CNS Drugs

, Volume 20, Issue 11, pp 917–933 | Cite as

Neuraxial Drug Administration

A Review of Treatment Options for Anaesthesia and Analgesia
  • Stephan A. Schug
  • David Saunders
  • Irina Kurowski
  • Michael J. Paech
Review Article

Abstract

Neuraxial drug administration describes techniques that deliver drugs in close proximity to the spinal cord, i.e. intrathecally into the CSF or epidurally into the fatty tissues surrounding the dura, by injection or infusion. This approach was initially developed in the form of spinal anaesthesia over 100 years ago. Since then, neuraxial drug administration has evolved and now includes a wide range of techniques to administer a large number of different drugs to provide anaesthesia, but also analgesia and treatment of spasticity in a variety of acute and chronic settings.

This review concentrates on the pharmacological agents used and the clinical basis behind currently utilised approaches to neuraxial drug administration. With regard to local anaesthetics, the main focus is on the development of the enantiomer-specific compounds ropivacaine and levobupivacaine, which provide similar efficacy to bupivacaine with a reduced risk of severe cardiotoxicity. Opioids are the other group of drugs widely used neuraxially, in particular to provide analgesia alone or more commonly in combination with other agents. The physicochemical properties of the various opioids explain the main differences in efficacy and safety between these drugs when used intrathecally, of which morphine, fentanyl and sufentanil are most commonly used. Another group of drugs including clonidine, dexmedetomidine and epinephrine (adrenaline) provide neuraxial analgesia via α-adrenergic receptors and are used mainly as adjuvants to local anaesthetics and opioids. Furthermore, intrathecal baclofen is in routine clinical use to treat spasticity in a number of neurological conditions.

Beside these established approaches, a wide range of other drugs have been assessed for neuraxial administration to provide analgesia; however, most are in various early stages of investigation and are not used routinely. These drugs include neostigmine, ketamine, midazolam and adenosine, and the conotoxin ziconotide. The latter is possibly the most unusual compound here; it has recently gained registration for intrathecal use in specific chronic pain conditions.

References

  1. 1.
    Brill S, Gurman GM, Fisher A. A history of neuraxial administration of local analgesics and opioids. Eur J Anaesthesiol 2003; 20(9): 682–9PubMedCrossRefGoogle Scholar
  2. 2.
    Bier A. Versuche über Cocainisierung des Rückenmarkes. Dtsch Zeitschr Chirurg 1899; 51: 361–9CrossRefGoogle Scholar
  3. 3.
    Marx G. The first spinal anesthesia. Reg Anesth 1994; 19(6): 429–30PubMedGoogle Scholar
  4. 4.
    Yaksh TL, Rudy TA. Analgesia mediated by a direct spinal action of narcotics. Science 1976; 192(4246): 1357–8PubMedCrossRefGoogle Scholar
  5. 5.
    Wang JK, Nauss LA, Thomas JE. Pain relief by intrathecally applied morphine in man. Anesthesiology 1979; 50(2): 149–51PubMedCrossRefGoogle Scholar
  6. 6.
    Cousins MJ, Mather LE. Intrathecal and epidural administration of opioids. Anesthesiology 1984; 61: 276–310PubMedCrossRefGoogle Scholar
  7. 7.
    Maltby JR, Hutter CD, Clayton KC. The Woolley and Roe case. Br J Anaesth 2000; 84(1): 121–6PubMedCrossRefGoogle Scholar
  8. 8.
    Hodgson PS, Neal JM, Pollock JE, et al. The neurotoxicity of drugs given intrathecally (spinal). Anesth Analg 1999; 88(4): 797–809PubMedGoogle Scholar
  9. 9.
    Yaksh TL, Allen JW. The use of intrathecal midazolam in humans: a case study of process. Anesth Analg 2004; 98(6): 1536–45PubMedCrossRefGoogle Scholar
  10. 10.
    Baxter AD. Continuous spinal anesthesia: the Canadian perspective. Reg Anesth 1993; 18(6 Suppl.): 414–8PubMedGoogle Scholar
  11. 11.
    Rigler ML, Drasner K, Krejcie TC, et al. Cauda equina syndrome after continuous spinal anesthesia. Anesth Analg 1991; 72(3): 275–81PubMedCrossRefGoogle Scholar
  12. 12.
    Schell RM, Brauer FS, Cole DJ, et al. Persistent sacral nerve root deficits after continuous spinal anaesthesia. Can J Anaesth 1991; 38(7): 908–11PubMedCrossRefGoogle Scholar
  13. 13.
    Horlocker TT, McGregor DG, Matsushige DK, et al. Neurologic complications of 603 consecutive continuous spinal anesthetics using macrocatheter and microcatheter techniques. Perioperative Outcomes Group. Anesth Analg 1997; 84(5): 1063–70Google Scholar
  14. 14.
    Denny NM, Seiander DE. Continuous spinal anaesthesia. Br J Anaesth 1998; 81(4): 590–7PubMedCrossRefGoogle Scholar
  15. 15.
    Bevacqua BK. Continuous spinal anaesthesia: what’s new and what’s not. Best Pract Res Clin Anaesthesiol 2003; 17(3): 393–406PubMedCrossRefGoogle Scholar
  16. 16.
    Osenbach RK, Harvey S. Neuraxial infusion in patients with chronic intractable cancer and noncancer pain. Curr Pain Headache Rep 2001; 5(3): 241–9PubMedCrossRefGoogle Scholar
  17. 17.
    Broseta J, Garcia-March G, Sanchez-Ledesma MJ, et al. Chronic intrathecal baclofen administration in severe spasticity. Stereotact Funct Neurosurg 1990; 54-55: 147–53CrossRefGoogle Scholar
  18. 18.
    Rathmell JP, Lair TR, Nauman B. The role of intrathecal drugs in the treatment of acute pain. Anesth Analg 2005; 101(5 Suppl.): S30–43PubMedCrossRefGoogle Scholar
  19. 19.
    Cook TM. Combined spinal-epidural techniques. Anaesthesia 2000; 55(1): 42–64PubMedCrossRefGoogle Scholar
  20. 20.
    Phillips OC, Ebner H, Nelson AT, et al. Neurologic complications following spinal anesthesia with lidocaine: a prospective review of 10,440 cases. Anesthesiology 1969; 30(3): 284–9PubMedCrossRefGoogle Scholar
  21. 21.
    Schneider M, Ettlin T, Kaufmann M, et al. Transient neurologic toxicity after hyperbaric subarachnoid anesthesia with 5% lidocaine. Anesth Analg 1993; 76(5): 1154–7PubMedCrossRefGoogle Scholar
  22. 22.
    Pollock JE. Transient neurologic symptoms: etiology, risk factors, and management. Reg Anesth Pain Med 2002; 27(6): 581–6PubMedGoogle Scholar
  23. 23.
    Pollock JE, Burkhead D, Neal JM, et al. Spinal nerve function in five volunteers experiencing transient neurologic. Anesth Analg 2000; 90(3): 658–65PubMedCrossRefGoogle Scholar
  24. 24.
    Zaric D, Christiansen C, Pace NL, et al. Transient neurologic symptoms after spinal anesthesia with lidocaine versus other local anesthetics: a systematic review of randomized, controlled trials. Anesth Analg 2005; 100(6): 1811–6PubMedCrossRefGoogle Scholar
  25. 25.
    Pollock JE. Neurotoxicity of intrathecal local anaesthetics and transient neurological symptoms. Best Pract Res Clin Anaesthesiol 2003; 17(3): 471–84PubMedCrossRefGoogle Scholar
  26. 26.
    Gaiser R. Should intrathecal lidocaine be used in the 21st century? J Clin Anesth 2000; 12: 476–81PubMedCrossRefGoogle Scholar
  27. 27.
    Tsen LC, Schultz R, Martin R, et al. Intrathecal low-dose bupivacaine versus lidocaine for in vitro fertilization procedures. Reg Anesth Pain Med 2001; 26(1): 52–6PubMedGoogle Scholar
  28. 28.
    Beilin Y, Zahn J, Abramovitz S, et al. Subarachnoid small-dose bupivacaine versus lidocaine for cervical cerclage. Anesth Analg 2003; 97(1): 56–61PubMedCrossRefGoogle Scholar
  29. 29.
    Buckenmaier III CC, Nielsen KC, Pietrobon R, et al. Small-dose intrathecal lidocaine versus ropivacaine for anorectal surgery in an ambulatory setting. Anesth Analg 2002; 95(5): 1253–7PubMedCrossRefGoogle Scholar
  30. 30.
    Albright GA. Cardiac arrest following regional anesthesia with etidocaine or bupivacaine. Anesthesiology 1979; 51(4): 285–7PubMedCrossRefGoogle Scholar
  31. 31.
    Sidebotham DA, Schug SA. Stereochemistry in anaesthesia. Clin Exp Pharmacol Physiol 1997; 24(2): 126–30PubMedCrossRefGoogle Scholar
  32. 32.
    Wildsmith JA, Brown DT, Paul D, et al. Structure-activity relationships in differential nerve block at high and low frequency stimulation. Br J Anaesth 1989; 63(4): 444–52PubMedCrossRefGoogle Scholar
  33. 33.
    Whiteside JB, Wildsmith JA. Developments in local anaesthetic drugs. Br J Anaesth 2001; 87(1): 27–35PubMedCrossRefGoogle Scholar
  34. 34.
    Halpern SH, Walsh V. Epidural ropivacaine versus bupivacaine for labor: a meta-analysis. Anesth Analg 2003; 96(5): 1473–9PubMedCrossRefGoogle Scholar
  35. 35.
    Feldman HS, Arthur GR, Covino BG. Comparative systemic toxicity of convulsant and supraconvulsant doses of intravenous ropivacaine, bupivacaine, and lidocaine in the conscious dog. Anesth Analg 1989; 69(6): 794–801PubMedCrossRefGoogle Scholar
  36. 36.
    Groban L, Deal DD, Vernon JC, et al. Cardiac resuscitation after incremental overdosage with lidocaine, bupivacaine, levobupivacaine, and ropivacaine in anesthetized dogs. Anesth Analg 2001; 92(1): 37–43PubMedCrossRefGoogle Scholar
  37. 37.
    Scott DB, Lee A, Fagan D, et al. Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg 1989; 69(5): 563–9PubMedCrossRefGoogle Scholar
  38. 38.
    Knudsen K, Beckman-Suurkula S, Blomberg S, et al. Central nervous and cardiovascular effects of iv infusions of ropivacaine, bupivacaine and placebo in volunteers. Br J Anaesth 1997; 78(5): 507–14PubMedCrossRefGoogle Scholar
  39. 39.
    Korman B, Riley R. Convulsions induced by ropivacaine during interscalene brachial plexus block. Anesth Analg 1997; 85(5): 1128–9PubMedGoogle Scholar
  40. 40.
    Plowman AN, Bolsin S, Mather LE. Central nervous system toxicity attributable to epidural ropivacaine hydrochloride. Anaesth Intensive Care 1998; 26: 204–6PubMedGoogle Scholar
  41. 41.
    Borgeat A, Ruetsch YA, Jorg M. Convulsions induced by ropivacaine during interscalene brachial plexus block [letter]. Anesth Analg 1998; 87(2): 497PubMedGoogle Scholar
  42. 42.
    Chazalon P, Tourtier JP, Villevielle T, et al. Ropivacaine-induced cardiac arrest after peripheral nerve block: successful resuscitation. Anesthesiology 2003; 99(6): 1449–51PubMedCrossRefGoogle Scholar
  43. 43.
    Huet O, Eyrolle LJ, Mazoit JX, et al. Cardiac arrest after injection of ropivacaine for posterior lumbar plexus blockade. Anesthesiology 2003; 99(6): 1451–3PubMedCrossRefGoogle Scholar
  44. 44.
    Gielen M, Slappendel R, Jack N. Successful defibrillation immediately after the intravascular injection of ropivacaine. Can J Anaesth 2005; 52(5): 490–2PubMedCrossRefGoogle Scholar
  45. 45.
    Soltesz EG, van Pelt F, Byrne JG. Emergent cardiopulmonary bypass for bupivacaine cardiotoxicity. J Cardiothorac Vasc Anesth 2003; 17(3): 357–8PubMedCrossRefGoogle Scholar
  46. 46.
    Dernedde M, Furlan D, Verbesselt R, et al. Grand mal convulsion after an accidental intravenous injection of ropivacaine. Anesth Analg 2004; 98(2): 521–3PubMedCrossRefGoogle Scholar
  47. 47.
    Pfeiffer G, Bar K, Neubauer P, et al. [Inadvertent intravenous infusion of 380mg ropivacaine]. Anaesthesist 2004; 53(7): 633–6PubMedCrossRefGoogle Scholar
  48. 48.
    Polley LS, Santos AC. Cardiac arrest following regional anesthesia with ropivacaine: here we go again! Anesthesiology 2003; 99(6): 1253–4PubMedCrossRefGoogle Scholar
  49. 49.
    Kerkkamp HEM, Gielen MJM, Edstrom HH. Comparison of 0.75% ropivacaine with epinephrine and 0.75% bupivacaine with epinephrine in lumbar epidural anesthesia. Reg Anesth 1990; 15: 204–7PubMedGoogle Scholar
  50. 50.
    Brockway MS, Bannister J, McClure JH, et al. Comparison of extradural ropivacaine and bupivacaine. Br J Anaesth 1991; 66: 31–7PubMedCrossRefGoogle Scholar
  51. 51.
    Douglas MJ, Weeks SB, Writer WD, et al. A double-blind comparison between epidural ropivacaine 0.25% and bupivacaine 0.25% for the relief of childbirth pain: report of a multicentre study. Reg Anesth 1994; 19(2S): 52Google Scholar
  52. 52.
    Owen MD, D’Angelo R, Gerancher JC, et al. 0.125% ropivacaine is similar to 0.125% bupivacaine for labor analgesia using patient-controlled epidural infusion. Anesth Analg 1998; 86: 523–6Google Scholar
  53. 53.
    Whiteside JB, Burke D, Wildsmith JA. Comparison of ropivacaine 0.5% (in glucose 5%) with bupivacaine 0.5% (in glucose 8%) for spinal anaesthesia for elective surgery. Br J Anaesth 2003; 90(3): 304–8PubMedCrossRefGoogle Scholar
  54. 54.
    D’Angelo R, James RL. Is ropivacaine less potent than bupivacaine? Anesthesiology 1999; 90(4): 941–3PubMedCrossRefGoogle Scholar
  55. 55.
    Polley LS, Columb MO, Naughton NN, et al. Relative analgesic potencies of ropivacaine and bupivacaine for epidural analgesia in labor: implications for therapeutic indexes. Anesthesiology 1999; 90(4): 944–50PubMedCrossRefGoogle Scholar
  56. 56.
    Capogna G, Cellono D, Fusco P, et al. Relative potencies of bupivacaine and ropivacaine for analgesia in labour. Br J Anaesth 1999; 82(3): 371–3PubMedCrossRefGoogle Scholar
  57. 57.
    Camorcia M, Capogna G, Columb MO. Minimum local analgesic doses of ropivacaine, levobupivacaine, and bupivacaine for intrathecal labor analgesia. Anesthesiology 2005; 102(3): 646–50PubMedCrossRefGoogle Scholar
  58. 58.
    Dahm P, Lundborg C, Janson M, et al. Comparison of 0.5% intrathecal bupivacaine with 0.5% intrathecal ropivacaine in the treatment of refractory cancer and noncancer pain conditions: results from a prospective, crossover, double-blind, randomized study. Reg Anesth Pain Med 2000; 25(5): 480–7PubMedGoogle Scholar
  59. 59.
    Finucane BT. Ropivacaine: a worthy replacement for bupivacaine? Can J Anaesth 1990; 37: 722–5PubMedCrossRefGoogle Scholar
  60. 60.
    Denson DD, Behbehani MM, Gregg RV. Enantiomer-specific effects of an intravenously administered arrhythmogenic dose of bupivacaine on neurons of the nucleus tractus solitarius and the cardiovascular system in the anesthetized rat. Reg Anesth 1992; 17: 311–6PubMedGoogle Scholar
  61. 61.
    Mather LE, Huang YF, Veering B, et al. Systemic and regional pharmacokinetics of levobupivacaine and bupivacaine enantiomers in sheep. Anesth Analg 1998; 86(4): 805–11PubMedGoogle Scholar
  62. 62.
    Huang YF, Pryor ME, Mather LE, et al. Cardiovascular and central nervous system effects of intravenous levobupivacaine and bupivacaine in sheep. Anesth Analg 1998; 86(4): 797–804PubMedGoogle Scholar
  63. 63.
    Stewart J, Kellett N, Castro D. The central nervous system and cardiovascular effects of levobupivacaine and ropivacaine in healthy volunteers. Anesth Analg 2003; 97(2): 412–6PubMedCrossRefGoogle Scholar
  64. 64.
    Bardsley H, Gristwood R, Baker H, et al. A comparison of the cardiovascular effects of levobupivacaine and rac-bupivacaine following intravenous administration to healthy volunteers. Br J Clin Pharmacol 1998; 46(3): 245–9PubMedCrossRefGoogle Scholar
  65. 65.
    McLeod GA, Burke D. Levobupivacaine. Anaesthesia 2001; 56(4): 331–41PubMedCrossRefGoogle Scholar
  66. 66.
    Rosenberg PH, Schug SA. Levobupivacaine base and levobupivacaine hydrochloride. Br J Anaesth 2005; 94(4): 544PubMedCrossRefGoogle Scholar
  67. 67.
    Breslin DS, Martin G, Macleod DB, et al. Central nervous system toxicity following the administration of levobupivacaine for lumbar plexus block: a report of two cases. Reg Anesth Pain Med 2003; 28(2): 144–7PubMedGoogle Scholar
  68. 68.
    Crews JC, Rothman TE. Seizure after levobupivacaine for interscalene brachial plexus block. Anesth Analg 2003; 96(4): 1188–90PubMedCrossRefGoogle Scholar
  69. 69.
    Cox CR, Faccenda KA, Gilhooly C, et al. Extradural S (−)-bupivacaine: comparison with racemic RS-bupivacaine. Br J Anaesth 1998; 80: 289–93PubMedCrossRefGoogle Scholar
  70. 70.
    Breschan C, Jost R, Krumpholz R, et al. A prospective study comparing the analgesic efficacy of levobupivacaine, ropivacaine and bupivacaine in pediatric patients undergoing caudal blockade. Paediatr Anaesth 2005; 15(4): 301–6PubMedCrossRefGoogle Scholar
  71. 71.
    De Negri P, Ivani G, Tirri T, et al. A comparison of epidural bupivacaine, levobupivacaine, and ropivacaine on postoperative analgesia and motor blockade. Anesth Analg 2004; 99(1): 45–8PubMedCrossRefGoogle Scholar
  72. 72.
    Lyons G, Columb M, Wilson RC, et al. Epidural pain relief in labour: potencies of levobupivacaine and racemic bupivacaine. Br J Anaesth 1998; 81(6): 899–901PubMedCrossRefGoogle Scholar
  73. 73.
    Lacassie HJ, Columb MO. The relative motor blocking potencies of bupivacaine and levobupivacaine in labor. Anesth Analg 2003; 97(5): 1509–13PubMedCrossRefGoogle Scholar
  74. 74.
    Ummenhofer WC, Arends RH, Shen DD, et al. Comparative spinal distribution and clearance kinetics of intrathecally administered morphine, fentanyl, alfentanil, and sufentanil. Anesthesiology 2000; 92(3): 739–53PubMedCrossRefGoogle Scholar
  75. 75.
    Bernards CM. Understanding the physiology and pharmacology of epidural and intrathecal opioids. Best Pract Res Clin Anaesthesiol 2002; 16(4): 489–505PubMedCrossRefGoogle Scholar
  76. 76.
    Bernards CM, Shen DD, Sterling ES, et al. Epidural, cerebrospinal fluid, and plasma pharmacokinetics of epidural opiods (part 1): differences among opiods. Anesthesiology 2003; 99(2): 455–65PubMedCrossRefGoogle Scholar
  77. 77.
    Bernards CM, Shen DD, Sterling ES, et al. Epidural, cerebrospinal fluid, and plasma pharmacokinetics of epidural opiods (part 2): effect of epinephrine. Anesthesiology 2003; 99(2): 466–72PubMedCrossRefGoogle Scholar
  78. 78.
    Wheatley RG, Schug SA, Watson D. Safety and efficacy of postoperative epidural analgesia. Br J Anaesth 2001; 87(1): 47–61PubMedCrossRefGoogle Scholar
  79. 79.
    Dahl JB, Jeppesen IS, Jorgensen H, et al. Intraoperative and postoperative analgesic efficacy and adverse effects of intrathecal opioids in patients undergoing cesarean section with spinal anesthesia: a qualitative and quantitative systematic review of randomized controlled trials. Anesthesiology 1999; 91(6): 1919–27PubMedCrossRefGoogle Scholar
  80. 80.
    Viscusi ER, Martin G, Hartrick CT, et al. Forty-eight hours of postoperative pain relief after total hip arthroplasty with a novel, extended-release epidural morphine formulation. Anesthesiology 2005; 102(5): 1014–22PubMedCrossRefGoogle Scholar
  81. 81.
    Shapiro A, Zohar E, Zaslansky R, et al. The frequency and timing of respiratory depression in 1524 postoperative patients treated with systemic or neuraxial morphine. J Clin Anesth 2005; 17(7): 537–42PubMedCrossRefGoogle Scholar
  82. 82.
    Nguyen Thi TV, Orliaguet G, Ngû TH, et al. Spinal anesthesia with meperidine as the sole agent for cesarean delivery. Reg Anesth 1994; 19(6): 386–9PubMedGoogle Scholar
  83. 83.
    Ngan Kee WD. Epidural pethidine: pharmacology and clinical experience. Anaesth Intensive Care 1998; 26(3): 247–55PubMedGoogle Scholar
  84. 84.
    Ngan Kee WD. Intrathecal pethidine: pharmacology and clinical applications. Anaesth Intensive Care 1998; 26(2): 137–46PubMedGoogle Scholar
  85. 85.
    Paech MJ, Moore JS, Evans SF. Meperidine for patient-controlled analgesia after cesarean section. Intravenous versus epidural administration. Anesthesiology 1994; 80(6): 1268–76Google Scholar
  86. 86.
    Hamber EA, Viscomi CM. Intrathecal lipophilic opioids as adjuncts to surgical spinal anesthesia. Reg Anesth Pain Med 1999; 24(3): 255–63PubMedGoogle Scholar
  87. 87.
    Polley L, Columb M, Naughton N, et al. Effect of intravenous versus epidural fentanyl on the minimum local analgesic concentration of epidural bupivacaine in labor. Anesthesiology 2000; 93: 122–8PubMedCrossRefGoogle Scholar
  88. 88.
    Schug SA, Buerkle H, Moharib M, et al. New drugs for neuraxial blockade. Curr Opin Anaesthesiol 1999; 12(5): 551–7PubMedCrossRefGoogle Scholar
  89. 89.
    Fournier R, Gamulin Z, Van Gessel E. Respiratory depression after 5 micrograms of intrathecal sufentanil. Anesth Analg 1998; 87(6): 1377–8PubMedGoogle Scholar
  90. 90.
    Twycross RG. Choice of strong analgesic in terminal cancer: diamorphine or morphine? Pain 1977; 3(2): 93–104PubMedCrossRefGoogle Scholar
  91. 91.
    Vaughan DJ, Ahmad N, Lillywhite NK, et al. Choice of opioid for initiation of combined spinal epidural analgesia in labour: fentanyl or diamorphine. Br J Anaesth 2001; 86(4): 567–9PubMedCrossRefGoogle Scholar
  92. 92.
    Husaini SW, Russell IF. Intrathecal diamorphine compared with morphine for postoperative analgesia after caeserian section under spinal anaesthesia. Br J Anaesth 1998; 81: 135–9PubMedCrossRefGoogle Scholar
  93. 93.
    Chaney MA. Side effects of intrathecal and epidural opioids. Can J Anaesth 1995; 42(10): 891–903PubMedCrossRefGoogle Scholar
  94. 94.
    Bailey PL, Lu JK, Pace NL, et al. Effects of intrathecal morphine on the ventilatory response to hypoxia. N Engl J Med 2000; 343(17): 1228–34PubMedCrossRefGoogle Scholar
  95. 95.
    Tsui BC, Wagner A, Finucane B. Regional anaesthesia in the elderly: a clinical guide. Drugs Aging 2004; 21(14): 895–910PubMedCrossRefGoogle Scholar
  96. 96.
    Szarvas S, Harmon D, Murphy D. Neuraxial opioid-induced pruritus: a review. J Clin Anesth 2003; 15(3): 234–9PubMedCrossRefGoogle Scholar
  97. 97.
    Jeon Y, Hwang J, Kang J, et al. Effects of epidural naloxone on pruritus induced by epidural morphine: a randomized controlled trial. Int J Obstet Anesth 2005; 14(1): 22–5PubMedCrossRefGoogle Scholar
  98. 98.
    Iatrou CA, Dragoumanis CK, Vogiatzaki TD, et al. Prophylactic intravenous ondansetron and dolasetron in intrathecal morphine-induced pruritus: a randomized, double-blinded, placebo-controlled study. Anesth Analg 2005; 101(5): 1516–20PubMedCrossRefGoogle Scholar
  99. 99.
    Davies PW, Vallejo MC, Shannon KT, et al. Oral herpes simplex reactivation after intrathecal morphine: a prospective randomized trial in an obstetric population. Anesth Analg 2005; 100(5): 1472–6PubMedCrossRefGoogle Scholar
  100. 100.
    De Kock M, Crochet B, Morimont C, et al. Intravenous or epidural clonidine for intra- and postoperative analgesia. Anesthesiology 1993; 79(3): 525–31PubMedCrossRefGoogle Scholar
  101. 101.
    Tamsen A, Gordh T. Clonidine is not neurotoxic. Lancet 1984; II(8407): 876CrossRefGoogle Scholar
  102. 102.
    Tamsen A, Gordh T. Epidural clonidine produces analgesia. Lancet 1984; II(8396): 231–2CrossRefGoogle Scholar
  103. 103.
    Eisenach JC, De Kock M, Klimscha W. alpha (2)-adrenergic agonists for regional anesthesia: a clinical review of clonidine (1984–1995). Anesthesiology 1996; 85(3): 655–74PubMedCrossRefGoogle Scholar
  104. 104.
    Filos KS, Goudas LC, Patroni O, et al. Hemodynamic and analgesic profile after intrathecal clonidine in humans: a dose-response study. Anesthesiology 1994; 81(3): 591–601PubMedCrossRefGoogle Scholar
  105. 105.
    Dobrydnjov I, Axelsson K, Gupta A, et al. Improved analgesia with clonidine when added to local anesthetic during combined spinal-epidural anesthesia for hip arthroplasty: a double-blind, randomized and placebo-controlled study. Acta Anaesthesiol Scand 2005; 49(4): 538–45PubMedCrossRefGoogle Scholar
  106. 106.
    Paech MJ, Banks SL, Gurrin LC, et al. A randomized, double-blinded trial of subarachnoid bupivacaine and fentanyl, with or without clonidine, for combined spinal/epidural analgesia during labor. Anesth Analg 2002; 95(5): 1396–401PubMedCrossRefGoogle Scholar
  107. 107.
    Paech MJ, Pavy TJ, Orlikowski CE, et al. Postcesarean analgesia with spinal morphine, clonidine, or their combination. Anesth Analg 2004; 98(5): 1460–6PubMedCrossRefGoogle Scholar
  108. 108.
    Paech MJ, Pavy TJ, Orlikowski CE, et al. Postoperative epidural infusion: a randomized, double-blind, dose-finding trial of clonidine in combination with bupivacaine and fentanyl. Anesth Analg 1997; 84(6): 1323–8PubMedGoogle Scholar
  109. 109.
    Walker SM, Goudas LC, Cousins MJ, et al. Combination spinal analgesic chemotherapy: a systematic review. Anesth Analg 2002; 95(3): 674–715PubMedGoogle Scholar
  110. 110.
    Bailey PL, Sperry RJ, Johnson GK, et al. Respiratory effects of clonidine alone and combined with morphine, in humans. Anesthesiology 1991; 74(1): 43–8PubMedCrossRefGoogle Scholar
  111. 111.
    Uhle El, Becker R, Gatscher S, et al. Continuous intrathecal clonidine administration for the treatment of neuropathic pain. Stereotact Funct Neurosurg 2000; 75(4): 167–75PubMedCrossRefGoogle Scholar
  112. 112.
    Ansermino M, Basu R, Vandebeek C, et al. Nonopioid additives to local anaesthetics for caudal blockade in children: a systematic review. Paediatr Anaesth 2003; 13(7): 561–73PubMedCrossRefGoogle Scholar
  113. 113.
    Paech MJ, Pavy TJ, Orlikowski CE, et al. Patient-controlled epidural analgesia in labor: the addition of clonidine to bupivacaine-fentanyl. Reg Anesth Pain Med 2000; 25(1): 34–40PubMedGoogle Scholar
  114. 114.
    Martin E, Ramsay G, Mantz J, et al. The role of the alpha2-adrenoceptor agonist dexmedetomidine in postsurgical sedation in the intensive care unit. J Intensive Care Med 2003; 18(1): 29–41PubMedCrossRefGoogle Scholar
  115. 115.
    Fisher B, Zornow MH, Yaksh TL, et al. Antinociceptive properties of intrathecal dexmedetomidine in rats. Eur J Pharmacol 1991; 192(2): 221–5PubMedCrossRefGoogle Scholar
  116. 116.
    Kalso EA, Poyhia R, Rosenberg PH. Spinal antinociception by dexmedetomidine, a highly selective alpha 2-adrenergic agonist. Pharmacol Toxicol 1991; 68(2): 140–3PubMedCrossRefGoogle Scholar
  117. 117.
    Eisenach JC, Shafer SL, Bucklin BA, et al. Pharmacokinetics and pharmacodynamics of intraspinal dexmedetomidine in sheep. Anesthesiology 1994; 80(6): 1349–59PubMedCrossRefGoogle Scholar
  118. 118.
    Calasans-Maia JA, Zapata-Sudo G, Sudo RT. Dexmedetomidine prolongs spinal anaesthesia induced by levobupivacaine 0.5% in guinea-pigs. J Pharm Pharmacol 2005; 57(11): 1415–20PubMedCrossRefGoogle Scholar
  119. 119.
    Kanazi GE, Aouad MT, Jabbour-Khoury SI, et al. Effect of low-dose dexmedetomidine or clonidine on the characteristics of bupivacaine spinal block. Acta Anaesthesiol Scand 2006; 50(2): 222–7PubMedCrossRefGoogle Scholar
  120. 120.
    Niemi G. Advantages and disadvantages of adrenaline in regional anaesthesia. Best Pract Res Clin Anaesthesiol 2005; 19(2): 229–45PubMedCrossRefGoogle Scholar
  121. 121.
    Kito K, Kato H, Shibata M, et al. The effect of varied doses of epinephrine on duration of lidocaine spinal anesthesia in the thoracic and lumbosacral dermatomes. Anesth Analg 1998; 86: 1018–22PubMedGoogle Scholar
  122. 122.
    Niemi G, Breivik H. Epinephrine markedly improves thoracic epidural analgesia produced by a small-dose infusion of ropivacaine, fentanyl, and epinephrine after major thoracic or abdominal surgery: a randomized, double-blinded crossover study with and without epinephrine. Anesth Analg 2002; 94(6): 1598–605PubMedGoogle Scholar
  123. 123.
    Niemi G, Breivik H. The minimally effective concentration of adrenaline in a low-concentration thoracic epidural analgesic infusion of bupivacaine, fentanyl and adrenaline after major surgery: a randomized, double-blind, dose-finding study. Acta Anaesthesiol Scand 2003; 47(4): 439–50PubMedCrossRefGoogle Scholar
  124. 124.
    Kozody R, Palahniuk RJ, Wade JG, et al. The effect of subarachnoid epinephrine and phenylephrine on spinal cord blood flow. Can Anaesth Soc J 1984; 31(5): 503–8PubMedCrossRefGoogle Scholar
  125. 125.
    Kathirvel S, Sadhasivam S, Saxena A, et al. Effects of intrathecal ketamine added to bupivacaine for spinal anaesthesia. Anaesthesia 2000; 55: 899–904PubMedCrossRefGoogle Scholar
  126. 126.
    Subramaniam K, Subramaniam B, Steinbrook RA. Ketamine as adjuvant analgesic to opioids: a quantitative and qualitative systematic review. Anesth Analg 2004; 99(2): 482–95PubMedCrossRefGoogle Scholar
  127. 127.
    Eisenach JC. Muscarinic-mediated analgesia. Life Sci 1999; 64(6-7): 549–54PubMedCrossRefGoogle Scholar
  128. 128.
    Lauretti GR, Hood DD, Eisenach JC, et al. A multi-center study of intrathecal neostigmine for analgesia following vaginal hysterectomy. Anesthesiology 1998; 89(4): 913–8PubMedCrossRefGoogle Scholar
  129. 129.
    Omais M, Lauretti GR, Paccola CA. Epidural morphine and neostigmine for postoperative analgesia after orthopedic surgery. Anesth Analg 2002; 95(6): 1698–701PubMedCrossRefGoogle Scholar
  130. 130.
    Lauretti GR, de Oliveira R, Reis MP, et al. Study of three different doses of epidural neostigmine coadministered with lidocaine for postoperative analgesia. Anesthesiology 1999; 90(6): 1534–8PubMedCrossRefGoogle Scholar
  131. 131.
    Roelants F, Lavand’homme PM, Mercier-Fuzier V. Epidural administration of neostigmine and clonidine to induce labor analgesia: evaluation of efficacy and local anesthetic-sparing effect. Anesthesiology 2005; 102(6): 1205–10PubMedCrossRefGoogle Scholar
  132. 132.
    Roelants F, Lavand’homme PM. Epidural neostigmine combined with sufentanil provides balanced and selective analgesia in early labor. Anesthesiology 2004; 101(2): 439–44PubMedCrossRefGoogle Scholar
  133. 133.
    Roelants F, Rizzo M, Lavand’homme P. The effect of epidural neostigmine combined with ropivacaine and sufentanil on neuraxial analgesia during labor. Anesth Analg 2003; 96(4): 1161–6PubMedCrossRefGoogle Scholar
  134. 134.
    Kohno T, Wakai A, Ataka T, et al. Actions of midazolam on excitatory transmission in dorsal horn neurons of adult rat spinal cord. Anesthesiology 2006; 104(2): 338–43PubMedCrossRefGoogle Scholar
  135. 135.
    Yaksh TL, Allen JW. Preclinical insights into the implementation of intrathecal midazolam: a cautionary tale. Anesth Analg 2004; 98(6): 1509–11PubMedCrossRefGoogle Scholar
  136. 136.
    Yanez A, Sabbe MB, Stevens CW, et al. Interaction of midazolam and morphine in the spinal cord of the rat. Neuropharmacology 1990; 29(4): 359–64PubMedCrossRefGoogle Scholar
  137. 137.
    Tucker AP, Mezzatesta J, Nadeson R, et al. Intrathecal midazolam II: combination with intrathecal fentanyl for labor pain. Anesth Analg 2004; 98(6): 1521–7PubMedCrossRefGoogle Scholar
  138. 138.
    Sawynok J, Sweeney MI. The role of purines in nociception. Neuroscience 1989; 32(3): 557–69PubMedCrossRefGoogle Scholar
  139. 139.
    Poon A, Sawynok J. Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain 1998; 74(2–3): 235–45PubMedCrossRefGoogle Scholar
  140. 140.
    Gomes JA, Li X, Pan HL, et al. Intrathecal adenosine interacts with a spinal noradrenergic system to produce antinociception in nerve-injured rats. Anesthesiology 1999; 91(4): 1072–9PubMedCrossRefGoogle Scholar
  141. 141.
    Eisenach JC, Hood DD, Curry R. Phase I safety assessment of intrathecal injection of an American formulation of adenosine in humans. Anesthesiology 2002; 96(1): 24–8PubMedCrossRefGoogle Scholar
  142. 142.
    Rane K, Segerdahl M, Goiny M, et al. Intrathecal adenosine administration: a phase 1 clinical safety study in healthy volunteers, with additional evaluation of its influence on sensory thresholds and experimental pain. Anesthesiology 1998; 89(5): 1108–15PubMedCrossRefGoogle Scholar
  143. 143.
    Eisenach JC, Curry R, Hood DD. Dose response of intrathecal adenosine in experimental pain and allodynia. Anesthesiology 2002; 97(4): 938–42PubMedCrossRefGoogle Scholar
  144. 144.
    Rane K, Sollevi A, Segerdahl M. Intrathecal adenosine administration in abdominal hysterectomy lacks analgesic effect. Acta Anaesthesiol Scand 2000; 44(7): 868–72PubMedCrossRefGoogle Scholar
  145. 145.
    Rane K, Sollevi A, Segerdahl M. A randomised double-blind evaluation of adenosine as adjunct to sufentanil in spinal labour analgesia. Acta Anaesthesiol Scand 2003; 47(5): 601–3PubMedCrossRefGoogle Scholar
  146. 146.
    Bowersox SS, Gadbois T, Singh T, et al. Selective N-type neuronal voltage-sensitive calcium channel blocker, SNX-111, produces spinal antinociception in rat models of acute, persistent and neuropathic pain. J Pharmacol Exp Ther 1996; 279(3): 1243–9PubMedGoogle Scholar
  147. 147.
    Brose WG, Gutlove DP, Luther RR, et al. Use of intrathecal SNX-111, a novel, N-type, voltage-sensitive, calcium channel blocker, in the management of intractable brachial plexus avulsion pain. Clin J Pain 1997; 13(3): 256–9PubMedCrossRefGoogle Scholar
  148. 148.
    Penn RD, Paice JA. Adverse effects associated with the intrathecal administration of ziconotide. Pain 2000; 85(1–2): 291–6PubMedCrossRefGoogle Scholar
  149. 149.
    Atanassoff PG, Hartmannsgruber MW, Thrasher J, et al. Ziconotide, a new N-type calcium channel blocker, administered intrathecally for acute postoperative pain. Reg Anesth Pain Med 2000; 25(3): 274–8PubMedGoogle Scholar
  150. 150.
    Wermeling D, Drass M, Ellis D, et al. Pharmacokinetics and pharmacodynamics of intrathecal ziconotide in chronic pain patients. J Clin Pharmacol 2003; 43(6): 624–36PubMedGoogle Scholar
  151. 151.
    Staats PS, Yearwood T, Charapata SG, et al. Intrathecal ziconotide in the treatment of refractory pain in patients with cancer or AIDS: a randomized controlled trial. JAMA 2004; 291(1): 63–70PubMedCrossRefGoogle Scholar
  152. 152.
    Wermeling DP. Ziconotide, an intrathecally administered N-type calcium channel antagonist for the treatment of chronic pain. Pharmacotherapy 2005; 25(8): 1084–94PubMedCrossRefGoogle Scholar
  153. 153.
    Ochs GA. Intrathecal baclofen. Baillieres Clin Neurol 1993; 2(1): 73–86PubMedGoogle Scholar
  154. 154.
    Slonimski M, Abram SE, Zuniga RE. Intrathecal baclofen in pain management. Reg Anesth Pain Med 2004; 29(3): 269–76PubMedGoogle Scholar
  155. 155.
    Hsieh JC, Penn RD. Intrathecal baclofen in the treatment of adult spasticity. Neurosurg Focus 2006; 21(2): E5PubMedCrossRefGoogle Scholar
  156. 156.
    Herman RM, D’Luzansky SC, Ippolito R. Intrathecal baclofen suppresses central pain in patients with spinal lesions: a pilot study. Clin J Pain 1992; 8(4): 338–45PubMedCrossRefGoogle Scholar
  157. 157.
    Loubser PG, Akman NM. Effects of intrathecal baclofen on chronic spinal cord injury pain. J Pain Symptom Manage 1996; 12(4): 241–7PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  • Stephan A. Schug
    • 1
    • 2
  • David Saunders
    • 2
  • Irina Kurowski
    • 2
  • Michael J. Paech
    • 1
    • 2
  1. 1.Pharmacology Unit, School of Medicine and PharmacologyUWA Anaesthesia, University of Western AustraliaPerthAustralia
  2. 2.Department of Anaesthesia and Pain MedicineRoyal Perth HospitalPerthAustralia

Personalised recommendations