefGoogle Scholar
  46. 46.
    Sanico AM, Atsuta S, Proud D, et al. Dose-dependent effects of capsaicin nasal challenge: in vivo evidence of human airway neurogenic inflammation. J Allergy Clin Immunol 1997 Nov; 100(5): 632–41PubMedCrossRefGoogle Scholar
  47. 47.
    Riederer A, Knipping S, Fischer A, et al. Current immunohistochemical results of localization of vasoactive intestinal polypeptide (VIP) in nasal mucosa of the human. Laryngorhinootologie 1995 Oct; 74(10): 611–4PubMedCrossRefGoogle Scholar
  48. 48.
    Rinder J. Sensory neuropeptides and nitric oxide in nasal vascular regulation. Acta Physiol Scand Suppl 1996; 632: 1–45PubMedGoogle Scholar
  49. 49.
    Walker KB, Serwonska MH, Valone FH, et al. Distinctive patterns of release of neuroendocrine peptides after nasal challenge of allergic subjects with ryegrass antigen. J Clin Immunol 1988 Mar; 8(2): 108–13PubMedCrossRefGoogle Scholar
  50. 50.
    Heavey DJ, Lumley P, Barrow SE, et al. Effects of intravenous infusions of prostaglandin D2 in man. Prostaglandins 1984 Dec; 28(6): 755–67PubMedCrossRefGoogle Scholar
  51. 51.
    Naclerio RM, Proud D, Togias AG, et al. Inflammatory mediators in late antigen-induced rhinitis. N Engl J Med 1985; 33: 65–70CrossRefGoogle Scholar
  52. 52.
    Miadonna A, Milazzo N, Gibelli S, et al. Nasal response to a single antigen challenge in patients with allergic rhinitis: inflammatory cell recruitment persists up to 48 hours. Clin Exp Allergy 1999 Jul; 29(7): 941–9PubMedCrossRefGoogle Scholar
  53. 53.
    Norman PS, Naclerio RM, Creticos PS, et al. Mediator release after allergic and physical nasal challenges. Int Arch Allergy Appl Immunol 1985; 77(1-2): 57–63PubMedCrossRefGoogle Scholar
  54. 54.
    Miadonna A, Tedeschi A, Leggieri E, et al. Behavior and clinical relevance of histamine and leukotrienes C4 and B4 in grass pollen-induced rhinitis. Am Rev Respir Dis 1987 Aug; 136(2): 357–62PubMedCrossRefGoogle Scholar
  55. 55.
    Miadonna A, Tedeschi A, Leggieri E, et al. Effects of nasal challenge with histamine, leukotriene C4 and prostaglandin D2 in patients with grass-pollen allergic rhinitis. Folia Allergol Immunol Clin 1986; 33: 279–84Google Scholar
  56. 56.
    Bisgaard H, Olsson P, Bende M. Effect of leukotriene D4 on nasal mucosal blood flow, nasal airway resistance and nasal secretion in humans. Clin Allergy 1986; 16: 289–97PubMedCrossRefGoogle Scholar
  57. 57.
    Donnelly AL, Glass M, Minkwitz MC, et al. The leukotriene D4-receptor antagonist, ICI 204, 219, relieves symptoms of acute seasonal allergic rhinitis. Am J Respir Crit Care Med 1995 Jun; 151(6): 1734–9PubMedGoogle Scholar
  58. 58.
    Knapp HR. Reduced allergen-induced nasal congestion and leukotriene synthesis with an orally active 5-lipoxygenase inhibitor. N Engl J Med 1990; 323(25): 1745–8PubMedCrossRefGoogle Scholar
  59. 59.
    Atkins MB, Vachino G, Tilg HJ, et al. Phase I evaluation of thrice-daily intravenous bolus interleukin-4 in patients with refractory malignancy. J Clin Oncol 1992 Nov; 10(11): 1802–9PubMedGoogle Scholar
  60. 60.
    Emery BE, White MV, Igarashi Y, et al. The effect of IL-4 on human nasal mucosal responses. J Allergy Clin Immunol 1992 Nov; 90(5): 772–81PubMedCrossRefGoogle Scholar
  61. 61.
    Kleinjan A, Dijkstra MD, Boks SS, et al. Increase in IL-8, IL-10, IL-13, and RANTES mRNA levels (in situ hybridization) in the nasal mucosa after nasal allergen provocation. J Allergy Clin Immunol 1999 Mar; 103(3 Pt 1): 441–50PubMedCrossRefGoogle Scholar
  62. 62.
    Calderon MA, Devalia JL, Prior AJ, et al. A comparison of cytokine release from epithelial cells cultured from nasal biopsy specimens of atopic patients with and without rhinitis and nonatopic subjects without rhinitis. J Allergy Clin Immunol 1997 Jan; 99(1 Pt 1): 65–76PubMedGoogle Scholar
  63. 63.
    Linden M, Svensson C, Andersson M, et al. Circulating eosinophil/basophil progenitors and nasal mucosal cytokines in seasonal allergic rhinitis. Allergy 1999 Mar; 54(3): 212–9PubMedCrossRefGoogle Scholar
  64. 64.
    Kuna P, Alam R, Ruta U, et al. RANTES induces nasal mucosal inflammation rich in eosinophils, basophils, and lymphocytes in vivo. Am J Respir Crit Care Med 1998 Mar; 157(3 Pt 1): 873–9PubMedGoogle Scholar
  65. 65.
    Hanazawa T, Antuni JD, Kharitonov SA, et al. Intranasal administration of eotaxin increases nasal eosinophils and nitric oxide in patients with allergic rhinitis. J Allergy Clin Immunol 2000 Jan; 105(1 Pt 1): 58–64PubMedCrossRefGoogle Scholar
  66. 66.
    Sim TC, Reece LM, Hilsmeier KA, et al. Secretion of chemokines and other cytokines in allergen-induced nasal responses: inhibition by topical steroid treatment. Am J Respir Crit Care Med 1995 Sep; 152(3): 927–33PubMedGoogle Scholar
  67. 67.
    Fujikura T, Shimosawa T, Yakuo I. Regulatory effect of histamine H1 receptor antagonist on the expression of messenger RNA encoding CC chemokines in the human nasal mucosa. J Allergy Clin Immunol 2001 Jan; 107(1): 123–8PubMedCrossRefGoogle Scholar
  68. 68.
    El-Shazly A, Ishikawa T. Novel co-operation between eotaxin and substance-P in inducing eosinophil-derived neurotoxin release. Mediators Inflamm 1999; 8(3): 177–9PubMedCrossRefGoogle Scholar
  69. 69.
    Greiff L, Petersen H, Mattsson E, et al. Mucosal output of eotaxin in allergic rhinitis and its attenuation by topical glucocorticosteroid treatment. Clin Exp Allergy 2001 Aug; 31(8): 1321–7PubMedCrossRefGoogle Scholar
  70. 70.
    Terada N, Hamano N, Kim WJ, et al. The kinetics of allergeninduced eotaxin level in nasal lavage fluid: its key role in eosinophil recruitment in nasal mucosa. Am J Respir Crit Care Med 2001 Aug 15; 164(4): 575–9PubMedGoogle Scholar
  71. 71.
    Fujisawa T, Kato Y, Nagase H, et al. Chemokines induce eosinophil degranulation through CCR-3. J Allergy Clin Immunol 2000 Sep; 106(3): 507–13PubMedCrossRefGoogle Scholar
  72. 72.
    Pelikan Z, Pelikan-Filipek M. Cytologic changes in the nasal secretions during the late nasal response. J Allergy Clin Immunol 1989 Jun; 83(6): 1068–79PubMedCrossRefGoogle Scholar
  73. 73.
    Benson M, Strannegard IL, Wennergren G, et al. Interleukin-5 and interleukin-8 in relation to eosinophils and neutrophils in nasal fluids from school children with seasonal allergic rhinitis. Pediatr Allergy Immunol 1999 Aug; 10(3): 178–85PubMedCrossRefGoogle Scholar
  74. 74.
    Braunstahl GJ, Overbeek SE, Kleinjan A, et al. Nasal allergen provocation induces adhesion molecule expression and tissue eosinophilia in upper and lower airways. J Allergy Clin Immunol 2001 Mar; 107(3): 469–76PubMedCrossRefGoogle Scholar
  75. 75.
    Tingsgaard PK, Bock T, Larsen PL, et al. Topical budesonide treatment reduces endothelial expression of intercellular adhesion molecules (vascular cell adhesion molecule-1 and P-selectin) and eosinophil infiltration in nasal polyps. Acta Otolaryngol 1999; 119(3): 362–8PubMedCrossRefGoogle Scholar
  76. 76.
    Symon FA, McNulty CA, Wardlaw AJ. P- and L-selectin mediate binding of T cells to chronically inflamed human airway endothelium. Eur J Immunol 1999 Apr; 29(4): 1324–33PubMedCrossRefGoogle Scholar
  77. 77.
    Wang D, Smitz J, Waterschoot S, et al. An approach to the understanding of the nasal early-phase reaction induced by nasal allergen challenge. Allergy 1997 Feb; 52(2): 162–7PubMedCrossRefGoogle Scholar
  78. 78.
    DuBuske LM. Pharmacology of desloratadine: special characteristics. Clin Drug Invest 2002; 22 Suppl. 2: 1–11Google Scholar
  79. 79.
    Agrawal DK, Berro A, Townley RG. Desloratadine attenuation of eosinophil chemotaxis, adhesion, and Superoxide generation [abstract]. Allergy 2000; 55 Suppl. 63: S276Google Scholar
  80. 80.
    Paubert-Braquet H, Czarlewski W. Effect of loratadine and SCH 34117 on Superoxide anion production from human polymorphonuclear neutrophils and monocytes [abstract]. J Allergy Clin Immunol 1994; 93: 257Google Scholar
  81. 81.
    Cyr MM, Baatjes AJ, Hayes LM, et al. The effect of desloratadine on eosinophil/basophil progenitors and other inflammatory markers in seasonal allergic rhinitis: a placebo-controlled randomized study [abstract]. 58th Annual Meeting of the American Academy of Allergy and Clinical Immunology; 2002, New York City, 329Google Scholar
  82. 82.
    Nayak AS, Schenkel E. Desloratadine reduces nasal congestion in patients with intermittent allergic rhinitis. Allergy 2001 Nov; 56(11): 1077–80PubMedCrossRefGoogle Scholar
  83. 83.
    Nayak A, Schenkel E, Salmun LM, et al. Desloratadine relieves nasal congestion in patients with seasonal allergic rhinitis [abstract]. Allergy 2000; 55 Suppl. 63: 686Google Scholar
  84. 84.
    DuBuske L, the Desloratadine Study Group. Desloratadine reduced nasal congestion in patients with seasonal rhinitis and asthma. Presented at the XXth Congress of the European Academy of Allergology and Clinical Immunology; 2001 May 9–13; Berlin: 61Google Scholar
  85. 85.
    Baena-Cagnani C, the Desloratadine Study Group. Desloratadine improved asthma symptoms and decreased β2 agonist use in patients with seasonal allergic rhinitis and asthma. Presented at the XXth Congress of the European Academy of Allergology and Clinical Immunology; 2001 May 9–13; Berlin: 60Google Scholar
  86. 86.
    Schenkel E, Corren J, Murray JJ. Fixed-dose desloratadine and pseudoephedrine relieves moderate/severe nasal congestion in patients with seasonal allergic rhinitis [abstract]. American Academy of Allergy and Clinical Immunology Annual Meeting; 2002; New York City: 279Google Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  • Glenis K. Scadding
    • 1
  1. 1.Royal National Throat, Nose and Ear HospitalLondonUK

Personalised recommendations