CNS Drugs

, Volume 21, Issue 6, pp 483–502 | Cite as

Oral Disease-Modifying Treatments for Multiple Sclerosis

The Story So Far
Review Article


Multiple sclerosis (MS) represents the prototypic inflammatory autoimmune disorder of the CNS. It is the most common cause of neurological disability in young adults and exhibits considerable clinical, radiological and pathological heterogeneity. Increased understanding of the immunopathological processes underlying this disease, advances in biotechnology and the development of powerful magnetic resonance imaging (MRI) technologies, together with improvements in clinical trial design, have led to a variety of valuable therapeutic approaches to MS.

Therapy for MS has changed dramatically over the past decade, yielding significant progress in the treatment of relapsing remitting and secondary progressive forms; however, most of the clinically relevant therapeutic approaches are not yet available as oral formulations. A substantial number of preliminary and pivotal reports have provided promising results for oral therapies, and various phase III clinical trials are currently being initiated or are already underway evaluating the efficacy of a variety of orally administered agents, including cladribine, teriflunomide, laquinimod, fingolimod and fumaric acid. It is hoped that these trials will advance the development of oral therapies for MS.



No sources of funding were used to assist in the preparation of this review. The work of Dr Wiendl is supported by the German MS society, the German Research Foundation (DFG) and the Bundesministerium für Bildung und Forschung (BMBF). Drs Kieseier and Wiendl have both received honoraria for lecturing, travel expenses for attending meetings and financial support for research from Biogen Idec, Medac, Sanofi-Aventis, Schering, Serono and Teva Pharmaceuticals.


  1. 1.
    Hohlfeld R, Wiendl H. The ups and downs of multiple sclerosis therapeutics. Ann Neurol 2001; 49: 281–4PubMedCrossRefGoogle Scholar
  2. 2.
    Kieseier BC, Hartung HP. Current disease-modifying therapies in multiple sclerosis. Semin Neurol 2003; 23: 133–46PubMedCrossRefGoogle Scholar
  3. 3.
    Wiendl H, Kieseier BC. Disease-modifying therapies in multiple sclerosis: an update on recent and ongoing trials and future strategies. Expert Opin Investig Drugs 2003; 12: 689–712PubMedCrossRefGoogle Scholar
  4. 4.
    Hohlfeld R, Wekerle H. Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc Natl Acad Sci U S A 2004; 101: 14599–606PubMedCrossRefGoogle Scholar
  5. 5.
    Fox RJ, Ransohoff RM. New directions in MS therapeutics: vehicles of hope. Trends Immunol 2004; 25: 632–6PubMedCrossRefGoogle Scholar
  6. 6.
    Wiendl H, Hohlfeld R. Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials. BioDrugs 2002; 16: 183–200PubMedCrossRefGoogle Scholar
  7. 7.
    Osterberg L, Blaschke T. Adherence to medication. N Engl J Med 2005; 353: 487–97PubMedCrossRefGoogle Scholar
  8. 8.
    Frohman EM, Racke MK, Raine CS. Multiple sclerosis: the plaque and its pathogenesis. N Engl J Med 2006; 354: 942–55PubMedCrossRefGoogle Scholar
  9. 9.
    Hafler DA, Slavik JM, Anderson DE, et al. Multiple sclerosis. Immunol Rev 2005; 204: 208–31PubMedCrossRefGoogle Scholar
  10. 10.
    Hemmer B, Archelos JJ, Hartung HP. New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 2002; 3: 291–301PubMedCrossRefGoogle Scholar
  11. 11.
    Noseworthy JH, Lucchinetti C, Rodriguez M, et al. Multiple sclerosis. N Engl J Med 2000; 343: 938–52PubMedCrossRefGoogle Scholar
  12. 12.
    Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol 2005; 23: 683–747PubMedCrossRefGoogle Scholar
  13. 13.
    Hohlfeld R. Biotechnological agents for the immunotherapy of multiple sclerosis: principles, problems and perspectives. Brain 1997; 120: 865–916PubMedCrossRefGoogle Scholar
  14. 14.
    Steinman L. Multiple sclerosis: a two-stage disease. Nat Immunol 2001; 2: 762–4PubMedCrossRefGoogle Scholar
  15. 15.
    Lassmann H, Bruck W, Lucchinetti C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 2001; 7: 115–21PubMedCrossRefGoogle Scholar
  16. 16.
    Archelos JJ, Storch MK, Hartung HP. The role of B cells and autoantibodies in multiple sclerosis. Ann Neurol 2000; 47: 694–706PubMedCrossRefGoogle Scholar
  17. 17.
    Bjartmar C, Trapp BD. Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 2001; 14: 271–8PubMedCrossRefGoogle Scholar
  18. 18.
    Zipp F, Krammer PH, Weiler M. Immune (dys)regulation in multiple sclerosis: role of the CD95-CD95 ligand system. Immunol Today 1999; 20: 550–4PubMedCrossRefGoogle Scholar
  19. 19.
    Yong VW. Differential mechanisms of action of interferon-beta and glatiramer acetate in MS. Neurology 2002; 59: 802–8PubMedCrossRefGoogle Scholar
  20. 20.
    Polman C, Barkhof F, Kappos L, et al. Oral interferon beta-1a in relapsing-remitting multiple sclerosis: a double-blind randomized study. Mult Scler 2003; 9: 342–8PubMedCrossRefGoogle Scholar
  21. 21.
    Farina C, Weber MS, Meinl E, et al. Glatiramer acetate in multiple sclerosis: update on potential mechanisms of action. Lancet Neurol 2005; 4: 567–75PubMedCrossRefGoogle Scholar
  22. 22.
    Filippi M, Wolinsky JS, Comi G. Effects of oral glatiramer acetate on clinical and MRI-monitored disease activity in patients with relapsing multiple sclerosis: a multicentre, doubleblind, randomised, placebo-controlled study. Lancet Neurol 2006; 5: 213–20PubMedCrossRefGoogle Scholar
  23. 23.
    Teva Pharmaceutical Industries Ltd. Copaxone® (glatiramer acetate for injection) [online]. Available from URL: Injection [Accessed 2007 May 1]
  24. 24.
    Palace J, Rothwell P. New treatments and azathioprine in multiple sclerosis. Lancet 1997; 350: 261PubMedCrossRefGoogle Scholar
  25. 25.
    Yudkin PL, Ellison GW, Ghezzi A, et al. Overview of azathioprine treatment in multiple sclerosis. Lancet 1991; 338: 1051–5PubMedCrossRefGoogle Scholar
  26. 26.
    Massacesi L, Parigi A, Barilaro A, et al. Efficacy of azathioprine on multiple sclerosis new brain lesions evaluated using magnetic resonance imaging. Arch Neurol 2005; 62: 1843–7PubMedCrossRefGoogle Scholar
  27. 27.
    Fernandez O, Guerrero M, Mayorga C, et al. Combination therapy with interferon beta-1b and azathioprine in secondary progressive multiple sclerosis: a two-year pilot study. J Neurol 2002; 249: 1058–62PubMedCrossRefGoogle Scholar
  28. 28.
    Lus G, Romano F, Scuotto A, et al. Azathioprine and interferon beta(la) in relapsing-remitting multiple sclerosis patients: increasing efficacy of combined treatment. Eur Neurol 2004; 51: 15–20PubMedCrossRefGoogle Scholar
  29. 29.
    Markovic-Plese S, Bielekova B, Kadom N, et al. Longitudinal MRI study: the effects of azathioprine in MS patients refractory to interferon beta-lb. Neurology 2003; 60: 1849–51PubMedCrossRefGoogle Scholar
  30. 30.
    Havrdova E, Zivadinov R, Krasensky J, et al. Efficacy results from a randomised, double-blind, placebo-controlled study of intramuscular interferon beta-1a, azathioprine, and corticosteroid combination therapy in patients with relapsing-remitting multiple sclerosis. Mult Scler 2006; 12Suppl. 1: S11Google Scholar
  31. 31.
    Gray O, McDonnell GV, Forbes RB. Methotrexate for multiple sclerosis. Cochrane Database Syst Rev 2004; (2): CD003208Google Scholar
  32. 32.
    Goodkin DE, Rudick RA, VanderBrug Medendorp S, et al. Low-dose (7.5 mg) oral methotrexate reduces the rate of progression in chronic progressive multiple sclerosis. Ann Neurol 1995; 37: 30–40PubMedCrossRefGoogle Scholar
  33. 33.
    Calabresi PA, Wilterdink JL, Rogg JM, et al. An open-label trial of combination therapy with interferon beta-1a and oral methotrexate in MS. Neurology 2002; 58: 314–7PubMedCrossRefGoogle Scholar
  34. 34.
    Serkova NJ, Christians U, Benet LZ. Biochemical mechanisms of cyclosporine neurotoxicity. Mol Interv 2004; 4: 97–107PubMedCrossRefGoogle Scholar
  35. 35.
    Webster AC, Woodroffe RC, Taylor RS, et al. Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomised trial data. BMJ 2005; 331: 810–21PubMedCrossRefGoogle Scholar
  36. 36.
    Kappos L, Patzold U, Dommasch D, et al. Cyclosporine versus azathioprine in the long-term treatment of multiple sclerosis: results of the German multicenter study. Ann Neurol 1988; 23: 56–63PubMedCrossRefGoogle Scholar
  37. 37.
    The Multiple Sclerosis Study Group. Efficacy and toxicity of cyclosporin in chronic progressive multiple sclerosis: a randomised, double-blinded, placebo-controlled clinical trial. Ann Neurol 1990; 27: 591–605CrossRefGoogle Scholar
  38. 38.
    Zhao GJ, Li DK, Wolinsky JS, et al. Clinical and magnetic resonance imaging changes correlate in a clinical trial monitoring cyclosporine therapy for multiple sclerosis: the MS study group. J Neuroimaging 1997; 7: 1–7PubMedGoogle Scholar
  39. 39.
    Goodin DS, Frohman EM, Garmany Jr GP, et al. Disease modifying therapies in multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the MS Council for Clinical Practice Guidelines. Neurology 2002; 58: 169–78PubMedCrossRefGoogle Scholar
  40. 40.
    Schneider-Gold C, Hartung HP, Gold R. Mycophenolate mofetil and tacrolimus: new therapeutic options in neuroimmunological diseases. Muscle Nerve 2006; 34: 284–91PubMedCrossRefGoogle Scholar
  41. 41.
    Frohman EM, Brannon K, Racke MK, et al. Mycophenolate mofetil in multiple sclerosis. Clin Neuropharmacol 2004; 27: 80–3PubMedCrossRefGoogle Scholar
  42. 42.
    Vermersch P, Stojkovic T, de Seze J. Mycophenolate mofetil and neurological diseases. Lupus 2005; 14Suppl. 1: S42–5PubMedCrossRefGoogle Scholar
  43. 43.
    Ahrens N, Salama A, Haas J. Mycophenolate-mofetil in the treatment of refractory multiple sclerosis. J Neurol 2001; 248: 713–4PubMedCrossRefGoogle Scholar
  44. 44.
    Vermersch P, Waucquier N, Michelin E, et al. Combination of IFNbeta-1a (Avonex) and mycophenolate mofetil (Cellcept) in multiple sclerosis. Eur J Neurol 2007; 14: 85–9PubMedCrossRefGoogle Scholar
  45. 45.
    Beutler E. Cladribine (2-chlorodeoxyadenosine). Lancet 1992; 340: 952–6PubMedCrossRefGoogle Scholar
  46. 46.
    Sipe JC. Cladribine for multiple sclerosis: review and current status. Expert Rev Neurother 2005; 5: 721–7PubMedCrossRefGoogle Scholar
  47. 47.
    Beutler E, Sipe JC, Romine JS, et al. The treatment of chronic progressive multiple sclerosis with cladribine. Proc Natl Acad Sci U S A 1996; 93: 1716–20PubMedCrossRefGoogle Scholar
  48. 48.
    Sipe JC, Romine JS, Koziol JA, et al. Cladribine in treatment of chronic progressive multiple sclerosis. Lancet 1994; 344: 9–13PubMedCrossRefGoogle Scholar
  49. 49.
    Romine JS, Sipe JC, Koziol JA, et al. A double-blind, placebocontrolled, randomized trial of cladribine in relapsing-remitting multiple sclerosis. Proc Assoc Am Physicians 1999; 111: 35–44PubMedCrossRefGoogle Scholar
  50. 50.
    Sipe JC, Romine JS, Koziol JA, et al. Development of cladribine treatment in multiple sclerosis. Mult Scler 1996; 1: 343–7PubMedGoogle Scholar
  51. 51.
    Filippi M, Rovaris M, Iannucci G, et al. Whole brain volume changes in patients with progressive MS treated with cladribine. Neurology 2000; 55: 1714–8PubMedCrossRefGoogle Scholar
  52. 52.
    Filippi M, Rovaris M, Rice GP, et al. The effect of cladribine on T(l) ‘black hole’ changes in progressive MS. J Neurol Sci 2000; 176: 42–4PubMedCrossRefGoogle Scholar
  53. 53.
    Rice GP, Filippi M, Comi G. Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Cladribine MRI Study Group. Neurology 2000; 54: 1145–55Google Scholar
  54. 54.
    Brousil JA, Roberts RJ, Schiein AL. Cladribine: an investigational immunomodulatory agent for multiple sclerosis. Ann Pharmacother 2006; 40: 1814–21PubMedCrossRefGoogle Scholar
  55. 55.
    National Multiple Sclerosis Society. Clinical trials in multiple sclerosis 2006: planned, in progress, recently completed [online]. Available from URL: [Accessed 2007 Apr 12]
  56. 56.
    Sehgal SN. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 2003; 35Suppl. 3: 7–14SCrossRefGoogle Scholar
  57. 57.
    Farrell R, Heaney D, Giovannoni G. Emerging therapies in multiple sclerosis. Expert Opin Emerg Drugs 2005; 10: 797–816PubMedCrossRefGoogle Scholar
  58. 58.
    Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006; 5(8): 671–88PubMedCrossRefGoogle Scholar
  59. 59.
    Mancuso A, Sternberg CN. New treatment approaches in metastatic renal cell carcinoma. Curr Opin Urol 2006; 16: 337–41PubMedCrossRefGoogle Scholar
  60. 60.
    Kappos L, Barkhof F, Desmet A. The effect of oral temsirolimus on new magnetic resonance imaging scan lesions, brain atrophy, and the number of relapses in multiple sclerosis: results from a randomised, controlled clinical trial. J Neurol 2005; 252Suppl. 2: S46Google Scholar
  61. 61.
    Hashkes PJ, Laxer RM. Update on the medical treatment of juvenile idiopathic arthritis. Curr Rheumatol Rep 2006; 8: 450–8PubMedCrossRefGoogle Scholar
  62. 62.
    Korn T, Magnus T, Toyka K, et al. Modulation of effector cell functions in experimental autoimmune encephalomyelitis by leflunomide: mechanisms independent of pyrimidine depletion. J Leukoc Biol 2004; 76: 950–60PubMedCrossRefGoogle Scholar
  63. 63.
    Kaplan MJ. Leflunomide Aventis Pharma. Curr Opin Investig Drugs 2001; 2: 222–30PubMedGoogle Scholar
  64. 64.
    Korn T, Toyka K, Hartung HP, et al. Suppression of experimental autoimmune neuritis by leflunomide. Brain 2001; 124: 1791–802PubMedCrossRefGoogle Scholar
  65. 65.
    Smolen JS, Emery P, Kalden JR, et al. The efficacy of leflunomide monotherapy in rheumatoid arthritis: towards the goals of disease modifying antirheumatic drug therapy. J Rheumatol 2004; 71 Suppl.: 13–20Google Scholar
  66. 66.
    O’Connor PW, Li D, Freedman MS, et al. A phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. Neurology 2006; 66: 894–900PubMedCrossRefGoogle Scholar
  67. 67.
    Brunmark C, Runstrom A, Ohlsson L, et al. The new orally active immunoregulator laquinimod (ABR-215062) effectively inhibits development and relapses of experimental autoimmune encephalomyelitis. J Neuroimmunol 2002; 130: 163–72PubMedCrossRefGoogle Scholar
  68. 68.
    Jonsson S, Andersson G, Fex T, et al. Synthesis and biological evaluation of new l,2-dihydro-4-hydroxy-2-oxo-3-quinolinecarboxamides for treatment of autoimmune disorders: structure-activity relationship. J Med Chem 2004; 47: 2075–88PubMedCrossRefGoogle Scholar
  69. 69.
    Runstrom A, Leanderson T, Ohlsson L, et al. Inhibition of the development of chronic experimental autoimmune encephalomyelitis by laquinimod (ABR-215062) in IFN-beta k.o. and wild type mice. J Neuroimmunol 2006; 173: 69–78Google Scholar
  70. 70.
    Yang JS, Xu LY, Xiao BG, et al. Laquinimod (ABR-215062) suppresses the development of experimental autoimmune encephalomyelitis, modulates the Th1/Th2 balance and induces the Th3 cytokine TGF-beta in Lewis rats. J Neuroimmunol 2004; 156: 3–9PubMedCrossRefGoogle Scholar
  71. 71.
    Andersen O, Lycke J, Tollesson PO, et al. Linomide reduces the rate of active lesions in relapsing-remitting multiple sclerosis. Neurology 1996; 47: 895–900PubMedCrossRefGoogle Scholar
  72. 72.
    Karussis DM, Meiner Z, Lehmann D, et al. Treatment of secondary progressive multiple sclerosis with the immunomodulator linomide: a double-blind, placebo-controlled pilot study with monthly magnetic resonance imaging evaluation. Neurology 1996; 47: 341–6PubMedCrossRefGoogle Scholar
  73. 73.
    Jönsson S, Andersson G, Fex T, et al. Synthesis and biological evaluation of new l,2-dihydro-4-hydroxy-2-oxo-3-quinolinecarboxamides for treatment of autoimmune disorders: structure-activity relationship. J Med Chem 2004; 47: 2075–88PubMedCrossRefGoogle Scholar
  74. 74.
    Polman C, Barkhof F, Sandberg-Wollheim M, et al. Treatment with laquinimod reduces development of active MRI lesions in relapsing MS. Neurology 2005; 64: 987–91PubMedCrossRefGoogle Scholar
  75. 75.
    Dyke HJ, Montana JG. Update on the therapeutic potential of PDE4 inhibitors. Expert Opin Investig Drugs 2002; 11: 1–13PubMedCrossRefGoogle Scholar
  76. 76.
    Bielekova B, Lincoln A, McFarland H, et al. Therapeutic potential of phosphodiesterase-4 and -3 inhibitors in Thl-mediated autoimmune diseases. J Immunol 2000; 164: 1117–24PubMedGoogle Scholar
  77. 77.
    Fujimoto T, Sakoda S, Fujimura H, et al. Ibudilast, a phosphodiesterase inhibitor, ameliorates experimental autoimmune encephalomyelitis in Dark August rats. J Neuroimmunol 1999; 95: 35–42PubMedCrossRefGoogle Scholar
  78. 78.
    Jung S, Huitinga I, Schmidt B, et al. Selective elimination of macrophages by dichlormethylene diphosphonate-containing liposomes suppresses experimental autoimmune neuritis. J Neurol Sci 1993; 119: 195–202PubMedCrossRefGoogle Scholar
  79. 79.
    Sommer N, Loschmann PA, Northoff GH, et al. The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis. Nat Med 1995; 1: 244–8PubMedCrossRefGoogle Scholar
  80. 80.
    Feng J, Misu T, Fujihara K, et al. Ibudilast, a nonselective phosphodiesterase inhibitor, regulates Thl/Th2 balance and NKT cell subset in multiple sclerosis. Mult Scler 2004; 10: 494–8PubMedCrossRefGoogle Scholar
  81. 81.
    Friese MA, Montalban X, Willcox N, et al. The value of animal models for drug development in multiple sclerosis. Brain 2006; 129 (Pt 8): 1940–52PubMedCrossRefGoogle Scholar
  82. 82.
    Pershadsingh HA. Peroxisome proliferator-activated receptorgamma: therapeutic target for diseases beyond diabetes: quo vadis? Expert Opin Investig Drugs 2004; 13: 215–28PubMedCrossRefGoogle Scholar
  83. 83.
    Dello Russo C, Gavrilyuk V, Weinberg G, et al. Peroxisome proliferator-activated receptor gamma thiazolidinedione agonists increase glucose metabolism in astrocytes. J Biol Chem 2003; 278: 5828–36PubMedCrossRefGoogle Scholar
  84. 84.
    Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005; 366: 1279–89PubMedCrossRefGoogle Scholar
  85. 85.
    Storer PD, Xu J, Chavis J, et al. Peroxisome proliferatoractivated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis. J Neuroimmunol 2005; 161: 113–22PubMedCrossRefGoogle Scholar
  86. 86.
    Diab A, Deng C, Smith JD, et al. Peroxisome proliferatoractivated receptor-gamma agonist 15-deoxy-Delta(12,14) prostaglandin J(2) ameliorates experimental autoimmune encephalomyelitis. J Immunol 2002; 168: 2508–15PubMedGoogle Scholar
  87. 87.
    Feinstein DL, Galea E, Gavrilyuk V, et al. Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol 2002; 51: 694–702PubMedCrossRefGoogle Scholar
  88. 88.
    Klotz L, Schmidt M, Giese T, et al. Proinflammatory stimulation and pioglitazone treatment regulate peroxisome proliferator-activated receptor gamma levels in peripheral blood mononuclear cells from healthy controls and multiple sclerosis patients. J Immunol 2005; 175: 4948–55PubMedGoogle Scholar
  89. 89.
    Pershadsingh HA, Heneka MT, Saini R, et al. Effect of pioglitazone treatment in a patient with secondary multiple sclerosis. J Neuroinflammation. Epub 2004 Apr 20Google Scholar
  90. 90., a service of the US National Institutes of Health. Pilot test of ACTOS in multiple sclerosis: safety and tolerability [online]. Available from URL: [Accessed 2007 May 1]
  91. 91.
    Brinkmann V. FTY720: mechanism of action and potential benefit in organ transplantation. Yonsei Med J 2004; 45: 991–7PubMedGoogle Scholar
  92. 92.
    Brinkmann V, Davis MD, Heise CE, et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 2002; 277: 21453–7PubMedCrossRefGoogle Scholar
  93. 93.
    Chiba K. FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacol Ther 2005; 108: 308–19PubMedCrossRefGoogle Scholar
  94. 94.
    Cyster JG. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 2005; 23: 127–59PubMedCrossRefGoogle Scholar
  95. 95.
    Yopp AC, Fu S, Honig SM, et al. FTY720-enhanced T cell homing is dependent on CCR2, CCR5, CCR7, and CXCR4: evidence for distinct chemokine compartments. J Immunol 2004; 173: 855–65PubMedGoogle Scholar
  96. 96.
    Muller H, Hofer S, Kaneider N, et al. The immunomodulator FTY720 interferes with effector functions of human monocyte-derived dendritic cells. Eur J Immunol 2005; 35: 533–45PubMedCrossRefGoogle Scholar
  97. 97.
    Budde K, Schmouder RL, Brunkhorst R, et al. First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. J Am Soc Nephrol 2002; 13: 1073–83PubMedGoogle Scholar
  98. 98.
    Fujino M, Funeshima N, Kitazawa Y, et al. Amelioration of experimental autoimmune encephalomyelitis in Lewis rats by FTY720 treatment. J Pharmacol Exp Ther 2003; 305: 70–7PubMedCrossRefGoogle Scholar
  99. 99.
    Rausch M, Hiestand P, Foster CA, et al. Predictability of FTY720 efficacy in experimental autoimmune encephalomyelitis by in vivo macrophage tracking: clinical implications for ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging. J Magn Reson Imaging 2004; 20: 16–24PubMedCrossRefGoogle Scholar
  100. 100.
    Webb M, Tham CS, Lin FF, et al. Sphingosine 1-phosphate receptor agonists attenuate relapsing-remitting experimental autoimmune encephalitis in SJL mice. J Neuroimmunol 2004; 153: 108–21PubMedCrossRefGoogle Scholar
  101. 101.
    Kappos L, Antel J, Comi G, et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med 2006; 355: 1124–40PubMedCrossRefGoogle Scholar
  102. 102.
    O’Connor PW, Antel J, Comi G. Oral FTY720 in relapsing MS: results of the dose-blinded, active drug extension phase of a phase II study [abstract]. Neurology 2006; 66: A123CrossRefGoogle Scholar
  103. 103.
    Budde K, Schutz M, Glander P, et al. FTY720 (fingolimod) in renal transplantation. Clin Transplant 2006; 20Suppl. 17: 17–24PubMedCrossRefGoogle Scholar
  104. 104.
    Massberg S, von Andrian UH. Fingolimod and sphingosine-1-phosphate: modifiers of lymphocyte migration. N Engl J Med 2006; 355: 1088–91PubMedCrossRefGoogle Scholar
  105. 105.
    Schimrigk S, Brune N, Hellwig K, et al. Oral fumaric acid esters for the treatment of active multiple sclerosis: an openlabel, baseline-controlled pilot study. Eur J Neurol 2006; 13(6): 604–10PubMedCrossRefGoogle Scholar
  106. 106.
    Kappos L, Miller D, MacManus DG, et al. BG00012, a novel oral fumarate, is effective in patients with relapsing-remitting multiple sclerosis. Mult Scler 2006; 12: S85Google Scholar
  107. 107.
    Kwak B, Mulhaupt F, Myit S, et al. Statins as a newly recognized type of immunomodulator. Nat Med 2000; 6: 1399–402PubMedCrossRefGoogle Scholar
  108. 108.
    Menge T, Hartung HP, Stuve O. Statins: a cure-all for the brain? Nat Rev Neurosci 2005; 6: 325–31PubMedCrossRefGoogle Scholar
  109. 109.
    Aktas O, Waiczies S, Smorodchenko A, et al. Treatment of relapsing paralysis in experimental encephalomyelitis by targeting Thl cells through atorvastatin. J Exp Med 2003; 197: 725–33PubMedCrossRefGoogle Scholar
  110. 110.
    Paintlia AS, Paintlia MK, Khan M, et al. HMG-CoA reductase inhibitor augments survival and differentiation of oligodendrocyte progenitors in animal model of multiple sclerosis. Faseb J 2005; 19: 1407–21PubMedCrossRefGoogle Scholar
  111. 111.
    Youssef S, Stuve O, Patarroyo JC, et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 2002; 420: 78–84PubMedCrossRefGoogle Scholar
  112. 112.
    Rizvi SA, Bashir K. Other therapy options and future strategies for treating patients with multiple sclerosis. Neurology 2004; 63: S47–54PubMedCrossRefGoogle Scholar
  113. 113.
    Vollmer T, Key L, Durkalski V, et al. Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet 2004; 363: 1607–8PubMedCrossRefGoogle Scholar
  114. 114.
    Stuve O, Youssef S, Weber MS, et al. Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. J Clin Invest 2006; 116: 1037–44PubMedCrossRefGoogle Scholar
  115. 115.
    Sicotte NL, Liva SM, Klutch R, et al. Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann Neurol 2002; 52: 421–8PubMedCrossRefGoogle Scholar
  116. 116.
    Hooper DC, Spitsin S, Kean RB, et al. Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A 1998; 95(2): 675–80PubMedCrossRefGoogle Scholar
  117. 117.
    Scott GS, Spitsin SV, Kean RB, et al. Therapeutic intervention in experimental allergic encephalomyelitis by administration of uric acid precursors. Proc Natl Acad Sci U S A 2002; 99: 16303–8PubMedCrossRefGoogle Scholar
  118. 118., a service of the US National Institutes of Health. Treatment of multiple sclerosis using over the counter inosine [online]. Available from URL: [Accessed 2007 May 1]
  119. 119.
    Archelos JJ, Previtali SC, Hartung HP. The role of integrins in immune-mediated diseases of the nervous system. Trends Neurosci 1999; 22: 30–8PubMedCrossRefGoogle Scholar
  120. 120.
    Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006; 354: 610–21PubMedCrossRefGoogle Scholar
  121. 121.
    Rudick RA, Stuart WH, Calabresi PA, et al. Natalizumab plus interferon beta-la for relapsing multiple sclerosis. N Engl J Med 2006; 354: 911–23PubMedCrossRefGoogle Scholar
  122. 122.
    Polman CH, O’Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2006; 354(9): 899–910PubMedCrossRefGoogle Scholar
  123. 123.
    Kleinschmidt-DeMasters BK, Tyler KL. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med 2005; 353: 369–74PubMedCrossRefGoogle Scholar
  124. 124.
    Langer-Gould A, Atlas SW, Green AJ, et al. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med 2005; 353: 375–81PubMedCrossRefGoogle Scholar
  125. 125.
    Van Assche G, Van Ranst M, Sciot R, et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N Engl J Med 2005; 353: 362–8PubMedCrossRefGoogle Scholar
  126. 126.
    Yousry TA, Major EO, Ryschkewitsch C, et al. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med 2006; 354: 924–33PubMedCrossRefGoogle Scholar
  127. 127.
    US Food and Drug Administration. Patient checklist [online]. Available from URL: [Accessed 2007 Mar 8]
  128. 128.
    US Food and Drug Administration. Natalizumab information. Risk minimization plan: summary of TOUCH [online]. Available from URL: [Accessed 2007 Mar 8]
  129. 129.
    Department of Health and Human Services, Public Health Service, Food and Drug Administration. Letter to Dr Cohen [online]. Available from URL: [Accessed 2007 Mar 8]
  130. 130.
    More fallout: Glaxo halts MS drug trial on Tysabri recall [online]. Available from URL: [Accessed 2007 May 1]
  131. 131.
    Elices MJ. BX-471 Berlex. Curr Opin Investig Drugs 2002; 3: 865–9PubMedGoogle Scholar
  132. 132.
    Zipp F, Hartung HP, Hillert J, et al. Blockade of chemokine signaling in patients with multiple sclerosis. Neurology 2006; 67(10): 1880–3PubMedCrossRefGoogle Scholar
  133. 133.
    Hartung HP, Kieseier BC. The role of matrix metalloproteinases in autoimmune damage to the central and peripheral nervous system. J Neuroimmunol 2000; 107: 140–7PubMedCrossRefGoogle Scholar
  134. 134.
    Yong VW. Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 2005; 6: 931–44PubMedCrossRefGoogle Scholar
  135. 135.
    Brundula V, Rewcastle NB, Metz LM, et al. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 2002; 125: 1297–308PubMedCrossRefGoogle Scholar
  136. 136.
    Popovic N, Schubart A, Goetz BD, et al. Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol 2002; 51: 215–23PubMedCrossRefGoogle Scholar
  137. 137.
    Kieseier BC, Seifert T, Giovannoni G, et al. Matrix metalloproteinases in inflammatory demyelination: targets for treatment. Neurology 1999; 53: 20–5PubMedCrossRefGoogle Scholar
  138. 138.
    Yong VW, Wells J, Giuliani F, et al. The promise of minocycline in neurology. Lancet Neurol 2004; 3: 744–51PubMedCrossRefGoogle Scholar
  139. 139.
    Metz LM, Zhang Y, Yeung M, et al. Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis [letter]. Ann Neurol 2004; 55: 756PubMedCrossRefGoogle Scholar
  140. 140.
    Marracci GH, McKeon GP, Marquardt WE, et al. Alpha lipoic acid inhibits human T-cell migration: implications for multiple sclerosis. J Neurosci Res 2004; 78: 362–70PubMedCrossRefGoogle Scholar
  141. 141.
    Morini M, Roccatagliata L, Dell’Eva R, et al. Alpha-lipoic acid is effective in prevention and treatment of experimental autoimmune encephalomyelitis. J Neuroimmunol 2004; 148: 146–53PubMedCrossRefGoogle Scholar
  142. 142.
    Yadav V, Marracci G, Lovera J, et al. Lipoic acid in multiple sclerosis: a pilot study. Mult Scler 2005; 11: 159–65PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2007

Authors and Affiliations

  1. 1.Department of NeurologyHeinrich-Heine UniversityDüsseldorfGermany
  2. 2.Department of NeurologyUniversity of WürzburgWürzburgGermany

Personalised recommendations