CNS Drugs

, Volume 23, Issue 3, pp 181–191 | Cite as

Cytochrome P450 2D6 Genotyping

Potential Role in Improving Treatment Outcomes in Psychiatric Disorders
Leading Article


The specific reaction toward a given drug varies a lot between individuals and, for many drugs, pharmacogenetic polymorphisms are known to affect biotransformation and clinical outcome. Estimation of the individual’s drug-metabolizing capacity can be undertaken by genotyping drug-metabolizing enzymes involved in the respective drug metabolism. Consequences that arise from genotyping may be the adjustment of dose according to genotype, choice of therapeutic strategy, or even choice of drug.

One of the first fields where the clinical application of pharmacogenetics may be used is in that of antipsychotic and antidepressant drug treatment because there is a special need for individualized therapy in psychiatry. The pharmacokinetics of many TCAs, some SSRIs and other antidepressant drugs is significantly altered by polymorphisms; however, some controversy still exists as to whether therapeutic efficacy may be improved and/or adverse events can be prevented by genetically driven adjustment of drug dosage. Pharmacogenetic diagnostics may be an important factor in individualizing drug treatment according to the genetic make-up of the patients. However, routine application of pharmacogenetic dose adjustment in clinical practice requires prospective validation.


  1. 1.
    Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998; 279(15): 1200–5PubMedCrossRefGoogle Scholar
  2. 2.
    Schneeweiss S, Hasford J, Gottler M, et al. Admissions caused by adverse drug events to internal medicine and emergency departments in hospitals: a longitudinal population-based study. Eur J Clin Pharmacol 2002; 58(4): 285–91PubMedCrossRefGoogle Scholar
  3. 3.
    Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 2004; 329(7456): 15–9PubMedCrossRefGoogle Scholar
  4. 4.
    Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286(5439): 487–91PubMedCrossRefGoogle Scholar
  5. 5.
    Bertilsson L, Dahl ML, Dalen P, et al. Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 2002; 53(2): 111–22PubMedCrossRefGoogle Scholar
  6. 6.
    Sachse C, Brockmöller J, Bauer S, et al. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997; 60(2): 284–95PubMedGoogle Scholar
  7. 7.
    Zanger UM, Fischer J, Raimundo S, et al. Comprehensive analysis of the genetic factors determining expression and function of hepatic CYP2D6. Pharmacogenetics 2001; 11(7): 573–85PubMedCrossRefGoogle Scholar
  8. 8.
    Home page of the human cytochrome P450 (CYP) allele nomenclature committee [online]. Available from URL: [Accessed 2008 Dec 2]
  9. 9.
    Griese EU, Zanger UM, Brudermanns U, et al. Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics 1998; 8(1): 15–26PubMedCrossRefGoogle Scholar
  10. 10.
    Gaedigk A, Ndjountche L, Divakaran K, et al. Cytochrome P4502D6 (CYP2D6) gene locus heterogeneity: characterization of gene duplication events. Clin Pharmacol Ther 2007; 81(2): 242–51PubMedCrossRefGoogle Scholar
  11. 11.
    Kirchheiner J, Brockmoller J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 2005; 77(1): 1–16PubMedCrossRefGoogle Scholar
  12. 12.
    Kirchheiner J, Brøsen K, Dahl ML, et al. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001; 104(3): 173–92PubMedCrossRefGoogle Scholar
  13. 13.
    McLeod HL, Siva C. The thiopurine S-methyltransferase gene locus: implications for clinical pharmacogenomics. Pharmacogenomics 2002; 3(1): 89–98PubMedCrossRefGoogle Scholar
  14. 14.
    Wu AH, Wang P, Smith A, et al. Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from a multi-ethnic population: comparison with other equations. Pharmacogenomics 2008; 9(2): 169–78PubMedCrossRefGoogle Scholar
  15. 15.
    Wen MS, Lee M, Chen JJ, et al. Prospective study of warfarin dosage requirements based on CYP2C9 and VKORC1 genotypes. Clin Pharmacol Ther 2008 Jul; 84(1): 83–9PubMedCrossRefGoogle Scholar
  16. 16.
    Sconce EA, Khan TI, Wynne HA, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 2005; 106(7): 2329–33PubMedCrossRefGoogle Scholar
  17. 17.
    Kirchheiner J, Seeringer A. Clinical implications of pharmacogenetics of cytochrome P450 drug metabolizing enzymes. Biochim Biophys Acta 2007; 1770(3): 489–94PubMedCrossRefGoogle Scholar
  18. 18.
    Uhr M, Tontsch A, Namendorf C, et al. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 2008; 57(2): 203–9PubMedCrossRefGoogle Scholar
  19. 19.
    Grossman I. Routine pharmacogenetic testing in clinical practice: dream or reality? Pharmacogenomics 2007; 8(10): 1449–59PubMedCrossRefGoogle Scholar
  20. 20.
    Mulder H, Heerdink ER, van Iersel EE, et al. Prevalence of patients using drugs metabolized by cytochrome P450 2D6 in different populations: a cross-sectional study. Ann Pharmacother 2007; 41(3): 408–13PubMedCrossRefGoogle Scholar
  21. 21.
    Ustun TB, Ayuso-Mateos JL, Chatterji S, et al. Global burden of depressive disorders in the year 2000. Br J Psychiatry 2004; 184: 386–92PubMedCrossRefGoogle Scholar
  22. 22.
    Bauer M, Whybrow PC, Angst J, et al. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorders: part 1. Acute and continuation treatment of major depressive disorder. World J Biol Psychiatry 2002; 3(1): 5–43PubMedCrossRefGoogle Scholar
  23. 23.
    Rau T, Wohlleben G, Wuttke H, et al. CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants-a pilot study. Clin Pharmacol Ther 2004; 75(5): 386–93PubMedCrossRefGoogle Scholar
  24. 24.
    Grasmader K, Verwohlt PL, Rietschel M, et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 2004; 60(5): 329–36PubMedCrossRefGoogle Scholar
  25. 25.
    Kawanishi C, Lundgren S, Agren H, et al. Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur J Clin Pharmacol 2004; 59(11): 803–7Google Scholar
  26. 26.
    Matchar DB, Thakur ME, Grossman I, et al. Testing for cytochrome P450 polymorphisms in adults with non-psychotic depression treated with selective serotonin reuptake inhibitors (SSRIs). Evid Rep Technol Assess (Full Rep) 2007; 146: 1–77Google Scholar
  27. 27.
    Baumann P, Jonzier-Perey M, Koeb L, et al. Amitriptyline pharmacokinetics and clinical response: II. Metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin. Int Clin Psychopharmacol 1986; 1(2): 102–12PubMedCrossRefGoogle Scholar
  28. 28.
    Kirchheiner J, Nickchen K, Bauer M, et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 2004; 9(5): 442–73PubMedCrossRefGoogle Scholar
  29. 29.
    Brøsen K, Gram LF. Pharmacokinetic and clinical significance of genetic variability in psychotropic drug metabolism. Psychopharmacol Ser 1989; 7: 192–200PubMedGoogle Scholar
  30. 30.
    Steimer W, Zopf K, von Amelunxen S, et al. Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin Chem 2005; 51(2): 376–85PubMedCrossRefGoogle Scholar
  31. 31.
    Laine K, Tybring G, Hartter S, et al. Inhibition of cytochrome P4502D6 activity with paroxetine normalizes the ultrarapid metabolizer phenotype as measured by nor-triptyline pharmacokinetics and the debrisoquin test. Clin Pharmacol Ther 2001; 70(4): 327–35PubMedGoogle Scholar
  32. 32.
    Lam YW, Gaedigk A, Ereshefsky L, et al. CYP2D6 inhibition by selective serotonin reuptake inhibitors: analysis of achievable steady-state plasma concentrations and the effect of ultrarapid metabolism at CYP2D6. Pharmacotherapy 2002; 22(8): 1001–6PubMedCrossRefGoogle Scholar
  33. 33.
    Carrillo JA, Dahl ML, Svensson JO, et al. Disposition of fluvoxamine in humans is determined by the polymorphic CYP2D6 and also by the CYP1A2 activity. Clin Pharmacol Ther 1996; 60(2): 183–90PubMedCrossRefGoogle Scholar
  34. 34.
    Spigset O, Granberg K, Hagg S, et al. Relationship between fluvoxamine pharmacokinetics and CYP2D6/CYP2C19 phenotype polymorphisms. Eur J Clin Pharmacol 1997; 52(2): 129–33PubMedCrossRefGoogle Scholar
  35. 35.
    Spigset O, Granberg K, Hagg S, et al. Non-linear fluvoxamine disposition. Br J Clin Pharmacol 1998; 45(3): 257–63PubMedCrossRefGoogle Scholar
  36. 36.
    Sindrup SH, Brøsen K, Gram LF. Pharmacokinetics of the selective serotonin reuptake inhibitor paroxetine: non-linearity and relation to the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51(3): 288–95PubMedCrossRefGoogle Scholar
  37. 37.
    Gram LF, Guentert TW, Grange S, et al. Moclobemide, a substrate of CYP2C19 and an inhibitor of CYP2C19, CYP2D6, and CYP1A2: a panel study. Clin Pharmacol Ther 1995; 57(6): 670–7PubMedCrossRefGoogle Scholar
  38. 38.
    Wang JH, Liu ZQ, Wang W, et al. Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19. Clin Pharmacol Ther 2001; 70(1): 42–7PubMedCrossRefGoogle Scholar
  39. 39.
    Sindrup SH, Brøsen K, Hansen MG, et al. Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Ther Drug Monit 1993; 15(1): 11–7PubMedCrossRefGoogle Scholar
  40. 40.
    Thakur M, Grossman I, McCrory DC, et al. Review of evidence for genetic testing for CYP450 polymorphisms in management of patients with nonpsychotic depression with selective serotonin reuptake inhibitors. Genet Med 2007; 9(12): 826–35PubMedCrossRefGoogle Scholar
  41. 41.
    Kirchheiner J, Henckel HB, Meineke I, et al. Impact of the CYP2D6 ultrarapid metabolizer genotype on mirtazapine pharmacokinetics and adverse events in healthy volunteers. J Clin Psychopharmacol 2004; 24(6): 647–52PubMedCrossRefGoogle Scholar
  42. 42.
    Fukuda T, Yamamoto I, Nishida Y, et al. Effect of the CYP2D6*10 genotype on venlafaxine pharmacokinetics in healthy adult volunteers. Br J Clin Pharmacol 1999; 47(4): 450–3PubMedCrossRefGoogle Scholar
  43. 43.
    Fukuda T, Nishida Y, Zhou Q, et al. The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population. Eur J Clin Pharmacol 2000; 56: 175–80PubMedCrossRefGoogle Scholar
  44. 44.
    Otton SV, Ball SE, Cheung SW, et al. Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br J Clin Pharmacol 1996; 41(2): 149–56PubMedCrossRefGoogle Scholar
  45. 45.
    Veefkind AH, Haffmans PM, Hoencamp E. Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 2000; 22(2): 202–8PubMedCrossRefGoogle Scholar
  46. 46.
    Shams ME, Arneth B, Hiemke C, et al. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther 2006; 31(5): 493–502PubMedCrossRefGoogle Scholar
  47. 47.
    Lessard E, Yessine M, Hamelin B, et al. Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 1999; 9: 435–43PubMedCrossRefGoogle Scholar
  48. 48.
    Spina E, Ancione M, Di Rosa AE, et al. Polymorphic debrisoquine oxidation and acute neuroleptic-induced adverse effects. Eur J Clin Pharmacol 1992; 42(3): 347–8PubMedCrossRefGoogle Scholar
  49. 49.
    de Leon J, Armstrong SC, Cozza KL. The dosing of atypical antipsychotics. Psychosomatics 2005; 46(3): 262–73PubMedCrossRefGoogle Scholar
  50. 50.
    Prior TI, Chue PS, Tibbo P, et al. Drug metabolism and atypical antipsychotics. Eur Neuropsychopharmacol 1999; 9(4): 301–9PubMedCrossRefGoogle Scholar
  51. 51.
    Fang J, Bourin M, Baker GB. Metabolism of risperidone to 9-hydroxyrisperidone by human cytochromes P450 2D6 and 3A4. Naunyn Schmiedebergs Arch Pharmacol 1999; 359(2): 147–51PubMedCrossRefGoogle Scholar
  52. 52.
    Jung SM, Kim KA, Cho HK, et al. Cytochrome P450 3A inhibitor itraconazole affects plasma concentrations of risperidone and 9-hydroxyrisperidone in schizophrenic patients. Clin Pharmacol Ther 2005; 78(5): 520–8PubMedCrossRefGoogle Scholar
  53. 53.
    Mahatthanatrakul W, Nontaput T, Ridtitid W, et al. Rifampin, a cytochrome P450 3A inducer, decreases plasma concentrations of antipsychotic risperidone in healthy volunteers. J Clin Pharm Ther 2007; 32(2): 161–7PubMedCrossRefGoogle Scholar
  54. 54.
    Huang ML, Van Peer A, Woestenborghs R, et al. Pharmacokinetics of the novel antipsychotic agent risperidone and the prolactin response in healthy subjects. Clin Pharmacol Ther 1993; 54(3): 257–68PubMedCrossRefGoogle Scholar
  55. 55.
    Olesen OV, Licht RW, Thomsen E, et al. Serum concentrations and side effects in psychiatric patients during risperidone therapy. Ther Drug Monit 1998; 20(4): 380–4PubMedCrossRefGoogle Scholar
  56. 56.
    Roh HK, Chung JY, Oh DY, et al. Plasma concentrations of haloperidol are related to CYP2D6 genotype at low, but not high doses of haloperidol in Korean schizophrenic patients. Br J Clin Pharmacol 2001; 52(3): 265–71PubMedCrossRefGoogle Scholar
  57. 57.
    Scordo MG, Spina E, Facciola G, et al. Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9-hydroxyrisperidone. Psychopharmacology Berl 1999; 147(3): 300–5PubMedCrossRefGoogle Scholar
  58. 58.
    Troost PW, Lahuis BE, Hermans MH, et al. Prolactin release in children treated with risperidone: impact and role of CYP2D6 metabolism. J Clin Psychopharmacol 2007; 27(1): 52–7PubMedCrossRefGoogle Scholar
  59. 59.
    Bork JA, Rogers T, Wedlund PJ, et al. A pilot study on risperidone metabolism: the role of cytochromes P450 2D6 and 3A. J Clin Psychiatry 1999; 60(7): 469–76PubMedCrossRefGoogle Scholar
  60. 60.
    de Leon J, Susce MT, Pan RM, et al. The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J Clin Psychiatry 2005; 66(1): 15–27PubMedCrossRefGoogle Scholar
  61. 61.
    Abilify® prescribing information. Available from URL: [Accessed 2008 Dec 12]
  62. 62.
    Walter S. Bedeutung der erblichen Polymorphismen von Cytochrom-P450-2D6 für den Metabolismus und die Pharmakokinetik von Antipsychotika. Berlin: Humboldt Universität zu Berlin, 2000Google Scholar
  63. 63.
    Hägg S, Spigset O, Lakso HA, et al. Olanzapine disposition in humans is unrelated to CYP1A2 and CYP2D6 phenotypes. Eur J Clin Pharmacol 2001 Sep; 57(6–7): 493–7PubMedGoogle Scholar
  64. 64.
    Carrillo JA, Herraiz AG, Ramos SI, et al. Role of the smoking-induced cytochrome P450 (CYP) 1A2 and polymorphic CYP2D6 in steady-state concentration of olanzapine. J Clin Psychopharmacol 2003; 23(2): 119–27PubMedCrossRefGoogle Scholar
  65. 65.
    Grossmann I, Liu Y, Walley N. Pharmacogenetic analysis of antipsychotics comprehensive analysis of pharmacokinetic variants. 56th Annual Meeting of the American Society of Human Genetics; 2006 Oct 10–13; New Orleans (LA)Google Scholar
  66. 66.
    Berecz R, de la Rubia A, Dorado P, et al. Thioridazine steady-state plasma concentrations are influenced by tobacco smoking and CYP2D6, but not by the CYP2C9 genotype. Eur J Clin Pharmacol 2003; 59(1): 45–50PubMedGoogle Scholar
  67. 67.
    von Bahr C, Movin G, Nordin C, et al. Plasma levels of thioridazine and metabolites are influenced by the debrisoquin hydroxylation phenotype. Clin Pharmacol Ther 1991; 49(3): 234–40CrossRefGoogle Scholar
  68. 68.
    Eap CB, Guentert TW, Schaublin Loidl M, et al. Plasma levels of the enantiomers of thioridazine, thioridazine 2-sulfoxide, thioridazine 2-sulfone, and thioridazine 5-sulfoxide in poor and extensive metabolizers of dextromethorphan and mephenytoin. Clin Pharmacol Ther 1996; 59(3): 322–31PubMedCrossRefGoogle Scholar
  69. 69.
    Llerena A, Dahl ML, Ekqvist B, et al. Haloperidol disposition is dependent on the debrisoquine hydroxylation phenotype: increased plasma levels of the reduced metabolite in poor metabolizers. Ther Drug Monit 1992; 14(3): 261–4PubMedCrossRefGoogle Scholar
  70. 70.
    Brockmöller J, Kirchheiner J, Schmider J, et al. The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and outcome. Clin Pharmacol Ther 2002; 72: 438–52PubMedCrossRefGoogle Scholar
  71. 71.
    Gram LF, Debruyne D, Caillard V, et al. Substantial rise in sparteine metabolic ratio during haloperidol treatment. Br J Clin Pharmacol 1989; 27(2): 272–5PubMedCrossRefGoogle Scholar
  72. 72.
    Young D, Midha KK, Fossler MJ, et al. Effect of quinidine on the interconversion kinetics between haloperidol and reduced haloperidol in humans: implications for the involvement of cytochrome P450IID6. Eur J Clin Pharmacol 1993; 44(5): 433–8PubMedCrossRefGoogle Scholar
  73. 73.
    Jaanson P, Marandi T, Kiivet RA, et al. Maintenance therapy with zuclopenthixol decanoate: associations between plasma concentrations, neurological side effects and CYP2D6 genotype. Psychopharmacology (Berl) 2002; 162(1): 67–73CrossRefGoogle Scholar
  74. 74.
    Brockmoller J, Kirchheiner J, Schmider J, et al. The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment. Clin Pharmacol Ther 2002; 72(4): 438–52PubMedCrossRefGoogle Scholar
  75. 75.
    Strattera® prescribing information. Available from URL: [Accessed 2008 Dec 12]
  76. 76.
    Trzepacz PT, Williams DW, Feldman PD, et al. CYP2D6 metabolizer status and atomoxetine dosing in children and adolescents with ADHD. Eur Neuropsychopharmacol 2008; 18(2): 79–86PubMedCrossRefGoogle Scholar
  77. 77.
    Lim JR, Faught PR, Chalasani NP, et al. Severe liver injury after initiating therapy with atomoxetine in two children. J Pediatr 2006; 148(6): 831–4PubMedCrossRefGoogle Scholar
  78. 78.
    Reimers A, Langsetmo HK. Combined overdose of atomoxetine and methylphenidate in a cytochrome P450 2D6 poor metabolizer. J Clin Psychopharmacol 2007; 27(1): 110–1PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2009

Authors and Affiliations

  1. 1.Institute of Pharmacology of Natural Products and Clinical PharmacologyUniversity UlmUlmGermany
  2. 2.Hereditary Endocrine Cancer Group, Human Cancer Genetics ProgrammeSpanish National Cancer Center (CNIO)MadridSpain

Personalised recommendations