Treatments in Endocrinology

, Volume 5, Issue 6, pp 335–346

Neonatal Thyroxine Supplementation for Transient Hypothyroxinemia of Prematurity

Beneficial or Detrimental?
  • Edmund F. La Gamma
  • Aleid G. van Wassenaer
  • Sergio G. Golombek
  • Gabriella Morreale de Escobar
  • Joke H. Kok
  • Jose Quero
  • Susana Ares
  • Nigel Paneth
  • Delbert Fisher
Current Opinion

Abstract

Extremely low birth-weight newborns (<1000g) experience low levels of thyroid hormone that vary inversely with the severity of neonatal illness and the extent of developmental immaturity with levels reaching a nadir at ≈7 days after birth; this phenomenon can persist for several weeks. In the absence of transplacental passage, 30–50% of these neonates cannot generate sufficient quantities of thyroid hormone to meet postnatal demands, placing them at an increased risk for developmental delay and cerebral palsy. Population surveys and interventional trials suggest that a therapeutic opening exists during a ‘window of opportunity’ corresponding to this period of diminished capacity. Variables to consider before intervention focus on the consideration that supplementation of both the substrate thyroxine and the active hormone triiodothyronine may be necessary in quantities that do not suppress thyroid-stimulating hormone release, yet overcome the persistence of increased conversion to 3,3′5′-triodo-L-thyronine, terminal deiodination, and activity of the sulfation inactivation pathways, as well as the diminished capacity of the newborn to accommodate postnatal physiologic changes. Single daily replacement doses may suppress levels of converting enzymes in the brain, suggesting that physiologic ‘mimicry’ provided by a constant infusion may be the preferred dosing option. Properly powered clinical trials targeting long-term developmental outcomes are needed to discern whether these interventions will do more than simply elevate blood levels of thyroid hormones to the target values of either the fetus or developing neonate. Identifying the appropriate indications for supplementation may alleviate individual pain and distress due to disability for several hundred extremely low birth-weight neonates each year in the US alone, and save society a pro-rated lifetime cost of nearly $US1 million per child.

References

  1. 1.
    1. PeriStats. March of Dimes Perinatal Data Center [online]. Available from URL: http://www.marchofdimes.com/peristats [Accessed 2006 Oct 16]Google Scholar
  2. 2.
    Lorenz JL, Wooliever DE, Jetton J, et al. A quantitative review of mortality and developmental disability in extremely premature newborns. Arch Pediatr Adolesc Med 1998; 152: 425–535PubMedGoogle Scholar
  3. 3.
    Reuss ML, Paneth N, Pinto JA, et al. The relation of transient hypothyroxinemia in preterm infants to neurological development at 2 years of age. N Engl J Med 1996; 334: 821–7PubMedCrossRefGoogle Scholar
  4. 4.
    Paneth N. Does transient hypothyroxinemia cause abnormal neurodevelopment in premature infants? Clin Perinatol 1998; 25: 627–37PubMedGoogle Scholar
  5. 5.
    Honeycutt A, Dunlap L, Chen H, et al. Economic costs associated with mental retardation, cerebral palsy, hearing loss, and vision impairment: United States, 2003. MMWR Morb Mort Weekly Rep 2003; 53: 57Google Scholar
  6. 6.
    van Wassenaer AG, Kok JH, Dekker FW, et al. Thyroid function in very preterm infants: influence of gestation age and disease. Pediatr Res 1997; 42: 604–9PubMedCrossRefGoogle Scholar
  7. 7.
    Simpson J, Williams FLR, Delahunty C, et al. Serum thyroid hormones in preterm infants and relationships to indices of severity of intercurrent illness. J Clin Endocrinol Metab 2005; 90: 1271–9PubMedCrossRefGoogle Scholar
  8. 8.
    Williams FLR, Ogston SA, van Toor H, et al. Serum thyroid hormones in preterm infants: associations with postnatal illnesses and drug usage. J Clin Endocrinol Metab 2005; 90: 5954–63PubMedCrossRefGoogle Scholar
  9. 9.
    Meijer WJ, Verloove-Vanhorick SP, Brand R, et al. Transient hypothyroxinaemia associated with developmental delay in very preterm infants. Arch Dis Child 1992; 67: 944–7PubMedCrossRefGoogle Scholar
  10. 10.
    DenOuden AL, Kok JH, Verkerk PH, et al. The relation between neonatal thyroxine levels and neurodevelopmental outcome at 5 and 9 years in a national cohort of preterm and low birth weight infants. Pediatr Res 1996; 39: 142–5CrossRefGoogle Scholar
  11. 11.
    Lucas A, Morley R, Fewtrell MS. Low triiodothyronine concentration in preterm infants and subsequent intelligence quotient (IQ) at 8 year follow-up. BMJ 1996; 312: 1132–3PubMedCrossRefGoogle Scholar
  12. 12.
    Paul DA, Leef KH, Stefano JL, et al. Low serum thyroxine on initial newborn screening is associated with intraventricular haemorrhage and death in very low birth weight infants. Pediatrics 1998; 101: 903–7PubMedCrossRefGoogle Scholar
  13. 13.
    Leviton A, Paneth N. Hypothyroxinemia of prematurity and the risk of cerebral white matter changes. J Pediatr 1999; 134: 706–11PubMedCrossRefGoogle Scholar
  14. 14.
    Pop VJ, Brouwers EP, Vader HL, et al. Maternal hypothyroxinemia during early pregnancy and subsequent child development: 3 year follow-up. Clin Endocrinol (Oxf) 2003; 59: 282–8CrossRefGoogle Scholar
  15. 15.
    Morreale de Escobar G, Obregon MJ, Escobar del Rey F. Role of thyroid hormone during early brain development. Eur J Endocrinol 2004; 151Suppl. 3: U25–37PubMedCrossRefGoogle Scholar
  16. 16.
    Zoeller RT, Rovet J. Timing of thyroid hormone action in the developing brain: clinical observations and experimental findings. J Neuroendocrinol 2004; 16: 809–18PubMedCrossRefGoogle Scholar
  17. 17.
    De Groot LJ. Dangerous dogmas in medicine: the non-thyroidal illness syndrome. J Clin Endocrinol Metab 1999; 84(1): 151–64PubMedCrossRefGoogle Scholar
  18. 18.
    Fisher DA. Thyroid function in premature infants: the hypothyroxinemia of prematurity. Clin Perinatol 1998; 25: 999–1014PubMedGoogle Scholar
  19. 19.
    Rapaport R, Rose SR, Freemark M. Hypothroxinemia in the preterm infant: the benefits and risks of thyroxine treatment. J Pediatr 2001; 139: 182–8PubMedCrossRefGoogle Scholar
  20. 20.
    Rabin CW, Hopper AO, Job L, et al. Incidence of low free T4 values in premature infants as determined by equilibrium dialysis. J Perinatol 2004; 24: 640–4PubMedCrossRefGoogle Scholar
  21. 21.
    Boelaert K, Franklyn JA. Thyroid hormone in health and disease. J Endocrinol 2005; 187: 1–15PubMedCrossRefGoogle Scholar
  22. 22.
    Chopra IJ. Euthyroid sick syndrome: is it a misnomer? J Clin Endocrinol Metab 1997; 82: 329–34PubMedCrossRefGoogle Scholar
  23. 23.
    Tilotson SL, Fuggle PW, Smith I, et al. Relation between biochemical severity and intelligence in early treated congenital hypothyroidism: a threshold effect. BMJ 1994; 309: 440–5CrossRefGoogle Scholar
  24. 24.
    Vanhole C, Aerssens P, Naulaers G. L-thyroxine treatment of preterm newborns: clinical and endocrine effects. Pediatr Res 1997; 42: 87–92PubMedCrossRefGoogle Scholar
  25. 25.
    Chowdry P, Scanlon JW, Auerbach R, et al. Results of a controlled double-blind study of thyroid replacement in very-low-birth-weight premature infants with hypothyroxinemia. Pediatrics 1984; 73: 301–5Google Scholar
  26. 26.
    Schonberger W, Grimm W, Emmrich P, et al. Reduction in mortality rate in premature infants by substitution of thyroid hormones. Eur J Pediatr 1981; 135: 245–53PubMedCrossRefGoogle Scholar
  27. 27.
    Amato M, Pasquier S, Carasso A, et al. Postnatal thyroxine administration for idiopathic respiratory distress syndrome in premature infants. Horm Res 1988; 29: 27–30PubMedCrossRefGoogle Scholar
  28. 28.
    Amato M, Guggisberg C, Schneider H. Postnatal triiodothyronine replacement and respiratory distress syndrome of the preterm infant. Horm Res 1989; 32: 213–7PubMedCrossRefGoogle Scholar
  29. 29.
    van Wassenaer AG, Kok JH, de Vijlder JJM, et al. Effects of thyroxine supplementation on neurological development in infants born at less than 30 weeks gestation. N Engl J Med 1997; 336: 21–6PubMedCrossRefGoogle Scholar
  30. 30.
    Osborne DA. Thyroid hormone for preventing neurodevelopment impairment in preterm infants [Cochrane Review]. In: The Cochrane Library, issue 4: dy2001 [online]. Available from URL: http://www.thecochranelibrary.com [Accessed 2006 Jun 29]Google Scholar
  31. 31.
    Smith LM, Leake RD, Berman N, et al. Postnatal thyroxine supplementation in infants less than 32 weeks: effects on pulmonary morbidity. J Perinatol 2000; 20: 427–31PubMedCrossRefGoogle Scholar
  32. 32.
    Valerio PG, van Wassenaer AG, de Vijlder JJ, et al. A randomized, masked study of triiodothyronine plus thyroxine administration in preterm infants less than 28 weeks of gestational age: hormonal and clinical effects. Pediatr Res 2004; 55:248–53PubMedCrossRefGoogle Scholar
  33. 33.
    Williams FLR, Mires GJ, Barnett C, et al. Transient hypothyroxinemia in preterm infants: the role of cord sera thyroid hormone levels adjusted for prenatal and intrapartum factors. J Clin Endocrinol Metab 2005; 90: 4599–606PubMedCrossRefGoogle Scholar
  34. 34.
    Briet JM, van Wassenaer AG, Dekker FW, et al. Neonatal thyroxine supplementation in very preterm children: developmental outcome evaluated at early school age. Pediatrics 2001; 107(4): 712–8PubMedCrossRefGoogle Scholar
  35. 35.
    Briet JM, van Wassenaer AG, van Baar A, et al. Evaluation of the effect of thyroxine supplementation on behavioral outcome in very preterm infants. Develop Med Child Neurol 1999; 41: 87–93PubMedCrossRefGoogle Scholar
  36. 36.
    van Wassenaer AG, Briët JM, van Baar A, et al. Free thyroxine levels during the first weeks of life and neurodevelopmental outcome until the age of 5 years in very preterm infants. Pediatrics 2002; 110: 534–9PubMedCrossRefGoogle Scholar
  37. 37.
    Briet JM, van Sonderen L, Buimer M, et al. Neurodevelopmental outcome of children treated with antenatal TRH. Pediatrics 2002; 110: 249–53PubMedCrossRefGoogle Scholar
  38. 38.
    Ballard PL, Ballard RA, Creasy RK, et al. Plasma thyroid hormones and prolactin in premature infants and their mothers after prenatal treatment with thyrotropin-releasing hormone. Pediatr Res 1992; 32: 673–8PubMedCrossRefGoogle Scholar
  39. 39.
    Glinoer D. The regulation of thyroid function in pregnancy: pathways of endocrine adaptation from physiology to pathology. Endocr Rev 1997; 18: 404–33PubMedCrossRefGoogle Scholar
  40. 40.
    Thorpe-Beeston JG, Nicolaides KH, Felton CV, et al. Maturation of the secretion of thyroid hormone and thyroid stimulating hormone in the fetus. New Engl J Med 1991; 324: 532–6PubMedCrossRefGoogle Scholar
  41. 41.
    Fisher DA. Development of fetal thyroid system control. In: Delong GR, Robbins J, Condliffe PG, editors. Iodine and the brain. New York: Plenum Publishing Corp., 1989: 167–76CrossRefGoogle Scholar
  42. 42.
    Ares S, Escobar-Morreale HF, Quero J, et al. Neonatal hypothyroxinemia: effects of iodine intake and premature birth. J Clin Endocrinol Metab 1997; 82: 1704–12PubMedCrossRefGoogle Scholar
  43. 43.
    Murphy N, Hume R, van Toor H, et al. The hypothalamic-pituitary-thyroid axis in preterm infants; changes in the first 24 hours of postnatal life. J Clin Endocrinol Metab 2004; 89: 2824–31PubMedCrossRefGoogle Scholar
  44. 44.
    Morreale de Escobar G, Ares S. The hypothyroxinemia of prematurity. J Clin Endocrinol Metab 1998; 83: 713–5Google Scholar
  45. 45.
    Richard K, Hume R, Kaptein E, et al. Ontogeny of iodothyronine deiodinases in human liver. J Clin Endocrinol Metab 1998; 83: 2868–74PubMedCrossRefGoogle Scholar
  46. 46.
    Kahaly GJ, Dillman WH. Thyroid hormone action in the heart. Endocrine Rev 2005; 26: 704–28CrossRefGoogle Scholar
  47. 47.
    Rajatapiti P, Kester MHA, de Krijger RR, et al. Expression of glucocorticoids, retinoid, and thyroid hormone receptors during human lung development. J Clin Endo Metab 2005; 90: 4309–14CrossRefGoogle Scholar
  48. 48.
    van Wassenaer AG, Kok JH, Briet JM, et al. Thyroid function in very preterm newborns: possible implications. Thyroid 1999; 9: 85–91PubMedCrossRefGoogle Scholar
  49. 49.
    Mackie AS, Booth KL, Newburger JW, et al. A randomized, double-blind, placebo-controlled pilot trial of T3 in neonatal heart surgery. J Thoracic Cardiovasc Surg 2005; 130: 810–6CrossRefGoogle Scholar
  50. 50.
    Moog F. The differentiation and redifferentiation of the intestinal epithelium and its brush border membrane. Ciba Foundation Symp 1979; 70: 31–50Google Scholar
  51. 51.
    Liggins GC. The role of cortisol in preparing the fetus for birth. Reprod Fertil Dev 1994; 6: 141–50PubMedCrossRefGoogle Scholar
  52. 52.
    Hume R, Richard K, Kaptein E, et al. Thyroid hormone metabolism and the developing human lung. Biol Neonate 2001; 80Suppl. 1: 18–21PubMedCrossRefGoogle Scholar
  53. 53.
    Ramadurai SM, Nielsen HC, Chen Y, et al. Differential effects in vivo of thyroid hormone on the expression of surfactant phospholipid, surfactant protein mRNA and antioxidant enzyme mRNA in fetal rat lung. Exp Lung Res 1998; 24: 641–57PubMedCrossRefGoogle Scholar
  54. 54.
    Reyes G, Romaguera J, Zapata R, et al. Effect of prenatal T4 treatment in neonatal morbidity: preliminary findings. Puerto Rico Health Sci J 1997; 16(1): 5–8Google Scholar
  55. 55.
    Biswas S, Buffery J, Enoch H, et al. Pulmonary effects of triiodothyronine (T3) and hydrocortisone (HC) supplementation in preterm infants less than 30 weeks gestation: results of the THORN trial. Thyroid Hormone Replacement in Neonates. Pediatr Res 2003; 53: 48–56PubMedGoogle Scholar
  56. 56.
    Aden D, La Gamma EF, Browne LE. Nutritional management and the multisystem organ failure/systemic inflammatory response syndrome in critically ill preterm neonates. Crit Care Clin 1995; 11(3): 751–70Google Scholar
  57. 57.
    Cageao LF, Mignone IR, Ricci CR, et al. Effects of thyroid hormones on mitochondrial oxygen consumption in brown adipose tissue and heart from cold-exposed hypothyroid rats. Acta Endocrinol (Copenh) 1992; 127: 72–5Google Scholar
  58. 58.
    Polk DH. Thyroid hormone effects on neonatal thermogenesis. Semin Perinatol 1988; 12: 151–6PubMedGoogle Scholar
  59. 59.
    Peeters RP, Wouters PJ, Kaptein E, et al. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab 2003; 88: 3202–11PubMedCrossRefGoogle Scholar
  60. 60.
    Greenspan SL, Greenspan FS. The effect of thyroid hormone on skeletal integrity. Ann Intern Med 1999; 130: 750–8PubMedGoogle Scholar
  61. 61.
    Robson H, Siebler T, Shalet SM, et al. Interactions between GH, IGF-1, glucocorticoids and thyroid hormones during skeletal growth. Pediatr Res 2002; 52(2): 137–47PubMedCrossRefGoogle Scholar
  62. 62.
    Bianco AC, Silva JE. Intracellular conversion of thyroxine to triiodothyronine is required for the optimal thermogenic function of brown adipose tissue. J Clin Invest 1987; 79: 295–300PubMedCrossRefGoogle Scholar
  63. 63.
    Gluckman PD, Sizonenko SV, Bassett NS. The transition from fetus to neonate: an endocrine perspective. Acta Paediatr Suppl 1999; 428: 7–11Google Scholar
  64. 64.
    Fisher DA, Klein AH. Thyroid development and disorders of thyroid function in the newborn. N Engl J Med 1981; 304: 702–12PubMedCrossRefGoogle Scholar
  65. 65.
    Ng PC, Lee CH, Lam CW, et al. Transient adrenocortical insufficiency of prematurity and systemic hypotension in very low birthweight infants. Arch Dis Child Fetal Neonatal Ed 2004; 89: F119–26PubMedCrossRefGoogle Scholar
  66. 66.
    Yeung M, Smyth JP. Hormonal factors in the morbidities associated with extreme prematurity and the potential benefits of hormonal supplement. Biol Neonate 2002; 81(1): 1–15PubMedCrossRefGoogle Scholar
  67. 67.
    Bruhn TO, Bolduc TG, Rondeel JMM, et al. Thyrotropin-releasing hormone gene expression in the anterior pituitary: II. Stimulation by glucocorticoids. Endocrinology 1994; 134: 821–5PubMedCrossRefGoogle Scholar
  68. 68.
    Van der Geyten S, Darras VM. Developmentally defined regulation of thyroid hormone metabolism by glucocorticoids in the rat. J Endocrinol 2005; 185: 327–36PubMedCrossRefGoogle Scholar
  69. 69.
    Surks MI, Sievert R. Drugs and thyroid function. New Engl J Med 1995; 333: 1688–94PubMedCrossRefGoogle Scholar
  70. 70.
    Williams FLR, Simpson J, Delahunty C, et al. Developmental trends in cord and postpartum serum thyroid hormones in preterm infants. J Clin Endocrinol Metab 2004; 89: 5314–20PubMedCrossRefGoogle Scholar
  71. 71.
    Huang W, Wood C, L’ Abbe MR, et al. Soy protein isolate increases hepatic thyroid hormone receptor content and inhibits its binding to target genes in rats. J Nutr 2005; 135: 1631–5PubMedGoogle Scholar
  72. 72.
    Conrad SC, Chiu H, Silverman BL. Soy formula complicates management of congenital hypothyroidism. Arch Dis Child 2004; 89: 37–40PubMedCrossRefGoogle Scholar
  73. 73.
    Cao XY, Jiang XM, Dou ZH, et al. Timing of vulnerability of the brain to iodine deficiency in endemic cretinism. N Engl J Med 1994; 331: 1739–44PubMedCrossRefGoogle Scholar
  74. 74.
    Hollowell JG, Staehling NW, Hannon WH, et al. Iodine nutrition in the United States: trends and public health implications: iodine excretion data from National Health and Nutrition Examination Surveys I and III (1971–1974 and 1988–1994). J Clin Endocrinol Metab 1998; 83: 3401–8PubMedCrossRefGoogle Scholar
  75. 75.
    Dunn JT. Editorial: what’s happening to our iodine? J Clin Endocrinol Metab 1998; 83: 3398–400PubMedCrossRefGoogle Scholar
  76. 76.
    Alexander EK, Marqusee E, Lawrence J, et al. Timing and magnitude of increases in T4 requirements during pregnancy in women with hypothyroidism. N Engl J Med 2004; 351: 241–9PubMedCrossRefGoogle Scholar
  77. 77.
    Haddow JE, Palomaki GE, Allan WC, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 1999; 341: 549–55PubMedCrossRefGoogle Scholar
  78. 78.
    Ares S, Quero J, Morreale de Escobar G. Neonatal iodine deficiency: clinical aspects. J Pediatr Endocrinol Metab 2005; 18: 1257–64PubMedCrossRefGoogle Scholar
  79. 79.
    Ogilvy-Stuart AL. Neonatal thyroid disorders. Arch Dis Child 2002; 87: F165–71CrossRefGoogle Scholar
  80. 80.
    Ares S, Quero J, Durán S, et al. Iodine content of infant formulas and iodine intake of premature babies: high risk of iodine deficiency. Arch Dis Child 1994; 71: 184–91CrossRefGoogle Scholar
  81. 81.
    Ares S, Pastor I, Quero J, et al. Thyroid complications, including overt hypothyroidism, related to the use of non-radiopaque silastic catheters for parenteral feeding in prematures requiring injection of small amounts of an iodinated contrast medium. Acta Pediatr 1995; 84: 579–81CrossRefGoogle Scholar
  82. 82.
    Wolff J, Chaikoff IL. The Wolff-Charkoff effect. J Biol Chem 1948; 172: 855–6PubMedGoogle Scholar
  83. 83.
    O’Brien CA, Blumer JL, Speck WT, et al. Effect of bathing with a 4% chlorhexidine gluconate solution on neonatal bacterial colonization [letter]. J Hosp Infect 1984; 5: 141Google Scholar
  84. 84.
    Rovet J. Congenital hypothyroidism: treatment and outcome. Curr Opin Endocrinol Diabetes 2005; 12: 42–52CrossRefGoogle Scholar
  85. 85.
    van Trotsenburg ASP, Vulsma T, Rutgers van Rozenburg-Marres SL, et al. The effect of thyroxine treatment started in the neonatal period on development and growth of two year old Down Syndrome children: a randomized clinical trial. J Clin Endocrinol Metab 2005; 90: 3304–11PubMedCrossRefGoogle Scholar
  86. 86.
    Pilo A, Iervasi G, Vitek F, et al. Thyroid and peripheral production of 3,5,3′-triiodothyronine in humans by multi-compartmental analysis. Am J Physiol 1990; 258: E715–26PubMedGoogle Scholar
  87. 87.
    Kester MH, Martinez de Mena R, Obregon MJ, et al. Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas. J Clin Endocrinol Metab 2004; 89: 3117–28PubMedCrossRefGoogle Scholar
  88. 88.
    Calvo RM, Obregón MJ, Ruiz de Oña C, et al. Congenital hypothyroidism, as studied in rats: crucial role of maternal thyroxine but not of 3,5,3′-triiodothyronine in the protection of the fetal brain. J Clin Invest 1990; 86: 889–99PubMedCrossRefGoogle Scholar
  89. 89.
    van Wassenaer AG, Kok JH, Endert E, et al. Thyroxine supplementation to infants of less than 30 weeks gestational age does not increase plasma triiodothyronine concentrations. Acta Endocrinol (Copenh) 1993; 129: 139–46Google Scholar
  90. 90.
    van Wassenaer AG, Kok JH, Endert E, et al. Thyroxine supplementation to infants of less than 30 weeks gestational age decreases plasma triiodothyronine concentrations. Eur J Endocrinol 1998; 139: 508–15PubMedCrossRefGoogle Scholar
  91. 91.
    Escobar-Morreale HF, Escobar del Rey FE, Obregon MJ, et al. Only the combined treatment with thyroxine and triiodothyronine ensures euthyroidism in all tissues of the thyroidectomized rat. Endocrinology 1996; 137: 2490–502PubMedCrossRefGoogle Scholar
  92. 92.
    Cools F, Van Wassenaer AG, Kok JH, et al. Changes in plasma thyroid hormone levels after a single dose of triiodothyronine in premature infants of less than 30 weeks gestational age. Eur J Endocrinol 2000; 143: 733–7PubMedCrossRefGoogle Scholar
  93. 93.
    Hume R, Simpson J, Delahunty C, et al. Human fetal and cord serum thyroid hormones: developmental trends and interrelationships. J Clin Endocrinol Metab 2004; 89: 4097–103PubMedCrossRefGoogle Scholar
  94. 94.
    Vulsma T, Gons MH, de Vijlder JJM. Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. N Engl J Med 1989; 321: 13–6PubMedCrossRefGoogle Scholar
  95. 95.
    Delange F, Dunn, JT, Glinoer D. Recommendations on iodine nutrition for mothers and infants in Europe. In: Delange F, Dunn JT, Glinoer D, editors. Iodine deficiency disorders in Europe: a continuing concern. New York: Plenum Press, 1993: 471–8Google Scholar
  96. 96.
    Rogahn J, Ryan S, Wells J, et al. Randomized trial of iodine intake and thyroid status in preterm infants. Arch Dis Child Fetal Neonatal Ed 2000; 83: F86–90PubMedCrossRefGoogle Scholar
  97. 97.
    Vermiglio F, Lo Presti VP, Moleti M, et al. Attention deficit and hyperactivity disorders in the offspring of mothers exposed to mild-moderate iodine deficiency: a possible novel iodine deficiency disorder in developed countries. J Clin Endocrinol Metab 2004; 89(12): 6054–60PubMedCrossRefGoogle Scholar
  98. 98.
    Golombek GG, La Gamma EF, Paneth N. Treatment of transient hypothyroxinemia of prematurity: a survey of neonatal practice. J Perinatol 2002; 22: 563–4PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  • Edmund F. La Gamma
    • 1
  • Aleid G. van Wassenaer
    • 2
  • Sergio G. Golombek
    • 1
  • Gabriella Morreale de Escobar
    • 3
  • Joke H. Kok
    • 2
  • Jose Quero
    • 4
  • Susana Ares
    • 4
  • Nigel Paneth
    • 5
  • Delbert Fisher
    • 6
  1. 1.The Regional Neonatal Center, Maria Fareri Children’s Hospital at Westchester Medical CenterNew York Medical CollegeValhallaUSA
  2. 2.Academic Medical CenterEmma Children’s HospitalAmsterdamThe Netherlands
  3. 3.Instituto de Investigaciones Biomedicas ‘Alberto Sols’ — Laboratorio B-16-Arturo DuperierAutonomous University of MadridMadridSpain
  4. 4.Neonatology Unit, University Hospital La PazAutonomous University of MadridMadridSpain
  5. 5.Departments of Epidemiology and Pediatrics and Human DevelopmentMichigan State UniversityEast LansingUSA
  6. 6.Quest Diagnostics Nichols InstituteSan Juan CapistranoUSA

Personalised recommendations