American Journal of Cancer

, Volume 5, Issue 3, pp 141–153

Emerging Therapies for Multiple Myeloma

  • Klaus Podar
  • Teru Hideshima
  • Yu-Tzu Tai
  • Paul G. Richardson
  • Dharminder Chauhan
  • Kenneth C. Anderson
Leading Article


Multiple myeloma (MM) is a malignancy of plasma cells within the bone marrow characterized by bone loss, renal disease, and immunodeficiency. Recent advances in the understanding of MM pathogenesis have improved established conventional cytotoxic therapy as well as transplantation regimens. Despite these advances, median overall survival is only 3–5 years. Therefore new therapies are urgently needed. Besides thalidomide, whose antimyeloma activity has only recently been defined, a plethora of novel agents, including the thalidomide-derived immunomodulatory drugs and bortezomib, have been identified to directly target the tumor cell or its microenvironment, and thereby inhibit MM cell growth and survival, and to overcome drug resistance. After validation of their preclinical anti-MM activity, several clinical trials are now ongoing to test the efficacy of these novel therapeutics, administered alone or in combination with conventional or other novel therapeutics and bone marrow transplantation. This article reviews the development of MM therapy, from its initial description approximately 150 years ago to the novel therapy regimens of recent years, highlighting that MM may soon become a chronic disease.


  1. 1.
    Kyle RA, Rajkumar SV. Multiple myeloma. N Engl J Med 2004; 351(18): 1860–73PubMedCrossRefGoogle Scholar
  2. 2.
    Kyle RA. Five decades of therapy for multiple myeloma: a paradigm for therapeutic models. Leukemia 2005; 19(6): 910–2PubMedCrossRefGoogle Scholar
  3. 3.
    Alwall N. Urethane in multiple myeloma: I. Final report of a case treated more than four years with urethane. Acta Med Scand 1952; 144(2): 114–8PubMedCrossRefGoogle Scholar
  4. 4.
    Blokhin N, Larionov L, Perevodchikova N, et al. Clinical experiences with sarcolysin in neoplastic diseases. Ann N Y Acad Sci 1958; 68(3): 1128–32PubMedCrossRefGoogle Scholar
  5. 5.
    Bergsagel DE, Phase II trials of mitomycin C, AB-100, NSC-1026, L-sarcolysin, and meta-sarcolysin, in the treatment of multiple myeloma. Cancer Chemother Rep 1962; 16: 261–66PubMedGoogle Scholar
  6. 6.
    Alexanian R, Haut A, Khan AU, et al. Treatment for multiple myeloma: combination chemotherapy with different melphalan dose regimens. JAMA 1969Jun 2; 208(9): 1680–5PubMedCrossRefGoogle Scholar
  7. 7.
    Myeloma-Trialists’-Collaborative-Group. Combination chemotherapy versus melphalan plus prednisone as treatment for multiple myeloma: an overview of 6633 patients from 27 randomized trials. Myeloma Trialists’ Collaborative Group. J Clin Oncol 1998; 16(12): 3832–42Google Scholar
  8. 8.
    Bergsagel DE, Bailey AT, Langley GR, et al. The chemotherapy on plasma-cell myeloma and the incidence of acute leukemia. N Engl J Med 1979; 301(14): 743–8PubMedCrossRefGoogle Scholar
  9. 9.
    Bergsagel DE. Chemotherapy of myeloma: drug combinations versus single agents, an overview, and comments on acute leukemia in myeloma. Hematol Oncol 1988; 6(2): 159–66PubMedCrossRefGoogle Scholar
  10. 10.
    Finnish-Leukaemia-Group. Acute leukaemia and other secondary neoplasms in patients treated with conventional chemotherapy for multiple myeloma: a Finnish Leukaemia Group study. Eur J Haematol 2000; 65(2): 123–7CrossRefGoogle Scholar
  11. 11.
    Cuzick J, Erskine S, Edelman D, et al. A comparison of the incidence of the myelodysplastic syndrome and acute myeloid leukaemia following melphalan and cyclophosphamide treatment for myelomatosis: a report to the Medical Research Council’s working party on leukaemia in adults. Br J Cancer 1987; 55(5): 523–9PubMedCrossRefGoogle Scholar
  12. 12.
    Govindarajan R, Jagannath S, Flick JT, et al. Preceding standard therapy is the likely cause of MDS after autotransplants for multiple myeloma. Br j Haematoi 1996; 95(2): 349–53CrossRefGoogle Scholar
  13. 13.
    Attal M, Harousseau JL, Stoppa AM, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med 1996; 335(2): 91–7PubMedCrossRefGoogle Scholar
  14. 14.
    Child JA, Morgan GJ, Davies FE, et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003; 348(19): 1875–83PubMedCrossRefGoogle Scholar
  15. 15.
    Fermand JP, Katsahian S, Divine M, et al. High-dose therapy and autologous blood stem-cell transplantation compared with conventional treatment in myeloma patients aged 55 to 65 years: long-term results of a randomized control trial from the group myelome-autogreffe. J Clin Oncol 2005; 23(36): 9227–33PubMedCrossRefGoogle Scholar
  16. 16.
    Barlogie B, Kyle RA, Anderson KC, et al. Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol 2006Feb 20; 24(6): 929–36PubMedCrossRefGoogle Scholar
  17. 17.
    Blade J, Rosinol L, Sureda A, et al. High-dose therapy intensification compared with continued standard chemotherapy in multiple myeloma patients responding to the initial chemotherapy: long-term results from a prospective randomized trial from the Spanish cooperative group PETHEMA. Blood 2005; 106(12): 3755–9PubMedCrossRefGoogle Scholar
  18. 18.
    Morris TC, Velangi M, Jackson G, et al. Less than half of patients aged 65 years or under with myeloma proceed to transplantation: results of a two region population-based survey. Br J Haematoi 2005; 128(4): 510–2CrossRefGoogle Scholar
  19. 19.
    Saravanamuttu K, Byrne JL, Williams C, et al. Uptake of high-dose therapy and peripheral blood stem cell transplantation in myeloma patients <65 years: the role of the myeloma multi-disciplinary team. Br J Haematoi 2005; 130(2): 318–9CrossRefGoogle Scholar
  20. 20.
    Barlogie B, Jagannath S, Vesole DH, et al. Superiority of tandem autologous transplantation over standard therapy for previously untreated multiple myeloma. Blood 1997; 89(3): 789–93PubMedGoogle Scholar
  21. 21.
    Barlogie B, Jagannath S, Desikan KR, et al. Total therapy with tandem transplants for newly diagnosed multiple myeloma. Blood 1999; 93(1): 55–65PubMedGoogle Scholar
  22. 22.
    Attal M, Harousseau JL, Facon T, et al. Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med 2003; 349(26): 2495–502PubMedCrossRefGoogle Scholar
  23. 23.
    Cavo M, Zamagni E, Cellini C. Single versus double autologous stem cell transplantation for multiple myeloma: Italian experience [abstract]. Hematol J 2003; 4 Suppl. 1: 560Google Scholar
  24. 24.
    Sonneveld P, van derHolt B, Segeren CM, Intensive versus double intensive therapy in untreated multiple myeloma: updated analysis of the prospective phase III study Hovon 24-MM. Hematol J 2003; 4 Suppl. 1: 559–60Google Scholar
  25. 25.
    Fermand JP, Alberti C, Marolleau JP, Single versus double high dose therapy supported with autologous blood stem cell transplantation using unselected or CD34 enriched ABSC: results of a two designed randomized trial in 230 young patients with multiple myeloma. Hematol J 2003; 4 Suppl, 1: S59Google Scholar
  26. 26.
    Goldschmidt H, Single versus double high dose therapy in multiple myeloma: second analysis of the trial GMMG-HD2. Proceedings Multiple Myeloma 2004 Meeting; 2004 Apr 22–24; Torino, 119Google Scholar
  27. 27.
    Segeren CM, Sonneveid P, van derHolt B, et al. Overall and event-free survival are not improved by the use of myeloablative therapy following intensified chemotherapy in previously untreated patients with multiple myeloma: a prospective randomized phase 3 study. Blood 2003; 101(6): 2144–51PubMedCrossRefGoogle Scholar
  28. 28.
    Gahrton G, Tura S, Ljungman P, et al. Prognostic factors in allogeneic bone marrow transplantation for multiple myeloma. J Clin Oncol 1995; 13(6): 1312–22PubMedGoogle Scholar
  29. 29.
    Bensinger WI, Buckner CD, Anasetti C, et al, Allogeneic marrow transplantation for multiple myeloma: an analysis of risk factors on outcome. Blood 1996; 88(7): 2787–93PubMedGoogle Scholar
  30. 30.
    Alyea E, Weiler E, Schlossman R, et al. T-cell: depleted allogeneic bone marrow transplantation followed by donor lymphocyte infusion in patients with multiple myeloma: induction of graft-versus-myeloma effect. Blood 2001; 98(4): 934–9PubMedCrossRefGoogle Scholar
  31. 31.
    Lokhorst HM, Segeren CM, Verdonck LF, et al. Partially T-cell-depleted allogeneic stem-cell transplantation for first-line treatment of multiple myeloma: a prospective evaluation of patients treated in the phase III study HOVON 24 MM. J Clin Oncol 2003; 21(9): 1728–33PubMedCrossRefGoogle Scholar
  32. 32.
    Maloney DG, Sandmaier BM, Mackinnon S, et al. Non-myeloablative transplantation. Hematology (Am Soc Hematol Educ Program) 2002: 392–421Google Scholar
  33. 33.
    Badros A, Barlogie B, Siegel E, et al. Improved outcome of allogeneic transplantation in high-risk multiple myeloma patients after nonmyeloablative conditioning. J Clin Oncol 2002; 20(5): 1295–303PubMedCrossRefGoogle Scholar
  34. 34.
    Kroger N, Schwerdtfeger R, Kiehl M, et al, Autologous stem cell transplantation followed by a dose-reduced allograft induces high complete remission rate in multiple myeloma. Blood 2002; 100(3): 755–60PubMedCrossRefGoogle Scholar
  35. 35.
    Maloney DG, Molina AJ, Sahebi F, et al, Allografting with nonmyeloablative conditioning following cytoreductive autografts for the treatment of patients with multiple myeloma. Blood 2003; 102(9): 3447–54PubMedCrossRefGoogle Scholar
  36. 36.
    Bruno B, Rotta M, Patriarca F, et al. Double autologous transplant versus tandem autologus: non myeloablative allogeneic transplant for newly diagnosed multiple myeloma [abstract]. Blood 2005; 106(11): 46Google Scholar
  37. 37.
    Carella AM, Spriano M, Corsetti MT, et al. Autografting followed closely by nonmyeloablative allografting as consolidation immunotherapy reduces disease progression compared to tandem autografting in multiple myeloma [abstract no. 112]. Blood 2005, 328aGoogle Scholar
  38. 38.
    Cavo M, Zamagni E, Tosi P, et al. Superiority of thalidomide and dexamethasone over vincristine-doxorubicindexamethasone (VAD) as primary therapy in preparation for autologous transplantation for multiple myeloma. Blood 2005; 106(1): 35–9PubMedCrossRefGoogle Scholar
  39. 39.
    Rajkumar SV, Gertz, MA, Kyle A, et al. Current therapy for multiple myeloma. Mayo Clin Proc 2002; 77(8): 813–22PubMedCrossRefGoogle Scholar
  40. 40.
    Facon T, Mary JY, Pegourie B, et al, Dexamethasone-based regimens versus melphalan-prednisone for elderly multiple myeloma patients ineligible for high-dose therapy. Blood 2006Feb 15; 107(4): 1292–8PubMedCrossRefGoogle Scholar
  41. 41.
    Berenson JR, Lichtenstein A, Porter L, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med 1996; 334(8): 488–93PubMedCrossRefGoogle Scholar
  42. 42.
    Ludwig FI, Fritz E, Kotzmann H, et al, Erythropoietin treatment of anemia associated with multiple myeloma. N Engl J Med 1990; 322(24): 1693–9PubMedCrossRefGoogle Scholar
  43. 43.
    Bociek RG, Armitage JO. Hematopoietic growth factors. CA Cancer J Clin 1996; 46(3): 165–84PubMedCrossRefGoogle Scholar
  44. 44.
    Marx RE, Sawatari Y, Fortin M, et al, Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 2005; 63(11): 1567–75PubMedCrossRefGoogle Scholar
  45. 45.
    Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg 2003; 61(9): 1115-7Google Scholar
  46. 46.
    Ruggiero SL, Mehrotra B, Rosenberg TJ, et al. Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. J Oral Maxillofac Surg 2004; 62(5): 527–34PubMedCrossRefGoogle Scholar
  47. 47.
    Hideshima T, Anderson KC. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2002; 2(12): 927–37PubMedCrossRefGoogle Scholar
  48. 48.
    Podar K, Hideshima T, Chauhan D, et al. Targeting signalling pathways for the treatment of multiple myeloma. Expert Opin Ther Targets 2005; 9(2): 359–81PubMedCrossRefGoogle Scholar
  49. 49.
    Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999; 341(21): 1565–71PubMedCrossRefGoogle Scholar
  50. 50.
    Barlogie B, Desikan R, Eddlemon P, et al. Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients. Blood 2001; 98(2): 492–4PubMedCrossRefGoogle Scholar
  51. 51.
    Rajkumar SV, Fonseca R, Dispenzieri A, et al. Thalidomide in the treatment of relapsed multiple myeloma. Mayo Clin Proc 2000; 75(9): 897–901PubMedCrossRefGoogle Scholar
  52. 52.
    Dimopoulos MA, Anagnostopoulos A, Weber D. Treatment of plasma cell dyscrasias with thalidomide and its derivatives. J Clin Oncol 2003; 21(23): 4444–54PubMedCrossRefGoogle Scholar
  53. 53.
    D’Amato RJ, Lentzsch S, Anderson KC, et al. Mechanism of action of thalidomide and 3-aminothalidomide in multiple myeloma. Semin Oncol 2001; 28(6): 597–601PubMedCrossRefGoogle Scholar
  54. 54.
    Sampaio EP, Sarno EN, Galilly R, et al. Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 1991; 173(3): 699–703PubMedCrossRefGoogle Scholar
  55. 55.
    Hideshima T, Chauhan D, Schlossman R, et al. The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 2001; 20(33): 4519–27PubMedCrossRefGoogle Scholar
  56. 56.
    Mitsiades N, Mitsiades CS, Poulaki V, et al, Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 2002; 99(12): 4525–30PubMedCrossRefGoogle Scholar
  57. 57.
    Hideshima T, Chauhan D, Shima Y, et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 2000; 96(9): 2943–50PubMedGoogle Scholar
  58. 58.
    Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001; 98(1): 210–6PubMedCrossRefGoogle Scholar
  59. 59.
    Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer 2004; 4(4): 314–22PubMedCrossRefGoogle Scholar
  60. 60.
    Weber D, Rankin K, Gavino M, et al, Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. J Clin Oncol 2003; 21(1): 16–9PubMedCrossRefGoogle Scholar
  61. 61.
    Rajkumar SV, Hayman S, Gertz MA, et al. Combination therapy with thalidomide plus dexamethasone for newly diagnosed myeloma. J Clin Oncol 2002; 20(21): 4319–23PubMedCrossRefGoogle Scholar
  62. 62.
    Garcia-Sanz R, Gonzalez-Fraile MI, Sierra M, et al. The combination of thalidomide, cyclophosphamide and dexamethasone (ThaCyDex) is feasible and can be an option for relapsed/refractory multiple myeloma. Hematol J 2002; 3(1): 43–8PubMedCrossRefGoogle Scholar
  63. 63.
    Coleman M, Leonard J, Lyons L, et al. BLT-D (clarithromycin [Biaxin], low-dose thalidomide, and dexamethasone) for the treatment of myeloma and Walden-strom’s macroglobulinemia. Leuk Lymphoma 2002; 43(9): 1777–82PubMedCrossRefGoogle Scholar
  64. 64.
    Osman K, Comenzo R, Rajkumar SV. Deep venous thrombosis and thalidomide therapy for multiple myeloma. N Engl J Med 2001; 344(25): 1951–2PubMedCrossRefGoogle Scholar
  65. 65.
    Zangari M, Anaissie E, Barlogie B, et al. Increased risk of deep-vein thrombosis in patients with multiple myeloma receiving thalidomide and chemotherapy. Blood 2001; 98(5): 1614–5PubMedCrossRefGoogle Scholar
  66. 66.
    Baz R, Li L, Kottke-Marchant K, et al. The role of aspirin in the prevention of thrombotic complications of thalidomide and anthracycline-based chemotherapy for multiple myeloma. Mayo Clin Proc 2005; 80(12): 1568–74PubMedCrossRefGoogle Scholar
  67. 67.
    Yakoub-Agha I, Attal M, Dumontet C, et al. Thalidomide in patients with advanced multiple myeloma: a study of 83 patients: report of the Intergroupe Francophone du Myelome (IFM). Hematol J 2002; 3(4): 185–92PubMedCrossRefGoogle Scholar
  68. 68.
    Neben K, Moehler T, Benner A, et al. Dose-dependent effect of thalidomide on overall survival in relapsed multiple myeloma. Clin Cancer Res 2002; 8(11): 3377–82PubMedGoogle Scholar
  69. 69.
    Palumbo A, Giaccone L, Bertola A, et al. Low-dose thalidomide plus dexamethasone is an effective salvage therapy for advanced myeloma. Haematologica 2001; 86(4): 399–403PubMedGoogle Scholar
  70. 70.
    Durie BG. Low-dose thalidomide in myeloma: efficacy and biologic significance. Semin Oncol 2002; 29(6 Suppl. 17): 34–8PubMedGoogle Scholar
  71. 71.
    Leleu X, Magro L, Fawaz, A, et al. Efficacy of a low dose of thalidomide in advanced multiple myeloma. Blood 2002; 100(4): 1519–20PubMedCrossRefGoogle Scholar
  72. 72.
    Johnston RE, Abdalla SH. Thalidomide in low doses is effective for the treatment of resistant or relapsed multiple myeloma and for plasma cell leukaemia. Leuk Lymphoma 2002; 43(2): 351–4PubMedCrossRefGoogle Scholar
  73. 73.
    Kees M, Dimou G, Siliaber C, et al. Low dose thalidomide in patients with relapsed or refractory multiple myeloma. Leuk Lymphoma 2003; 44(11): 1943–6PubMedCrossRefGoogle Scholar
  74. 74.
    Palumbo A, Bertola A, Falco P, et al. Efficacy of low-dose thalidomide and dexamethasone as first salvage regimen in multiple myeloma. Hematol J 2004; 5(4): 318–24PubMedCrossRefGoogle Scholar
  75. 75.
    Yakoub-Agha I, Hulin C, Doyen C, et al. A multicenter prospective randomized study testing non-inferiority of thalidomide 100mg/day as compared with 400mg/day in patients with refractory/ relapsed multiple myeloma: first results of the final analysis of the IFM 01–02 study [abstract]. Blood 2005; 106(11): 137Google Scholar
  76. 76.
    Catley L, Tai YT, Chauhan D, et al. Perspectives for combination therapy to overcome drag-resistant multiple myeloma. Drug Resist Updat 2005; 8(4): 205–18PubMedCrossRefGoogle Scholar
  77. 77.
    Dimopoulos MA, Repoussis P, Terpos E, et al. Primary treatment with pulsed melphalan, dexamethasone, thalidomide (MDT) for symptomatic patients with multiple myeloma ≥75 years of age [abstract]. Blood 2004; 104: 1482CrossRefGoogle Scholar
  78. 78.
    Palumbo A, Bertola A, Musto P, et al. A prospective randomized trial of oral melphalan, prednisone, thalidomide (MPT) vs oral melphalan, prednisone (MP): an interim analysis [abstract]. Blood 2004; 104: 207CrossRefGoogle Scholar
  79. 79.
    Facon T, Mary JY, Hulin C, et al. Randomized clinical trial comparing melphalan-prednisone (MP), MP-thalidomide (MP-THAL) and high-dose therapy using melphalan 100 mg/mL (MEL 100) for newly diagnosed myeloma patients aged 65–75 years: interim analysis of the IFM 99-06 Trial on 350 Patients [abstract]. Blood 2004; 104: 206Google Scholar
  80. 80.
    Palumbo A, Bringhen S, Musto P, et al. Oral melphalan, prednisone and thalidomide for multiple myeloma [abstract no. 779]. Blood 2005, 230aGoogle Scholar
  81. 81.
    Palumbo A, Ambrosini MT, Pregno P, et al. Velcade™ plus melphalan, prednisone, and thalidomide (V-MPT) for advanced multiple myeloma [abstract no. 2553]. Blood 2005; 106(11): 717aGoogle Scholar
  82. 82.
    Richardson PG, Schlossman RL, Weiler E, et al. Immunomodulatory drug CC-5013 overcomes drag resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 2002; 100(9): 3063–7PubMedCrossRefGoogle Scholar
  83. 83.
    Schey SA, Fields P, Bartiett JB, et al. Phase I study of an immunomodulatory thalidomide analog, CC-4047, in relapsed or refractory multiple myeloma. J Clin Oncol 2004; 22(16): 3269–76PubMedCrossRefGoogle Scholar
  84. 84.
    Richardson P, Jagannath S, Schlossman R, et al. A multi-center, randomized, phase II study to evaluate the efficacy and safety of two CDC-5013 dose regimens when used alone or in combination with dexamethasone (Dex) for the treatment of relapsed or refractory multiple myeloma (MM). Blood 2002; 100(11): 105aGoogle Scholar
  85. 85.
    Richardson PG, Jagannath S, Hussein MA, et al. A multicenter, single-arm, open-label study to evaluate the safety and efficacy of single-agent lenalidomide in subjects with relapsed and refractory multiple myeloma [abstract no. PO.737]. Hematol J 2005; 90 Suppl. 1: 154Google Scholar
  86. 86.
    Weber DM, Chen C, Niesvizky R, et al. A multicenter, randomized, parallel-group, double-blind, placebo-controlled study of lenalidomide plus dexamethasone versus dexamethasone alone in previously treated subjects with multiple myeloma [abstract]. Hematol J 2005; 90 Suppl. 1: 155Google Scholar
  87. 87.
    Rajkumar SV, Hayman SR, Lacy MQ, et al. Combination therapy with CC-5013 (lenalidomide; Revlimid™) plus dexamethasone (Rev/Dex) for newly diagnosed myeloma (MM) [abstract]. Blood 2004; 104: 331Google Scholar
  88. 88.
    Palumbo A, Falco P, Musto P, et al. Oral Revlimid plus melphalan and prednisone (R-MP) for newly diagnosed multiple myeloma [abstract no. 785]. Blood 2005; 11: 173Google Scholar
  89. 89.
    Richardson PG, Schlossman R, Munshi N, et al. A phase 1 trial of lenalidomide (REVLIMID®) with bortezomib (VELCADE®) in relapsed and refractory multiple myeloma [abstract no. 365]. Blood 2005; 106(11): 137Google Scholar
  90. 90.
    Adams J. The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004; 4(5): 349–60PubMedCrossRefGoogle Scholar
  91. 91.
    Hideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001; 61(7): 3071–6PubMedGoogle Scholar
  92. 92.
    Lee AH, Iwakoshi NN, Anderson KC, et al. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci U S A 2003; 100(17): 9946–51PubMedCrossRefGoogle Scholar
  93. 93.
    Hideshima T, Mitsiades C, Akiyama M, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 2003; 101(4): 1530–4PubMedCrossRefGoogle Scholar
  94. 94.
    Orlowski RZ, Stinchcombe TE, Mitchell BS, et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 2002; 20(22): 4420–7PubMedCrossRefGoogle Scholar
  95. 95.
    Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003; 348(26): 2609–17PubMedCrossRefGoogle Scholar
  96. 96.
    Richardson P, Sonneveld P, Schuster M, et al. Bortezomib demonstrates superior efficacy to high-dose dexamethasone in relapsed multiple myeloma: final report of the APEX Study [abstract]. Blood 2004; 104(11): 336Google Scholar
  97. 97.
    Richardson P, Sonneveld P, Schuster M, et al. Bortezomib continues to demonstrate superior efficacy compared with high-dose dexamethasone in relapsed multiple myeloma: updated results of the APEX trail [abstract no. 2547]. Blood 2005; 106(11): 715aGoogle Scholar
  98. 98.
    Anderson KC. Bortezomib therapy for myeloma. Curr Hematol Rep 2004; 3(1): 65Google Scholar
  99. 99.
    Chauhan D, Hideshima T, Mitsiades C, et al. Proteasome inhibitor therapy in multiple myeloma. Mol Cancer Ther 2005; 4(4): 686–92PubMedCrossRefGoogle Scholar
  100. 100.
    Paterson JL, Li Z, Wen XY, et al. Preclinical studies of fibroblast growth factor receptor 3 as a therapeutic target in multiple myeloma. Br J Haematol 2004; 124(5): 595–603PubMedCrossRefGoogle Scholar
  101. 101.
    Grand EK, Chase AJ, Heath C, et al. Targeting FGFR3 in multiple myeloma: inhibition of t (4;14)-positive cells by SU5402 and PD173074. Leukemia 2004; 18(5): 962–6PubMedCrossRefGoogle Scholar
  102. 102.
    Trudel S, Ely S, Farooqi Y, et al. Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t (4; 14) myeloma. Blood 2004; 103(9): 3521–8PubMedCrossRefGoogle Scholar
  103. 103.
    Trudel S, Li ZH, Wei E, et al. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t (4; 14) multiple myeloma. Blood 2005; 105(7): 2941–8PubMedCrossRefGoogle Scholar
  104. 104.
    Chen j, Lee BH, Williams IR, et al. FGFR3 as a therapeutic target of the small molecule inhibitor PKC412 in hematopoietic malignancies. Oncogene 2005; 24(56): 8259–67PubMedCrossRefGoogle Scholar
  105. 105.
    Negri J, Mitsiades N, Deng Q, et al. PKC412 Is a Multi-targeting kinase inhibitor with activity against multiple myeloma in vitro and in vivo [abstract no. 247]. Blood 2005; 106(11): 128Google Scholar
  106. 106.
    Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 2006; 6(1): 38–51PubMedCrossRefGoogle Scholar
  107. 107.
    Mitsiades N, Mitsiades CS, Richardson PG, et al. Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 2003; 101(10): 4055–62PubMedCrossRefGoogle Scholar
  108. 108.
    Catley L, Weisberg E, Tai YT, et al. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood 2003; 102(7): 2615–22PubMedCrossRefGoogle Scholar
  109. 109.
    Catley L, Tai YT, Hideshima T, et al. Novel hydroxamic acid-derived HDAC inhibitor LBH589 potently activates intrinsic and extrinsic apoptotic pathways, and induces tubulin hyperacetylation in multiple myeloma [abstract]. Blood 2005; 106: 1578Google Scholar
  110. 110.
    Podar K, Anderson KC. The pathophysiological role of VEGF in hematological malignancies: therapeutic implications. Blood 2005; 105(4): 1383–95PubMedCrossRefGoogle Scholar
  111. 111.
    Bisping G, Leo R, Wenning D, et al. Paracrine interactions of basic fibroblast growth factor and interleukin-6 in multiple myeloma. Blood 2003; 101(7): 2775–83PubMedCrossRefGoogle Scholar
  112. 112.
    Casanovas O, Hicklin DJ, Bergers G, et al. Drug resistance by evasion of antiangi-ogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005; 8(4): 299–309PubMedCrossRefGoogle Scholar
  113. 113.
    Thomas AL, Morgan B, Drevs J, et al. Vascular endothelial growth factor receptor tyrosine kinase inhibitors. PTK787/ZK 222584. Semin Oncol 2003; 30(3 Suppl. 6): 32–8PubMedGoogle Scholar
  114. 114.
    Lin B, Podar K, Gupta D, et al. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res 2002; 62(17): 5019–26PubMedGoogle Scholar
  115. 115.
    Kumar R, Hopper TM, Miller CG, et al. Discovery and biological evaluation of GW654652: a pan inhibitor of VEGF receptors [abstract]. Proc Am Assoc Cancer Res 2003; 44(9): 9Google Scholar
  116. 116.
    Ferrara N, Hillan KJ, Gerber HP, et al. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004; 3(5): 391–400PubMedCrossRefGoogle Scholar
  117. 117.
    Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 2003; 349(5): 427–34PubMedCrossRefGoogle Scholar
  118. 118.
    Yang JC, Sherry RM, Steinberg SM, et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J Clin Oncol 2003; 21(16): 3127–32PubMedCrossRefGoogle Scholar
  119. 119.
    Bisping G, Kropff M, Wenning D, et al. Targeting receptor kinases by a novel indolinone derivative in multiple myeloma, abrogation of stroma-derived interleukin-6 secretion and induction of apoptosis in cytogenetically defined subgroups. Blood 2006; 105(5): 2079–89CrossRefGoogle Scholar
  120. 120.
    Tai YT, Catley LP, Mitsiades CS, et al. Mechanisms by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: clinical implications. Cancer Res 2004; 64(8): 2846–52PubMedCrossRefGoogle Scholar
  121. 121.
    Tai YT, Catley L, Li XF, et al. Immunomodulatory drug Lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications [abstract]. Blood 2005; 106: 150CrossRefGoogle Scholar
  122. 122.
    Bezieau S, Avet-Loiseau H, Moisan JP, et al. Activating Ras mutations in patients with plasma-cell disorders. a reappraisal. Blood 2002; 100(3): 1101–2; 1103PubMedCrossRefGoogle Scholar
  123. 123.
    Bezieau S, Devilder MC, Avet-Loiseau H, et al. High incidence of N and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum Mutat 2001; 18(3): 212–24PubMedCrossRefGoogle Scholar
  124. 124.
    Rowley M, Liu P, VanNess B. Heterogeneity in therapeutic response of genetically altered myeloma cell lines to interleukin 6, dexamethasone, doxorubicin, and melphalan. Blood 2000; 96(9): 3175–80PubMedGoogle Scholar
  125. 125.
    Ochiai N, Uchida R, Fuchida S, et al. Effect of farnesyl transferase inhibitor R115777 on the growth of fresh and cloned myeloma cells in vitro. Blood 2003; 102(9): 3349–53PubMedCrossRefGoogle Scholar
  126. 126.
    Adjei AA, Davis JN, Bruzek LM, et al. Synergy of the protein farnesyltransferase inhibitor SCH66336 and cisplatin in human cancer cell lines. Clin Cancer Res 2001; 7(5): 1438–45PubMedGoogle Scholar
  127. 127.
    Cortes J, Albitar M, Thomas D, et al. Efficacy of the farnesyl transferase inhibitor R115777 in chronic myeloid leukemia and other hematologic malignancies. Blood 2003; 101(5): 1692–7PubMedCrossRefGoogle Scholar
  128. 128.
    Beaupre DM, Cepero E, Obeng EA, et al. R115777 induces Ras-independent apoptosis of myeloma cells via multiple intrinsic pathways. Mol Cancer Ther 2004; 3(2): 179–86PubMedGoogle Scholar
  129. 129.
    Alsina M, Fonseca R, Wilson EF, et al. Faniesyltransferase inhibitor tipifarnib is well tolerated, induces stabilization of disease, and inhibits farnesylation and oncogenic/tumor survival pathways in patients with advanced multiple myeloma. Blood 2004; 103(9): 3271–7PubMedCrossRefGoogle Scholar
  130. 130.
    Chauhan D, Li G, Shringarpure R, et al. Blockade of Hsp27 overcomes bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res 2003; 63(19): 6174–7PubMedGoogle Scholar
  131. 131.
    Chauhan D, Li G, Hideshima T, et al. Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood 2003; 102(9): 3379–86PubMedCrossRefGoogle Scholar
  132. 132.
    Chauhan D, Auclair D, Robinson EK, et al. Identification of genes regulated by dexamethasone in multiple myeloma ceils using oligonucieotide arrays. Oncogene 2002; 21(9): 1346–58PubMedCrossRefGoogle Scholar
  133. 133.
    Hideshima T, Podar K, Chauhan D, et al. p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene 2004Nov 18; 23(54): 8766–76PubMedCrossRefGoogle Scholar
  134. 134.
    Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A 2002; 99(22): 14374–9PubMedCrossRefGoogle Scholar
  135. 135.
    Mitsiades CS, Mitsiades NS, McMullan CJ, et al. Anti-myeloma activity of heat shock protein-90 inhibition. Blood 2006Feb 1; 107(3): 1092–100PubMedCrossRefGoogle Scholar
  136. 136.
    Abraham RT. Identification of TOR signaling complexes: more TORC for the cell growth engine. Cell 2002; 111(1): 9–12PubMedCrossRefGoogle Scholar
  137. 137.
    Hosoi H, Dilling MB, Liu LN, et al. Studies on the mechanism of resistance to rapamycin in human cancer cells. Mol Pharmacol 1998; 54(5): 815–24PubMedGoogle Scholar
  138. 138.
    Nelsen CJ, Rickheim DG, Tucker MM, et al. Evidence that cyclin D1 mediates both growth and proliferation downstream of TOR in hepatocytes. J Biol Chem 2003; 278(6): 3656–63PubMedCrossRefGoogle Scholar
  139. 139.
    Hu L, Shi Y, Hsu JH, et al. Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 2003; 101(8): 3126–35PubMedCrossRefGoogle Scholar
  140. 140.
    Gera JF, Mellinghoff IK, Shi Y, et al. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem 2004; 279(4): 2737–46PubMedCrossRefGoogle Scholar
  141. 141.
    Hidalgo M, Rowinsky EK. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 2000; 19(56): 6680–6PubMedCrossRefGoogle Scholar
  142. 142.
    Frost P, Moatomed F, Hoang B, et al. In vivo anti-tumor effects of the mTOR inhibitor, CCI-779, against human multiple myeloma cells in a xenograft model. Blood 2004Dec 15; 104(13): 4181–7PubMedCrossRefGoogle Scholar
  143. 143.
    Raje N, Kumar S, Hideshima T, et al. Combination of the mTOR inhibitor rapamycin and Revlimid™ (CC-5013) has synergistic activity in multiple myeloma. Blood 2004Dec 15; 104(13): 4188–93PubMedCrossRefGoogle Scholar
  144. 144.
    Hideshima T, Catley L, Yasui H, et al. Perifosine, an oral bioactive novel alkyl-phospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma (MM) cells [abstract no. 250]. Blood 2005; 106(11): 128Google Scholar
  145. 145.
    Huston A, Singha U, Alsayed Y, et al. The role of the AKT inhibitor perifosine in migration and adhesion in multiple myeloma (MM) [abstract no. 2509]. Blood 2005; 106(11): 267Google Scholar
  146. 146.
    Huston A, Francis L, Alsayed Y, et al. Combination of the AKT inhibitor perifosine with the HSP90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) has synergistic activity in multiple myeloma (MM) [abstract no. 1592]. Blood 2005; 106(11): 219Google Scholar
  147. 147.
    Sinha R, David E, Zeilter E, et al. Combination of Akt/PKB inhibition (perifosine) and farnesyl transferase inhibition (tipifarnib) results in increased cell death in myeloma cell lines [abstract no. 1568]. Blood 2005; 106(11): 218Google Scholar
  148. 148.
    Hideshima T, Bradner JE, Wong J, et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 2005; 102(24): 8567–72PubMedCrossRefGoogle Scholar
  149. 149.
    Macherla VR, Mitchell SS, Manam RR, et al. Structure-activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J Med Chem 2005; 48(11): 3684–7PubMedCrossRefGoogle Scholar
  150. 150.
    Chauhan D, Catley L, Li G, et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell 2005; 8(5): 407–19PubMedCrossRefGoogle Scholar
  151. 151.
    Ishitsuka K, Hideshima T, Hamasaki M, et al. Novel inosine monophosphate dehydrogenase inhibitor VX-944 induces apoptosis in multiple myeloma cells primarily via caspase-independent AIF/Endo G pathway. Oncogene 2005; 24(38): 5888–96PubMedCrossRefGoogle Scholar
  152. 152.
    Raje N, Kumar S, Hideshima T, et al. Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood 2005; 106(3): 1042–7PubMedCrossRefGoogle Scholar
  153. 153.
    Boissy P, Andersen TL, Abdallah BM, et al. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation. Cancer Res 2005; 65(21): 9943–52PubMedCrossRefGoogle Scholar
  154. 154.
    Yasui H, Hideshima T, Hamasaki M, et al. SDX-101, the R-enantiomer of etodolac, induces cytotoxicity, overcomes drug resistance, and enhances the activity of dexamethasone in multiple myeloma. Blood 2005; 106(2): 706–12PubMedCrossRefGoogle Scholar
  155. 155.
    Hamasaki M, Hideshima T, Tassone P, et al. Azaspirane (N-N-diethyl-8,8-dipropyl-2-azaspiro [4.5] decane-2-propanamine) inhibits human multiple myeloma cell growth in the bone marrow milieu in vitro and in vivo. Blood 2005; 105(11): 4470–6PubMedCrossRefGoogle Scholar
  156. 156.
    Yasui H, Hideshima T, Raje N, et al. FTY720 induces apoptosis in multiple myeloma cells and overcomes drug resistance. Cancer Res 2005; 65(16): 7478–84PubMedCrossRefGoogle Scholar
  157. 157.
    Akiyama M, Hideshima T, Hayashi T, et al. Cytokiues modulate telomerase activity in a human multiple myeloma cell line. Cancer Res 2002; 62(13): 3876–82PubMedGoogle Scholar
  158. 158.
    Akiyama M, Hideshima T, Shammas MA, et al. Effects of oligonucleotide N3′->P5′ thio-phosphoramidate (GRN163) targeting telomerase RNA in human multiple myeloma cells. Cancer Res 2003; 63(19): 6187–94PubMedGoogle Scholar
  159. 159.
    Shammas MA, Shmookler Reis RJ, Akiyama M, et al. Telomerase inhibition and cell growth arrest by G-quadruplex interactive agent in multiple myeloma. Mol Cancer Ther 2003; 2(9): 825–33PubMedGoogle Scholar
  160. 160.
    Hideshima T, Chauhan D, Richardson P, et al. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 2002; 277(19): 16639–47PubMedCrossRefGoogle Scholar
  161. 161.
    Hideshima T, Chauhan D, Hayashi T, et al. Antitumor activity of lysophosphatidic acid acyltransferase-beta inhibitors, a novel class of agents, in multiple myeloma. Cancer Res 2003; 63(23): 8428–36PubMedGoogle Scholar
  162. 162.
    Chauhan D, Li G, Podar K, et al. The bortezomib/proteasome inhibitor PS-341 and triterpenoid CDDO-Im induce synergistic anti-multiple myeloma (MM) activity and overcome bortezomib resistance. Blood 2004; 103(8): 3158–66PubMedCrossRefGoogle Scholar
  163. 163.
    van deDonk NW, Kamphuis MM, Lokhorst HM, et al. The cholesterol lowering drug lovastatin induces cell death in myeloma plasma cells. Leukemia 2002; 16(7): 1362–71PubMedCrossRefGoogle Scholar
  164. 164.
    van deDonk NW, Kamphuis MM, vanKessel B, et al. inhibition of protein geranylgeranylation induces apoptosis in myeloma plasma cells by reducing Mcl-1 protein levels. Blood 2003; 102(9): 3354–62PubMedCrossRefGoogle Scholar
  165. 165.
    Hideshima T, Akiyama M, Hayashi T, et al. Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood 2003; 101(2): 703–5PubMedCrossRefGoogle Scholar
  166. 166.
    Chauhan D, Catley L, Hideshima T, et al. 2-Methoxyestradiol overcomes drug resistance in multiple myeloma cells. Blood 2002; 100(6): 2187–94PubMedCrossRefGoogle Scholar
  167. 167.
    Chauhan D, Li G, Auclair D, et al. identification of genes regulated by 2-methoxyestradiol (2ME2) in multiple myeloma cells using oligonucleotide arrays. Blood 2003; 101(9): 3606–14PubMedCrossRefGoogle Scholar
  168. 168.
    Pelliniemi TT, Irjala K, Mattila K, et al. Immunoreactive interleukin-6 and acute phase proteins as prognostic factors in multiple myeloma. Finnish Leukemia Group. Blood 1995; 85(3): 765–71PubMedGoogle Scholar
  169. 169.
    Bataille R, Klein B. The bone-resorbing activity of interleukin-6. J Bone Miner Res 1991; 6(10): 1143–6PubMedCrossRefGoogle Scholar
  170. 170.
    Klein B, Wijdenes J, Zhang XG, et al. Murine anti-interleukin-6 monoclonal antibody therapy for a patient with plasma cell leukemia. Blood 1991; 78(5): 1198–204PubMedGoogle Scholar
  171. 171.
    Brochier J, Legouffe E, Liautard J, et al. Immunomodulating IL-6 activity by murine monoclonal antibodies. Int J Immunopharmacol 1995; 17(1): 41–8PubMedCrossRefGoogle Scholar
  172. 172.
    Kyrstsonis MC, Dedoussis G, Baxevanis C, et al. Serum interleukin-6 (IL-6) and interleukin-4 (IL-4) in patients with multiple myeloma (MM). Br J Haematol 1996; 92(2): 420–2PubMedCrossRefGoogle Scholar
  173. 173.
    Levy Y, Tsapis A, Brouet JC. interleukin-6 antisense oligonucleotides inhibit the growth of human myeloma cell lines. J Clin Invest 1991; 88(2): 696–9PubMedCrossRefGoogle Scholar
  174. 174.
    Sporeno E, Savino R, Ciapponi L, et al. Human interleukin-6 receptor super-antagonists with high potency and wide spectrum on multiple myeloma cells. Blood 1996; 87(11): 4510–9PubMedGoogle Scholar
  175. 175.
    Villunger A, Egle A, Kos M, et al. Constituents of autocrine IL-6 loops in myeloma cell lines and their targeting for suppression of neoplastic growth by antibody strategies. Int J Cancer 1996; 65(4): 498–505PubMedCrossRefGoogle Scholar
  176. 176.
    Tassone P, Forciniti S, Galea E, et al. Synergistic induction of growth arrest and apoptosis of human myeloma cells by the IL-6 super-antagonist Sant7 and dexamethasone. Cell Death Differ 2000; 7(3): 327–8PubMedCrossRefGoogle Scholar
  177. 177.
    Tassone P, Galea E, Forciniti S, et al. The IL-6 receptor super-antagonist Sant7 enhances antiproliferative and apoptotic effects induced by dexamethasone and zoledronic acid on multiple myeloma ceils. Int J Oncol 2002; 21(4): 867–73PubMedGoogle Scholar
  178. 178.
    Mitsiades CS, Mitsiades NS, McMullan CJ, et al. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 2004; 5(3): 221–30PubMedCrossRefGoogle Scholar
  179. 179.
    Gerth K, Bedorf N, Hofle G, et al. Epothilons A and B. antifungal and cytotoxic compounds from sorangium cellulosum (myxobacteria): production, physico-chemical and biological properties. J Antibiot (Tokyo) 1996; 49(6): 560–3CrossRefGoogle Scholar
  180. 180.
    Lin B, Catley L, LeBIanc R, et al. Patupilone (epothilone B) inhibits growth and survival of multiple myeloma cells in vitro and in vivo. Blood 2005Jan 1; 105(1): 350–7PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  • Klaus Podar
    • 1
  • Teru Hideshima
    • 1
  • Yu-Tzu Tai
    • 1
  • Paul G. Richardson
    • 1
  • Dharminder Chauhan
    • 1
  • Kenneth C. Anderson
    • 1
  1. 1.Department of Medical Oncology, Jerome Lipper Multiple Myeloma CenterDana-Farber Cancer Institute, Harvard Medical SchoolBostonUSA
  2. 2.Department of Medical Oncology Jerome Lipper Multiple Myeloma CenterDana-Farber Cancer InstituteBostonUSA

Personalised recommendations