Treatments in Endocrinology

, Volume 3, Issue 3, pp 191–196 | Cite as

Effects of Oral Contraceptives on Bone Mineral Density

  • Marco Gambacciani
  • Patrizia Monteleone
  • Massimo Ciaponi
  • Alessandro Sacco
  • Andrea R. Genazzani
Review Article


Osteoporosis is a major health problem that leads to a high incidence of spine, radial, and hip fractures. It is now well recognized that a chronically hypoestrogenic state increases bone turnover that, in turn, causes a critical decrease in bone mineral density (BMD), an important determinant of fracture risk. During the premenopausal period, hypogonadism can have deleterious effects on skeletal health by reducing peak bone mass or inducing precocious bone loss. In young women, hypothalamic amenorrhea, caused by gonado-tropin-releasing hormone pulsatility dysregulation, is often associated with bone loss.

Although the relationship between hypothalamic amenorrhea and bone density is not completely understood, the most plausible intervention for this disorder at the moment seems to be the use of hormone replacement. Oral contraceptives are associated with an improvement in BMD if assumed upon the onset of anovulatory cycles and, therefore, estrogen deficiency, but confer no benefit in healthy women with normal ovarian function. In perimenopausal oligomenorrheic women, the use of oral contraceptives seems to have bone-sparing effects.

In conclusion, the protective role of oral contraceptives on bone density is biologically plausible, since this treatment represents a replacement therapy with continuous exposure to exogenous estrogens.



The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.


  1. 1.
    Anasti JN, Kalantaridou SN, Kimzey LM, et al. Bone loss in young women with karyotypically normal spontaneous premature ovarian failure. Obstet Gynecol 1998; 91: 12–5PubMedCrossRefGoogle Scholar
  2. 2.
    Bachrach LK. Malnutrition, endocrinopathies and deficits in bone mass acquisition. In: Bonjour JP, Tsang RC, editors. Nutrition and bone development. Philadelphia (PA): Lippincott-Raven, 1999: 262–77Google Scholar
  3. 3.
    Bland R. Steroid hormone receptor expression and action on bone. Clin Sci 2000; 98: 217–40PubMedCrossRefGoogle Scholar
  4. 4.
    Ernst M, Heath JK, Rodan GA. Estradiol effects on proliferation, messenger ribonucleic acid for collagen and insulin-like growth factor 1, and parathyroid hormone stimulated adenylate cyclase activity in osteoblastic cells from calvariae and long bones. Endocrinology 1989; 125: 825–33PubMedCrossRefGoogle Scholar
  5. 5.
    Qu Q, Perlala-Heape M, Kapanen A, et al. Estrogen enhances differentiation of osteoblasts in mouse bone marrow culture. Bone 1998; 22: 201–9PubMedCrossRefGoogle Scholar
  6. 6.
    Jilka RL. Cytokines, bone remodelling, and estrogen deficiency: a 1998 update. Bone 1998; 23: 75–81PubMedCrossRefGoogle Scholar
  7. 7.
    Girasole G, Jilka RL, Passeri G, et al. 17β-estradiol inhibits interleukin-6 production by bone-marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the anti-osteoporotic effect of estrogens. J Clin Invest 1992; 89: 883–91PubMedCrossRefGoogle Scholar
  8. 8.
    Kameda T, Mano H, Yuasa T, et al. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J Exp Med 1997; 186: 489–95PubMedCrossRefGoogle Scholar
  9. 9.
    Ott SM. Attainment of peak bone mass. J Clin Endocrinol Metab 1990; 71:1082a–cPubMedCrossRefGoogle Scholar
  10. 10.
    Geusens P, Dequeker J, Verstraeten A, et al. Age-, sex-, and menopause-related changes of femur and peripheral bone: population study using dual and single photon absorptiometry and radiogrammetry. J Nucl Med 1986; 27: 1504–9Google Scholar
  11. 11.
    Riggs BL, Wahner HW, Dunn WL, et al. Differential changes in bone mineral density of the appendicular and axial skeleton with ageing. J Clin Invest 1981; 67: 328–35PubMedCrossRefGoogle Scholar
  12. 12.
    Gambacciani M, Spinetti A, De Simone L, et al. The relative contributions of menopause and aging to postmenopausal vertebral osteopenia. J Clin Endocrinol Metab 1993; 77(11): 48–52Google Scholar
  13. 13.
    Hergenroeder AC. Bone mineralization, hypothalamic amenorrhea, and sex steroid therapy in female adolescents and young adults. J Pediatr 1995; 126: 683–9PubMedCrossRefGoogle Scholar
  14. 14.
    Bowman BM, Miller SC. Elevated progesterone during pseudopregnancy may prevent bone loss associated with low estrogen. J Bone Miner Res 1996; 11: 15–21PubMedCrossRefGoogle Scholar
  15. 15.
    Kasperk CH, Wergedal JE, Farley JR, et al. Androgens directly stimulate proliferation of bone cells in vitro. Endocrinology 1989; 124: 1576–8PubMedCrossRefGoogle Scholar
  16. 16.
    Chen L, Foged NT. Differentiation of osteoblast in vitro is regulated by progesterone. J Tongji Med Univ 1996; 16: 83–6PubMedCrossRefGoogle Scholar
  17. 17.
    Kasperk CH, Wakley GK, Hierl T, et al. Gonadal and adrenal androgens are potent regulators of human bone metabolism in vitro. J Bone Miner Res 1997; 12: 464–71PubMedCrossRefGoogle Scholar
  18. 18.
    Klibanski A, Biller BMK, Rosenthal DI, et al. Effects of prolactin and estrogen deficiency in amenorrheic bone loss. J Clin Endocrinol Metab 1988; 67: 124–30PubMedCrossRefGoogle Scholar
  19. 19.
    Biller BMK, Coughlin JF, Saxe V, et al. Osteopenia in women with hypothalamic amenorrhea: a prospective study. Obstet Gynecol 1991; 78: 996–1001PubMedGoogle Scholar
  20. 20.
    Slemenda C, Longcope C, Peacock M, et al. Sex steroids, bone mass and bone loss: a prospective study of pre-, peri-, postmenopausal women. J Clin Invest 1996; 97: 14–21PubMedCrossRefGoogle Scholar
  21. 21.
    Steinberg KK, Freni-Titulaer LW, De Puey EG, et al. Sex steroids and bone density in premenopausal and postmenopausal women. J Clin Endocrinol Metab 1988; 69: 533–9CrossRefGoogle Scholar
  22. 22.
    Berga S, Mortola J, Girton L, et al. Neuroendocrine aberrations in women with functional hypothalamic amenorrhea. J Clin Endocrinol Metab 1989; 68: 301–8PubMedCrossRefGoogle Scholar
  23. 23.
    Biller BMK, Federoff H, Koenig J, et al. Abnormal cortisol secretion and responses to corticotropin-releasing hormone in women with hypothalamic amenorrhea. J Clin Endocrinol Metab 1990; 70: 311–7PubMedCrossRefGoogle Scholar
  24. 24.
    Suh B, Liu J, Berga S, et al. Hypercortisolism in patients with functional hypothalamic-amenorrhea. J Clin Endocrinol Metab 1988; 66: 733–9PubMedCrossRefGoogle Scholar
  25. 25.
    Canalis E. Mechanisms of glucocorticoid action in bone implications to glucocorticoid-induced osteoporosis. J Clin Endocrinol Metab 1996; 81: 3441–7PubMedCrossRefGoogle Scholar
  26. 26.
    Morris H, Need A, O’Loughlin P, et al. Malabsorption of calcium in corticosteroid-induced osteoporosis. Calcif Tissue Int 1990; 45: 305–8CrossRefGoogle Scholar
  27. 27.
    Hattersley A, Meeran K, Burrin J, et al. The effect of long- and short-term corticosteroids on plasma calcitonin and parathyroid hormone levels. Calcif Tissue Int 1994; 54: 198–202PubMedCrossRefGoogle Scholar
  28. 28.
    Urena P, Iida-Klein A, Kong X, et al. Regulation of parathyroid hormone (PTH)/ PTH-related peptide receptor messenger ribonucleic acid by glucocorticoids and PTH in ROS17/2.8 and OK cells. Endocrinology 1994; 134: 451–6PubMedCrossRefGoogle Scholar
  29. 29.
    Haenggi W, Casez J-P, Birkhaeuser MH, et al. Bone mineral density in young women with long-standing amenorrhea: limited effect of hormone replacement therapy with ethinylestradiol and desogestrel. Osteoporos Int 1994; 4: 99–103PubMedCrossRefGoogle Scholar
  30. 30.
    Rencken M, Chestnut C, Drinkwater B. Bone density at multiple skeletal sites in amenorrheic athletes. JAMA 1996; 276: 238–40PubMedCrossRefGoogle Scholar
  31. 31.
    Glastre C, Braillon P, David L, et al. Measurement of bone mineral content of the lumbar spine by dual energy x-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab 1990; 70: 1330–3PubMedCrossRefGoogle Scholar
  32. 32.
    Theintz G, Buchs D, Rizzoli R, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 1992; 75: 1060–5PubMedCrossRefGoogle Scholar
  33. 33.
    Warren M, Brooks-Gunn J, Fox R, et al. Lack of bone accretion and amenorrhea: evidence for a relative osteopenia in weight-bearing bones. J Clin Endocrinol Metab 1991; 72: 847–53PubMedCrossRefGoogle Scholar
  34. 34.
    Warren MP, Brooks-Gun J, Fox RP, et al. Osteopenia in exercise-associated amenorrhea using ballet dancers as a model: a longitudinal study. J Clin Endodrinol Metab 2002; 87(7): 3162–8CrossRefGoogle Scholar
  35. 35.
    Recker RR, Davies KM, Hinders SM, et al. Bone gain in young adult women. JAMA 1992 Nov 4; 268(17): 2403–8PubMedCrossRefGoogle Scholar
  36. 36.
    Mazess RB, Barden HS. Bone density in premenopausal women: effects of age, dietary intake, physical activity, smoking, and birth-control pills. Am J Clin Nutr 1991 Jan; 53(1): 132–42PubMedGoogle Scholar
  37. 37.
    Lindsay R, Tohme J, Kanders B. The effect of oral contraceptive use on vertebral bone mass in pre- and post-menopausal women. Contraception 1986 Oct; 34(4): 333–40PubMedCrossRefGoogle Scholar
  38. 38.
    Wanichsetakul P, Kamudhamas A, Watanaruangkovit P, et al. Bone mineral density at various anatomic bone sites in women receiving combined oral contraceptives and depot-medroxyprogesterone acetate for contraception. Contraception 2002 Jun; 65(6): 407–10PubMedCrossRefGoogle Scholar
  39. 39.
    Prior JC, Kirkland SA, Joseph L, et al. Oral contraceptive use and bone mineral density in premenopausal women: cross-sectional, population-based data from the Canadian Multicentre Osteoporosis Study. CMAJ 2001 Oct 16; 165(8): 1023–9PubMedGoogle Scholar
  40. 40.
    Coenen CM, Thomas CM, Borm GF, et al. Changes in androgens during treatment with four low-dose contraceptives. Contraception 1996 Mar; 53(3): 171–6PubMedCrossRefGoogle Scholar
  41. 41.
    Polatti F, Perotti F, Filippa N, et al. Bone mass and long-term monophasic oral contraceptive-treatment in young women. Contraception 1995; 51(4): 221–4PubMedCrossRefGoogle Scholar
  42. 42.
    Cromer BA. Effects of hormonal contraceptives on bone mineral density. Drug Saf 1999 Mar; 20(3): 213–22PubMedCrossRefGoogle Scholar
  43. 43.
    Cundy T, Cornish J, Roberts H, et al. Spinal bone density in women using depot medroxyprogesterone contraception. Obstet Gynecol 1998; 92: 569–73PubMedCrossRefGoogle Scholar
  44. 44.
    Cundy T, Evans M, Roberts H, et al. Bone density in women receiving depot medroxyprogesterone acetate for contraception. BMJ 1991; 303: 13–6PubMedCrossRefGoogle Scholar
  45. 45.
    Cromer BA, Blair JM, Mahan JD, et al. A prospective comparison of bone density in adolescent girls receiving depot medroxyprogesterone acetate (Depo Provera), levonorgestrel (Norplant), or oral contraceptives. J Pediatr 1996; 129: 671–6PubMedCrossRefGoogle Scholar
  46. 46.
    Banks E, Berrington A, Casabonne D. Overview of the relationship between use of progestogen-only contraceptives and bone mineral density. BJOG 2001 Dec; 108(12): 1214–21PubMedGoogle Scholar
  47. 47.
    Gbolade B, Ellis S, Murby B, et al. Bone density in long term users of depot medroxyprogesterone acetate. Br J Obstet Gynaecol 1998; 105: 790–4PubMedCrossRefGoogle Scholar
  48. 48.
    Paiva LC, Pinto-Neto AM, Faundes A. Bone density amongst long term users of medroxyprogesterone acetate as a contraceptive. Contraception 1998; 58: 351–5PubMedCrossRefGoogle Scholar
  49. 49.
    Jeppsson S, Gershagen S, Johansson EDB, et al. Serum medroxyprogesterone (MPA), sex hormone binding globulin, gonadal steroids, gonadotropins and prolactin in women during long term use of depo-MPA as a contraceptive. Acta Endocrinol 1982; 99: 339–43PubMedGoogle Scholar
  50. 50.
    De Cree C, Lewin R, Ostyn M. Suitability of cyproterone acetate in the treatment of osteoporosis associated with athletic amenorrhea. Int J Sports Med 1988 Jun; 9(3): 187–92PubMedCrossRefGoogle Scholar
  51. 51.
    Cumming D. Exercise-associated amenorrhea, low bone density, and estrogen replacement therapy. Arch Intern Med 1996; 156: 2193–1025PubMedCrossRefGoogle Scholar
  52. 52.
    Hergenroeder AC, Smith EO, Shypailo R, et al. Bone mineral changes in young women with hypothalamic amenorrhea treated with oral contraceptives, medroxyprogesterone, or placebo over 12 months. Am J Obstet Gynecol 1997; 176: 1017–25PubMedCrossRefGoogle Scholar
  53. 53.
    Castelo-Branco C, Vicente JJ, Pous F, et al. Bone mineral density in young hypothalamic oligoamenorrheic women treated with oral contraceptives. J Reprod Med 2001; 46(10): 875–9PubMedGoogle Scholar
  54. 54.
    Grinspoon S, Miller K, Coyle C, et al. Severity of osteopenia in estrogen-deficient women with anorexia nervosa and hypothalamic amenorrhea. J Clin Endocrinol Metab 1999; 84(6): 2049–55PubMedCrossRefGoogle Scholar
  55. 55.
    Rigotti NA, Neer RM, Skates SJ, et al. The clinical course of osteoporosis in anorexia nervosa. JAMA 1991; 265: 1133–8PubMedCrossRefGoogle Scholar
  56. 56.
    Klibanski A, Biller BMK, Schoenfeld DA, et al. The effects of estrogen administration on trabecular bone loss in young women with anorexia nervosa. J Clin Endocrinol Metab 1995; 80: 898–904PubMedCrossRefGoogle Scholar
  57. 57.
    Munoz MT, Morande G, Garcia-Centenara JA, et al. The effects of estrogen administration on bone mineral density in adolescents with anorexia nervosa. Eur J Endocrinol 2002; 146(1): 45–50PubMedCrossRefGoogle Scholar
  58. 58.
    Gambacciani M, Spinetti A, Gallo R, et al. Ultrasonographic bone characteristics during normal pregnancy: longitudinal and cross-sectional evaluation. Am J Obstet Gynecol 1995; 173 (3 Pt 1): 890–3PubMedCrossRefGoogle Scholar
  59. 59.
    Rodin A, Murby B, Smith MA, et al. Perimenopausal bone loss in the lumbar spine and neck of femur: a study of 225 Caucasian women. Bone 1990; 11: 1–5PubMedCrossRefGoogle Scholar
  60. 60.
    Nilas L, Christiansen C. The pathophysiology of peri- and postmenopausal bone loss. Br Obstet Gynaecol 1989; 96: 580–7CrossRefGoogle Scholar
  61. 61.
    Gambacciani M, Spinetti A, Taponeco F, et al. Bone loss in perimenopausal women: a longitudinal study. Maturitas 1994; 18: 191–7PubMedCrossRefGoogle Scholar
  62. 62.
    Perrone G, Galoppi P, Capri O, et al. Lumbar and femoral bone density in perimenopausal women with irregular cycles. Int J Fertil Menopausal Stud 1995; 3: 120–5Google Scholar
  63. 63.
    Wallach S, Henneman P. Prolonged estrogen therapy in postmenopausal women. JAMA 1959; 171: 1637–41CrossRefGoogle Scholar
  64. 64.
    Lindsay R. Estrogen therapy in the prevention and management of osteoporosis. Am J Obstet Gynecol 1987; 156: 1347–56PubMedGoogle Scholar
  65. 65.
    Gambacciani M, Spinetti A, Cappagli B, et al. Hormone replacement therapy in perimenopausal women with a low dose oral contraceptive preparation: effects on bone mineral density and metabolism. Maturitas 1994; 19: 125–31PubMedCrossRefGoogle Scholar
  66. 66.
    Gambacciani M, Spinetti A, Taponeco F, et al. Longitudinal evaluation of perimenopausal vertebral bone loss: effects of a low-dose oral contraceptive preparation on bone mineral density and metabolism. Obstet Gynecol 1994 Mar; 83(3): 392–6PubMedGoogle Scholar
  67. 67.
    Gambacciani M, Ciaponi M, Cappagli B, et al. Longitudinal evaluation of perimenopausal femoral bone loss: effects of a low-dose oral contraceptive preparation on bone mineral density and metabolism. Osteoporos Int 2000; 11: 544–8PubMedCrossRefGoogle Scholar
  68. 68.
    Kritz-Silverstein D, Barrett-Connor E. Bone mineral density in postmenopausal women as determined by prior oral contraceptive use. Am J Public Health 1993; 83: 100–2PubMedCrossRefGoogle Scholar
  69. 69.
    Gambacciani M, Cappagli B, Ciaponi M, et al. Hormone replacement therapy in perimenopause: effect of a low-dose oral contraceptive preparation on bone quantitative ultrasound characteristics. Menopause 1999; 6(1): 43–8PubMedCrossRefGoogle Scholar
  70. 70.
    O’Neill TW, Silman AJ, Naves Diaz M, et al. Influence of hormonal and reproductive factors on the risk of vertebral deformity in European women. Osteoporos Int 1997; 7: 72–8PubMedCrossRefGoogle Scholar
  71. 71.
    Mallmin H, Ljunghall S, Persson J, et al. Risk factors for fractures of the distal forearm: a population based case-control study. Osteoporos Int 1994; 4: 298–304PubMedCrossRefGoogle Scholar
  72. 72.
    O’Neill TW, Marsden D, Adams JE, et al. Risk factors, falls, and fractures of the distal forearm in Manchester, UK. J Epidemiol Community Health 1996; 50: 288–92PubMedCrossRefGoogle Scholar
  73. 73.
    Cooper C, Hannaford F, Croft P, et al. Oral contraceptive pill use and fractures in women: a prospective study. Bone 1993; 14: 41–5PubMedCrossRefGoogle Scholar
  74. 74.
    Michaëlsson K, Baron JA, Farahmand BY, et al. Oral-contraceptive use and risk of hip fractures: a case-control study. Lancet 1999; 353: 1481–4PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2004

Authors and Affiliations

  • Marco Gambacciani
    • 1
  • Patrizia Monteleone
    • 1
  • Massimo Ciaponi
    • 1
  • Alessandro Sacco
    • 1
  • Andrea R. Genazzani
    • 1
  1. 1.Department of Obstetrics and Gynecology ‘Piero Fioretti’University of PisaPisaItaly

Personalised recommendations