CNS Drugs

, Volume 20, Issue 5, pp 389–409 | Cite as

Mechanism of Action of Atypical Antipsychotic Drugs and the Neurobiology of Schizophrenia

  • Jiri HoracekEmail author
  • Vera Bubenikova-Valesova
  • Milan Kopecek
  • Tomas Palenicek
  • Colleen Dockery
  • Pavel Mohr
  • Cyril Höschl
Review Article


Atypical antipsychotics have greatly enhanced the treatment of schizophrenia. The mechanisms underlying the effectiveness and adverse effects of these drugs are, to date, not sufficiently explained. This article summarises the hypothetical mechanisms of action of atypical antipsychotics with respect to the neurobiology of schizophrenia.

When considering treatment models for schizophrenia, the role of dopamine receptor blockade and modulation remains dominant. The optimal occupancy of dopamine D2 receptors seems to be crucial to balancing efficacy and adverse effects — transient D2 receptor antagonism (such as that attained with, for example, quetiapine and clozapine) is sufficient to obtain an antipsychotic effect, while permanent D2 receptor antagonism (as is caused by conventional antipsychotics) increases the risk of adverse effects such as extrapyramidal symptoms. Partial D2 receptor agonism (induced by aripiprazole) offers the possibility of maintaining optimal blockade and function of D2 receptors. Balancing presynaptic and postsynaptic D2 receptor antagonism (e.g. induced by amisulpride) is another mechanism that can, through increased release of endogenous dopamine in the striatum, protect against excessive blockade of D2 receptors.

Serotonergic modulation is associated with a beneficial increase in striatal dopamine release. Effects on the negative and cognitive symptoms of schizophrenia relate to dopamine release in the prefrontal cortex; this can be modulated by combined D2 and serotonin 5-HT2A receptor antagonism (e.g. by olanzapine and risperidone), partial D2 receptor antagonism or the preferential blockade of inhibitory dopamine autoreceptors.

In the context of the neurodevelopmental disconnection hypothesis of schizophrenia, atypical antipsychotics (in contrast to conventional antipsychotics) induce neuronal plasticity and synaptic remodelling, not only in the striatum but also in other brain areas such as the prefrontal cortex and hippocampus. This mechanism may normalise glutamatergic dysfunction and structural abnormalities and affect the core pathophysiological substrates for schizophrenia.


Schizophrenia Clozapine Olanzapine Aripiprazole Atypical Antipsychotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Preparation of this review and our work reviewed in the article was supported by grant NF/7578 – 3 from MZ CR and the research project 1M0517 MSMT CR. The authors have no conflicts of interest that are directly relevant to the content of this review.


  1. 1.
    Bymaster FP, Calligaro DO, Falcone JF, et al. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 1996; 14: 87–96PubMedCrossRefGoogle Scholar
  2. 2.
    Roth BL, Sheffler D, Potkin SG. Atypical antipsychotic drug actions: unitary or multiple mechanisms for “atypicality”? Clin Neurosci Res 2003; 3: 108–17CrossRefGoogle Scholar
  3. 3.
    Kapur S, Seeman P. Antipsychotic agents differ in how fast they come off the dopamine D2 receptors: implications for atypical antipsychotic action. J Psychiatry Neurosci 2000; 25: 161–6PubMedGoogle Scholar
  4. 4.
    Remington G. Understanding antipsychotic “atypicality”: a clinical and pharmacological moving target. J Psychiatry Neurosci 2003; 28: 275–84PubMedGoogle Scholar
  5. 5.
    Leucht S, Pitschel-Walz G, Abraham D, et al. Efficacy and extrapyramidal side-effects of the new antipsychotics olanzapine, quetiapine, risperidone, and sertindole compared to conventional antipsychotics and placebo: a meta-analysis of randomized controlled trials. Schizophr Res 1999; 35: 51–68PubMedCrossRefGoogle Scholar
  6. 6.
    Melkersson K, Dahl ML. Adverse metabolic effects associated with atypical antipsychotics: literature review and clinical implications. Drugs 2004 (7); 64: 701–723PubMedCrossRefGoogle Scholar
  7. 7.
    Lehman AF, Lieberman JA, Dixon LB, et al. Practice guideline for the treatment of patients with schizophrenia, second edition. Am J Psychiatry 2004; 161: 1–56PubMedCrossRefGoogle Scholar
  8. 8.
    Tandon R, Jibson MD. Efficacy of newer generation antipsychotics in the treatment of schizophrenia. Psychoneuroendocrinology 2003; 28Suppl. 1: 9–26PubMedCrossRefGoogle Scholar
  9. 9.
    Tuunainen A, Wahlbeck K, Gilbody SM. Newer atypical antipsychotic medication versus clozapine for schizophrenia. Cochrane Database Syst Rev 2000; (2): CD000966Google Scholar
  10. 10.
    Geddes J, Freemantle N, Harrison P, et al. Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis. BMJ 2000; 321: 1371–6PubMedCrossRefGoogle Scholar
  11. 11.
    Leucht S, Wahlbeck K, Hamann J, et al. New generation antipsychotics versus low-potency conventional antipsychotics: a systematic review and meta-analysis. Lancet 2003; 361: 1581–9PubMedCrossRefGoogle Scholar
  12. 12.
    Davis JM, Chen N, Glick ID. A meta-analysis of the efficacy of second-generation antipsychotics. Arch Gen Psychiatry 2003; 60: 553–64PubMedCrossRefGoogle Scholar
  13. 13.
    Kinon BJ, Ahl J, Stauffer VL, et al. Dose response and atypical antipsychotics in schizophrenia. CNS Drugs 2004; 18: 597–616PubMedCrossRefGoogle Scholar
  14. 14.
    Knable MB, Weinberger DR. Dopamine, the prefrontal cortex and schizophrenia. J Psychopharmacol 1997; 11: 123–31PubMedCrossRefGoogle Scholar
  15. 15.
    Tzschentke TM. Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 2001; 63: 241–320PubMedCrossRefGoogle Scholar
  16. 16.
    Vile JM, Strange PG. Atypical antipsychotics: serotonergic mechanisms but don’t forget dopamine. J Psychopharmacol 1997; 11: 24–5PubMedCrossRefGoogle Scholar
  17. 17.
    Seeman P. Atypical antipsychotics: mechanism of action. Can J Psychiatry 2002; 47: 27–38PubMedGoogle Scholar
  18. 18.
    Farde L, Wiesel FA, Jansson P, et al. An open label trial of raclopride in acute schizophrenia: confirmation of D2-dopamine receptor occupancy by PET. Psychopharmacology (Berl) 1988; 94: 1–7CrossRefGoogle Scholar
  19. 19.
    Farde L, Nordstrom AL, Halldin C, et al. PET studies of dopamine receptors in relation to antipsychotic drug treatment. Clin Neuropharmacol 1992; 15 Suppl. 1 Pt A: 468–9ACrossRefGoogle Scholar
  20. 20.
    Goyer PF, Berridge MS, Morris ED, et al. PET measurement of neuroreceptor occupancy by typical and atypical neuroleptics. J Nucl Med 1996; 37: 1122–7PubMedGoogle Scholar
  21. 21.
    Kapur S, Zipursky RB, Remington G. Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry 1999; 156: 286–93PubMedGoogle Scholar
  22. 22.
    Kapur S. Neuroimaging and drug development: an algorithm for decision making. J Clin Pharmacol 2001 Jul; Suppl.: 64-71SGoogle Scholar
  23. 23.
    Sedvall G, Pauli S, Karlsson P, et al. PET imaging of neuroreceptors in schizophrenia. Eur Neuropsychopharmacol 1995; 5 Suppl.: 25–30PubMedCrossRefGoogle Scholar
  24. 24.
    Lynch MR. Schizophrenia and the D1 receptor: focus on negative symptoms. Prog Neuropsychopharmacol Biol Psychiatry 1992; 16: 797–832PubMedCrossRefGoogle Scholar
  25. 25.
    Sawaguchi T, Goldman-Rakic PS. D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 1991; 251: 947–50PubMedCrossRefGoogle Scholar
  26. 26.
    Weinberger DR. The biological basis of schizophrenia: new directions. J Clin Psychiatry 1997; 58Suppl. 10: 22–7PubMedGoogle Scholar
  27. 27.
    Kane JM, McGlashan TH. Treatment of schizophrenia. Lancet 1995; 346: 820–5PubMedCrossRefGoogle Scholar
  28. 28.
    Seeman P. Antypsychotic drugs, dopamine receptors, and schizophrenia. Clin Neurosci Res 2001; 1: 53–60CrossRefGoogle Scholar
  29. 29.
    Waddington JL. Therapeutic potential of selective D-1 dopamine receptor agonists and antagonists in psychiatry and neurology. Gen Pharmacol 1988; 19: 55–60PubMedCrossRefGoogle Scholar
  30. 30.
    Den Boer JA, van Megen HJ, Fleischhacker WW, et al. Differential effects of the D1-DA receptor antagonist SCH39166 on positive and negative symptoms of schizophrenia. Psychopharmacology (Berl) 1995; 121: 317–22CrossRefGoogle Scholar
  31. 31.
    Labelle A, de Beaurepaire R, Boulay LJ, et al. A pilot study of the safety and tolerance of SCH 39166 in patients with schizophrenia. J Psychiatry Neurosci 1998; 23: 93–4PubMedGoogle Scholar
  32. 32.
    Castner SA, Williams GV, Goldman-Rakic PS. Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 2000; 287: 2020–2PubMedCrossRefGoogle Scholar
  33. 33.
    Goldman-Rakic P. The relevance of the dopamine-D1 receptor in the cognitive symptoms of schizophrenia. Neuropsychopharmacology 1999; 21: S170–80CrossRefGoogle Scholar
  34. 34.
    Wong AH, Van Tol HH. The dopamine D4 receptors and mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1091–9PubMedCrossRefGoogle Scholar
  35. 35.
    Broderick PA, Piercey MF. Clozapine, haloperidol, and the D4 antagonist PNU-101387G: in vivo effects on mesocortical, mesolimbic, and nigrostriatal dopamine and serotonin release. J Neural Transm 1998; 105: 749–67PubMedCrossRefGoogle Scholar
  36. 36.
    Seeman P. Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology 1992; 7: 261–84Google Scholar
  37. 37.
    Van Tol HH, Bunzow JR, Guan HC, et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991; 350: 610–4PubMedCrossRefGoogle Scholar
  38. 38.
    Kramer MS, Last B, Getson A, et al. The effects of a selective D4 dopamine receptor antagonist (L-745,870) in acutely psychotic inpatients with schizophrenia. D4 Dopamine Antagonist Group. Arch Gen Psychiatry 1997; 54: 567–72CrossRefGoogle Scholar
  39. 39.
    Scatton B, Claustre Y, Cudennec A, et al. Amisulpride: from animal pharmacology to therapeutic action. Int Clin Psychopharmacol 1997; 12Suppl. 2: S29–36PubMedCrossRefGoogle Scholar
  40. 40.
    Bressan RA, Erlandsson K, Jones HM, et al. Is regionally selective D2/D3 dopamine occupancy sufficient for atypical antipsychotic effect? An in vivo quantitative [123I]epidepride SPET study of amisulpride-treated patients. Am J Psychiatry 2003; 160: 1413–20PubMedCrossRefGoogle Scholar
  41. 41.
    Leucht S, Pitschel-Walz G, Engel RR, et al. Amisulpride, an unusual “atypical” antipsychotic: a meta-analysis of randomized controlled trials. Am J Psychiatry 2002; 159: 180–90PubMedCrossRefGoogle Scholar
  42. 42.
    McKeage K, Plosker GL. Amisulpride: a review of its use in the management of schizophrenia. CNS Drugs 2004; 18: 933–56PubMedCrossRefGoogle Scholar
  43. 43.
    Moller HJ. Amisulpride: limbic specificity and the mechanism of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1101–11PubMedCrossRefGoogle Scholar
  44. 44.
    Laruelle M, D’Souza CD, Baldwin RM, et al. Imaging D2 receptor occupancy by endogenous dopamine in humans. Neuropsychopharmacology 1997; 17: 162–74PubMedCrossRefGoogle Scholar
  45. 45.
    Kapur S, Seeman P. Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry 2001; 158: 360–9PubMedCrossRefGoogle Scholar
  46. 46.
    Ozdemir V, Fourie J, Ozdener F. Aripiprazole (Otsuka Pharmaceutical Co.). Curr Opin Investig Drugs 2002; 3: 113–20PubMedGoogle Scholar
  47. 47.
    Dean B, Scarr E. Antipsychotic drugs: evolving mechanisms of action with improved therapeutic benefits. Curr Drug Targets CNS Neurol Disord 2004; 3: 217–25PubMedCrossRefGoogle Scholar
  48. 48.
    Burris KD, Molski TF, Xu C, et al. Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 2002; 302: 381–9PubMedCrossRefGoogle Scholar
  49. 49.
    Lieberman JA. Dopamine partial agonists: a new class of antipsychotic. CNS Drugs 2004; 18: 251–67PubMedCrossRefGoogle Scholar
  50. 50.
    Jordan S, Koprivica V, Chen R, et al. The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur J Pharmacol 2002; 441: 137–40PubMedCrossRefGoogle Scholar
  51. 51.
    Jordan S, Koprivica V, Dunn R, et al. In vivo effects of aripiprazole on cortical and striatal dopaminergic and serotonergic function. Eur J Pharmacol 2004; 483: 45–53PubMedCrossRefGoogle Scholar
  52. 52.
    Grunder G, Carlsson A, Wong DF. Mechanism of new antipsychotic medications: occupancy is not just antagonism. Arch Gen Psychiatry 2003; 60: 974–7PubMedCrossRefGoogle Scholar
  53. 53.
    Potkin SG, Saha AR, Kujawa MJ, et al. Aripiprazole, an antipsychotic with a novel mechanism of action, and risperidone vs placebo in patients with schizophrenia and schizoaffective disorder. Arch Gen Psychiatry 2003; 60: 681–90PubMedCrossRefGoogle Scholar
  54. 54.
    Shapiro DA, Renock S, Arrington E, et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003; 28: 1400–11PubMedCrossRefGoogle Scholar
  55. 55.
    Barbier P, Colelli A, Maggio R, et al. Pergolide binds tightly to dopamine D2 short receptors and induces receptor sequestration. J Neural Transm 1997; 104: 867–74PubMedCrossRefGoogle Scholar
  56. 56.
    Peroutka SJ. Molecular biology of serotonin (5-HT) receptors. Synapse 1994; 18: 241–60PubMedCrossRefGoogle Scholar
  57. 57.
    Krystal JH, Karper LP, Seibyl JP, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994; 51: 199–214PubMedCrossRefGoogle Scholar
  58. 58.
    Vollenweider FX. Advances and pathophysiological models of hallucinogenic drug actions in humans: a preamble to schizophrenia research. Pharmacopsychiatry 1998; 31Suppl. 2: 92–103PubMedCrossRefGoogle Scholar
  59. 59.
    Willins DL, Deutch AY, Roth BL. Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 1997; 27: 79–82PubMedCrossRefGoogle Scholar
  60. 60.
    Jakab RL, Goldman-Rakic PS. 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci U S A 1998; 95: 735–40PubMedCrossRefGoogle Scholar
  61. 61.
    Martin P, Waters N, Schmidt CJ, et al. Rodent data and general hypothesis: antipsychotic action exerted through 5-Ht2A receptor antagonism is dependent on increased serotonergic tone. J Neural Transm 1998; 105: 365–96PubMedCrossRefGoogle Scholar
  62. 62.
    Abi-Saab W, Seibyl JP, D’Souza DC, et al. Ritanserin antagonism of m-chlorophenylpiperazine effects in neuroleptic-free schizophrenics patients: support for serotonin-2 receptor modulation of schizophrenia symptoms. Psychopharmacology (Berl) 2002; 162: 55–62CrossRefGoogle Scholar
  63. 63.
    Wiesel FA, Nordstrom AL, Farde L, et al. An open clinical and biochemical study of ritanserin in acute patients with schizophrenia. Psychopharmacology (Berl) 1994; 114: 31–8CrossRefGoogle Scholar
  64. 64.
    Doherty MD, Pickel VM. Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res 2000; 864: 176–85PubMedCrossRefGoogle Scholar
  65. 65.
    Meltzer HY, Li Z, Kaneda Y, et al. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1159–72PubMedCrossRefGoogle Scholar
  66. 66.
    Bubser M, Backstrom JR, Sanders-Bush E, et al. Distribution of serotonin 5-HT(2A) receptors in afferents of the rat striatum. Synapse 2001; 39: 297–304PubMedCrossRefGoogle Scholar
  67. 67.
    Umbricht D, Kane JM. Understanding the relationship between extrapyrimidal side effects and tardive dyskinesia. In: Kane JM, Moller HJ, Awouters E, editors. Serotonergic mechanisms in antipsychotic treatment. New York: Marcel Dekker, 1996: 221–51Google Scholar
  68. 68.
    Gill HS, DeVane CL, Risch SC. Extrapyramidal symptoms associated with cyclic antidepressant treatment: a review of the literature and consolidating hypotheses. J Clin Psychopharmacol 1997; 17: 377–89PubMedCrossRefGoogle Scholar
  69. 69.
    Leysen JE. 5-HT2 receptors. Curr Drug Targets CNS Neurol Disord 2004; 3: 11–26PubMedCrossRefGoogle Scholar
  70. 70.
    Di Matteo V, De Blasi A, Giulio C, et al. Role of 5-HT(2C) receptors in the control of central dopamine function [abstract]. Trends Pharmacol Sci 2001; 22: 229–32PubMedCrossRefGoogle Scholar
  71. 71.
    Hutson PH, Barton CL, Jay M, et al. Activation of mesolimbic dopamine function by phencyclidine is enhanced by 5-HT(2C/2B) receptor antagonists: neurochemical and behavioural studies. Neuropharmacology 2000; 39: 2318–28PubMedCrossRefGoogle Scholar
  72. 72.
    Ichikawa J, Ishii H, Bonaccorso S, et al. 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 2001; 76: 1521–31PubMedCrossRefGoogle Scholar
  73. 73.
    Meltzer HY, Matsubara S, Lee JC. Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 1989; 251: 238–46PubMedGoogle Scholar
  74. 74.
    Meltzer HY, Matsubara S, Lee JC. The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull 1989; 25: 390–2PubMedGoogle Scholar
  75. 75.
    Kapur S, Remington G. Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry 1996; 153: 466–76PubMedGoogle Scholar
  76. 76.
    Yan QS. Activation of 5-HT2A/2C receptors within the nucleus accumbens increases local dopaminergic transmission. Brain Res Bull 2000; 51: 75–81PubMedCrossRefGoogle Scholar
  77. 77.
    Pehek EA, McFarlane HG, Maguschak K, et al. M100,907, a selective 5-HT(2A) antagonist, attenuates dopamine release in the rat medial prefrontal cortex. Brain Res 2001; 888: 51–9PubMedCrossRefGoogle Scholar
  78. 78.
    Liegeois JF, Ichikawa J, Meltzer HY. 5-HT(2A) receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner. Brain Res 2002; 947: 157–65PubMedCrossRefGoogle Scholar
  79. 79.
    Bubeníková V, Horáček J, Kozený J, et al. The effect of tryptophan depletion on the action of haloperidol in MK-801-treated rats. Eur J Pharmacol 2004; 502: 109–16PubMedCrossRefGoogle Scholar
  80. 80.
    Páleníček T, Horáček J, Bubeníková V. Effects of haloperidol on locomotion in animal model of schizophrenia induced by MK-801. Psychiatrie 2003; 7: 50–4Google Scholar
  81. 81.
    Páleníček T, Horáček J, Bubeníková V, et al. Effects of 5-HT1a receptor agonist 8-OH-DPAT and D2 receptor antagonist haloperidol on locomotion: animal model of schizophrenia [abstract]. Schizophr Res 2004; 67(1 Suppl.): 122Google Scholar
  82. 82.
    Palenicek T, Bubenikova V, Horacek J, et al. Atypicka antipsychotika: 5-HT2A antagonismus nebo 5HT1a agonismus [abstract]. In: Raboch J, Doubek P, Zrzavecka I, editors. Psychiatrie v medicine a medicina v psychiatrii. Praha: Galen, 2002: 165.Google Scholar
  83. 83.
    Palenicek T, Bubenikova V, Horacek J, et al. The effect of 5-HT1C antagonism (SB242084) in the animal model of schizophrenia (MK-801). Prague: Centre of Neuropsychiatric Studies, 2005. (Data on file)Google Scholar
  84. 84.
    Seeman P, Van Tol HH. Dopamine receptor pharmacology. Trends Pharmacol Sci 1994; 15: 264–70PubMedCrossRefGoogle Scholar
  85. 85.
    Ichikawa J, Meltzer HY. The effect of chronic clozapine and haloperidol on basal dopamine release and metabolism in rat striatum and nucleus accumbens studied by in vivo microdialysis. Eur J Pharmacol 1990; 176: 371–4PubMedCrossRefGoogle Scholar
  86. 86.
    Gray JA, Roth BL. Paradoxical trafficking and regulation of 5-HT(2A) receptors by agonists and antagonists. Brain Res Bull 2001; 56: 441–51PubMedCrossRefGoogle Scholar
  87. 87.
    Gray JA, Sheffler DJ, Bhatnagar A, et al. Cell-type specific effects of endocytosis inhibitors on 5-hydroxytryptamine(2A) receptor desensitization and resensitization reveal an arrestin-, GRK2-, and GRK5-independent mode of regulation in human embryonic kidney 293 cells. Mol Pharmacol 2001; 60: 1020–30PubMedGoogle Scholar
  88. 88.
    Gobert A, Rivet JM, Lejeune F, et al. Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat. Synapse 2000; 36: 205–21PubMedCrossRefGoogle Scholar
  89. 89.
    Millan MJ, Dekeyne A, Gobert A. Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. Neuropharmacology 1998; 37: 953–5PubMedCrossRefGoogle Scholar
  90. 90.
    Bonaccorso S, Meltzer HY, Li Z, et al. SR46349-B, a 5-HT(2A/2C) receptor antagonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Neuropsychopharmacology 2002; 27: 430–41PubMedCrossRefGoogle Scholar
  91. 91.
    Reavill C, Kettle A, Holland V, et al. Attenuation of haloperidol-induced catalepsy by a 5-HT2C receptor antagonist. Br J Pharmacol 1999; 126: 572–4PubMedCrossRefGoogle Scholar
  92. 92.
    Ellingrod VL, Perry PJ, Ringold JC, et al. Weight gain associated with the -759C/T polymorphism of the 5HT2C receptor and olanzapine. Am J Med Genet B Neuropsychiatr Genet 2005; 134: 76–8Google Scholar
  93. 93.
    Miller DD, Ellingrod VL, Holman TL, et al. Clozapine-induced weight gain associated with the 5HT2C receptor -759C/T polymorphism. Am J Med Genet B Neuropsychiatr Genet 2005; 133: 97–100Google Scholar
  94. 94.
    Sakaue M, Somboonthum P, Nishihara B, et al. Postsynaptic 5-hydroxytryptamine(1A) receptor activation increases in vivo dopamine release in rat prefrontal cortex. Br J Pharmacol 2000; 129: 1028–34PubMedCrossRefGoogle Scholar
  95. 95.
    Konradi C, Heckers S. Antipsychotic drugs and neuroplasticity: insights into the treatment and neurobiology of schizophrenia. Biol Psychiatry 2001; 50: 729–42PubMedCrossRefGoogle Scholar
  96. 96.
    Levey AI. Immunological localization of m1-m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 1993; 52: 441–8PubMedCrossRefGoogle Scholar
  97. 97.
    Bymaster FP, Felder CC, Tzavara E, et al. Muscarinic mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1125–43PubMedCrossRefGoogle Scholar
  98. 98.
    Snyder S, Greenberg D, Yamamura HI. Antischizophrenic drugs and brain cholinergic receptors: affinity for muscarinic sites predicts extrapyramidal effects. Arch Gen Psychiatry 1974; 31: 58–61PubMedCrossRefGoogle Scholar
  99. 99.
    Parada MA, Hernandez L, Puig DP, et al. Selective action of acute systemic clozapine on acetylcholine release in the rat prefrontal cortex by reference to the nucleus accumbens and striatum. J Pharmacol Exp Ther 1997; 281: 582–8PubMedGoogle Scholar
  100. 100.
    Martin LF, Kern WR, Freedman R. Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology (Berl) 2004; 174: 54–64CrossRefGoogle Scholar
  101. 101.
    Chiodo LA, Bunney BS. Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons. J Neurosci 1985; 5: 2539–44PubMedGoogle Scholar
  102. 102.
    Lane RF, Blaha CD, Rivet JM. Selective inhibition of mesolimbic dopamine release following chronic administration of clozapine: involvement of alpha 1-noradrenergic receptors demonstrated by in vivo voltammetry. Brain Res 1988; 460: 398–401PubMedCrossRefGoogle Scholar
  103. 103.
    Lejeune F, Audinot V, Gobert A, et al. Clozapine inhibits serotoninergic transmission by an action at alpha 1-adrenoceptors not at 5-HT1A receptors. Eur J Pharmacol 1994; 260: 79–83PubMedCrossRefGoogle Scholar
  104. 104.
    Kalkman HO. The role of alpha2-adrenoceptor antagonism in the anti-cataleptic properties of the atypical neuroleptic agent, clozapine, in the rat. Br J Pharmacol 1998 Aug; 124(7): 1550–6PubMedCrossRefGoogle Scholar
  105. 105.
    Horacek J. Schizophrenia as the deficit of information processing [in Czech]. Psychiatrie 2001; 5(2 Suppl.): 43–4Google Scholar
  106. 106.
    Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000; 57: 65–73PubMedCrossRefGoogle Scholar
  107. 107.
    Bartzokis G. Schizophrenia: breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacology 2002; 27: 672–83PubMedCrossRefGoogle Scholar
  108. 108.
    DeLisi LE, Hoff AL, Schwartz JE, et al. Brain morphology in first-episode schizophrenic-like psychotic patients: a quantitative magnetic resonance imaging study. Biol Psychiatry 1991; 29: 159–175CrossRefGoogle Scholar
  109. 109.
    Weinberger DR, Egan MF, Bertolino A, et al. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 2001; 50: 825–44PubMedCrossRefGoogle Scholar
  110. 110.
    Marenco S, Weinberger DR. The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol 2000; 12: 501–527PubMedCrossRefGoogle Scholar
  111. 111.
    Selemon LD, Rajkowska G, Goldman-Rakic PS. Abnormally high neuronal density in the schizophrenic cortex: a morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 1995; 52: 805–18PubMedCrossRefGoogle Scholar
  112. 112.
    Selemon LD, Mrzljak J, Kleinman JE, et al. Regional specificity in the neuropathologic substrates of schizophrenia: a morphometric analysis of Broca’s area 44 and area 9. Arch Gen Psychiatry 2003; 60: 69–77PubMedCrossRefGoogle Scholar
  113. 113.
    Davis KL, Stewart DG, Friedman JI, et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 2003; 60: 443–56PubMedCrossRefGoogle Scholar
  114. 114.
    Tkachev D, Mimmack ML, Ryan MM, et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798–805PubMedCrossRefGoogle Scholar
  115. 115.
    Cohen JD, Servan-Schreiber D. Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychol Rev 1992; 99: 45–77PubMedCrossRefGoogle Scholar
  116. 116.
    Cohen JD, Braver TS, Brown JW. Computational perspectives on dopamine function in prefrontal cortex. Curr Opin Neurobiol 2002; 12: 223–9PubMedCrossRefGoogle Scholar
  117. 117.
    Spitzer M. A neurocomputational approach to delusions. Compr Psychiatry 1995; 36: 83–105PubMedCrossRefGoogle Scholar
  118. 118.
    Heresco-Levy U. Glutamatergic neurotransmission modulation and the mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1113–23PubMedCrossRefGoogle Scholar
  119. 119.
    Millan MJ. N-Methyl-D-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacology (Berl) 2005; 179: 30–53CrossRefGoogle Scholar
  120. 120.
    Goldman-Rakic PS, Muly EC, Williams GV. D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 2000; 31: 295–301PubMedCrossRefGoogle Scholar
  121. 121.
    Kuroki T, Meltzer HY, Ichikawa J. Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther 1999; 288: 774–81PubMedGoogle Scholar
  122. 122.
    Angelucci F, Aloe L, Gruber SH, et al. Chronic antipsychotic treatment selectively alters nerve growth factor and neuropeptide Y immunoreactivity and the distribution of choline acetyl transferase in rat brain regions. Int J Neuropsychopharmacol 2000; 3: 13–25PubMedCrossRefGoogle Scholar
  123. 123.
    Ozaki T. Comparative effects of dopamine D(1) and D(2) receptor antagonists on nerve growth factor protein induction. Eur J Pharmacol 2000; 402: 39–44PubMedCrossRefGoogle Scholar
  124. 124.
    Ozaki T, Mui K, Yamagami S. Comparison of the effects of dopamine D1 and D2 receptor antagonists on nerve growth factor mRNA expression. Eur J Pharmacol 1999; 369: 133–43PubMedCrossRefGoogle Scholar
  125. 125.
    Chakos MH, Lieberman JA, Alvir J, et al. Caudate nuclei volumes in schizophrenic patients treated with typical antipsychotics or clozapine. Lancet 1995; 345: 456–7PubMedCrossRefGoogle Scholar
  126. 126.
    Chakos MH, Lieberman JA, Bilder RM, et al. Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. Am J Psychiatry 1994; 151: 1430–6PubMedGoogle Scholar
  127. 127.
    Angelucci F, Mathe AA, Aloe L. Neurotrophic factors and CNS disorders: findings in rodent models of depression and schizophrenia. Prog Brain Res 2004; 146: 151–65PubMedCrossRefGoogle Scholar
  128. 128.
    Bilder RM, Wu H, Chakos MH, et al. Cerebral morphometry and clozapine treatment in schizophrenia. J Clin Psychiatry 1994; 55Suppl. B: 53–6PubMedGoogle Scholar
  129. 129.
    Konradi C, Heckers S. Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 2003; 97: 153–79PubMedCrossRefGoogle Scholar
  130. 130.
    Gandolfi O, Dall’Olio R. Modulatory role of dopamine on excitatory amino acid receptors. Prog Neuropsychopharmacol Biol Psychiatry 1996; 20: 659–71PubMedCrossRefGoogle Scholar
  131. 131.
    Ossowska K, Pietraszek M, Wardas J, et al. Chronic haloperidol and clozapine administration increases the number of cortical NMDA receptors in rats. Naunyn Schmiedebergs Arch Pharmacol 1999; 359: 280–7PubMedCrossRefGoogle Scholar
  132. 132.
    Pietraszek M. Significance of dysfunctional glutamatergic transmission for the development of psychotic symptoms. Pol J Pharmacol 2003; 55: 133–54PubMedGoogle Scholar
  133. 133.
    Angelucci F, Mathe AA, Aloe L. Brain-derived neurotrophic factor and tyrosine kinase receptor TrkB in rat brain are significantly altered after haloperidol and risperidone administration. J Neurosci Res 2000; 60: 783–94PubMedCrossRefGoogle Scholar
  134. 134.
    Chlan-Fourney J, Ashe P, Nylen K, et al. Differential regulation of hippocampal BDNF mRNA by typical and atypical antipsychotic administration. Brain Res 2002; 954: 11–20PubMedCrossRefGoogle Scholar
  135. 135.
    Bai O, Chlan-Fourney J, Bowen R, et al. Expression of brain-derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs. J Neurosci Res 2003; 71: 127–31PubMedCrossRefGoogle Scholar
  136. 136.
    Parikh V, Khan MM, Mahadik SP. Olanzapine counteracts reduction of brain-derived neurotrophic factor and TrkB receptors in rat hippocampus produced by haloperidol. Neurosci Lett 2004; 356: 135–9PubMedCrossRefGoogle Scholar
  137. 137.
    Kahn R, Lieberman J, Charles C, et al. Antipsychotic treatment effects on progression of brain pathomorphology in first episode schizophrenia [abstract]. 16th Annual European College of Neuropsychopharmacology; 2002 Sep 20–24; PragueGoogle Scholar
  138. 138.
    Lieberman JA, Tollefson GD, Charles C, et al. Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiatry 2005; 62: 361–70PubMedCrossRefGoogle Scholar
  139. 139.
    Castren E, da Penha BM, Lindholm D, et al. Differential effects of MK-801 on brain-derived neurotrophic factor mRNA levels in different regions of the rat brain. Exp Neurol 1993; 122: 244–52PubMedCrossRefGoogle Scholar
  140. 140.
    Fumagalli F, Molteni R, Roceri M, et al. Effect of antipsychotic drugs on brain-derived neurotrophic factor expression under reduced N-methyl-D-aspartate receptor activity. J Neurosci Res 2003; 72: 622–8PubMedCrossRefGoogle Scholar
  141. 141.
    Vaidya VA, Terwilliger RM, Duman RS. Role of 5-HT2A receptors in the stress-induced down-regulation of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett 1999; 262: 1–4PubMedCrossRefGoogle Scholar
  142. 142.
    Vaidya VA, Marek GJ, Aghajanian GK, et al. 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci 1997; 17: 2785–95PubMedGoogle Scholar
  143. 143.
    Meredith GE, Switzer RC, Napier TC. Short-term, D2 receptor blockade induces synaptic degeneration, reduces levels of tyrosine hydroxylase and brain-derived neurotrophic factor, and enhances D2-mediated firing in the ventral pallidum. Brain Res 2004; 995: 14–22PubMedCrossRefGoogle Scholar
  144. 144.
    Chlan-Fourney J, Ashe P, Nylen K, et al. Differential regulation of hippocampal BDNF mRNA by typical and atypical antipsychotic administration. Brain Res 2002; 954: 11–20PubMedCrossRefGoogle Scholar
  145. 145.
    Hoffman RE, McGlashan TH. Parallel distributed processing and the emergence of schizophrenic symptoms. Schizophr Bull 1993; 19: 119–40PubMedCrossRefGoogle Scholar
  146. 146.
    Fumagalli F, Molteni R, Bedogni F, et al. Quetiapine regulates FGF-2 and BDNF expression in the hippocampus of animals treated with MK-801. Neuroreport 2004; 15: 2109–12PubMedCrossRefGoogle Scholar
  147. 147.
    Harrison PJ. The neuropathological effects of antipsychotic drugs. Schizophr Res 1999; 40: 87–99PubMedCrossRefGoogle Scholar
  148. 148.
    Dalgalarrondo P, Gattaz WF. Basal ganglia abnormalities in tardive dyskinesia: possible relationship with duration of neuroleptic treatment. Eur Arch Psychiatry Clin Neurosci 1994; 244: 272–7PubMedCrossRefGoogle Scholar
  149. 149.
    Mion CC, Andreasen NC, Arndt S, et al. MRI abnormalities in tardive dyskinesia. Psychiatry Res 1991; 40: 157–66PubMedCrossRefGoogle Scholar
  150. 150.
    Robertson GS, Fibiger HC. Effects of olanzapine on regional C-Fos expression in rat forebrain. Neuropsychopharmacology 1996; 14: 105–10PubMedCrossRefGoogle Scholar
  151. 151.
    Robertson GS, Matsumura H, Fibiger HC. Induction patterns of Fos-like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity. J Pharmacol Exp Ther 1994; 271: 1058–66PubMedGoogle Scholar
  152. 152.
    Robertson GS, Fibiger HC. Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience 1992; 46: 315–28PubMedCrossRefGoogle Scholar
  153. 153.
    Leveque JC, Macias W, Rajadhyaksha A, et al. Intracellular modulation of NMDA receptor function by antipsychotic drugs. J Neurosci 2000; 20: 4011–20PubMedGoogle Scholar
  154. 154.
    Duman RS, Malberg J, Thome J. Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 1999; 46: 1181–91PubMedCrossRefGoogle Scholar
  155. 155.
    Dawirs RR, Hildebrandt K, Teuchert-Noodt G. Adult treatment with haloperidol increases dentate granule cell proliferation in the gerbil hippocampus. J Neural Transm 1998; 105: 317–27PubMedCrossRefGoogle Scholar
  156. 156.
    Halim ND, Weickert CS, McClintock BW, et al. Effects of chronic haloperidol and clozapine treatment on neurogenesis in the adult rat hippocampus. Neuropsychopharmacology 2004; 29: 1063–9PubMedCrossRefGoogle Scholar
  157. 157.
    Luo C, Xu H, Li XM. Quetiapine reverses the suppression of hippocampal neurogenesis caused by repeated restraint stress. Brain Res 2005; 1063: 32–9PubMedCrossRefGoogle Scholar
  158. 158.
    Kodama M, Fujioka T, Duman RS. Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry 2004; 56: 570–80PubMedCrossRefGoogle Scholar
  159. 159.
    Wang HD, Dunnavant FD, Jarman T, et al. Effects of antipsychotic drugs on neurogenesis in the forebrain of the adult rat. Neuropsychopharmacology 2004; 29: 1230–8PubMedCrossRefGoogle Scholar
  160. 160.
    Schmitt A, Weber S, Jatzko A, et al. Hippocampal volume and cell proliferation after acute and chronic clozapine or haloperidol treatment. J Neural Transm 2004; 111: 91–100PubMedCrossRefGoogle Scholar
  161. 161.
    Wakade CG, Mahadik SP, Waller JL, et al. Atypical neuroleptics stimulate neurogenesis in adult rat brain. J Neurosci Res 2002; 69: 72–9PubMedCrossRefGoogle Scholar
  162. 162.
    Xiberas X, Martinot JL, Mallet L, et al. Extrastriatal and striatal D(2) dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br J Psychiatry 2001; 179: 503–8PubMedCrossRefGoogle Scholar
  163. 163.
    Horacek J. Novel antipsychotics and extrapyramidal side effects: theory and reality. Pharmacopsychiatry 2000; 33Suppl. 1: 34–42PubMedCrossRefGoogle Scholar
  164. 164.
    Xiberas X, Martinot JL, Mallet L, et al. Extrastriatal and striatal D(2) dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br J Psychiatry 2001; 179: 503–8PubMedCrossRefGoogle Scholar
  165. 165.
    Pilowsky LS, O’Connell P, Davies N, et al. In vivo effects on striatal dopamine D2 receptor binding by the novel atypical antipsychotic drug sertindole: a 123I IBZM single photon emission tomography (SPET) study. Psychopharmacology (Berl) 1997; 130: 152–8CrossRefGoogle Scholar
  166. 166.
    Nyberg S, Farde L. Non-equipotent doses partly explain differences among antipsychotics: implications of PET studies. Psychopharmacology (Berl) 2000; 148: 22–3CrossRefGoogle Scholar
  167. 167.
    Kopecek M, Hoschl C, Hajek T. Regional selectivity of novel antipsychotics. Br J Psychiatry 2002; 181: 254–5PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  • Jiri Horacek
    • 1
    • 2
    • 3
    Email author
  • Vera Bubenikova-Valesova
    • 1
  • Milan Kopecek
    • 1
    • 2
  • Tomas Palenicek
    • 1
    • 2
    • 3
  • Colleen Dockery
    • 1
    • 2
  • Pavel Mohr
    • 1
    • 2
  • Cyril Höschl
    • 1
    • 2
    • 3
  1. 1.Prague Psychiatric CentrePrague 8Czech Republic
  2. 2.Centre of Neuropsychiatric StudiesPragueCzech Republic
  3. 3.3rd Medical Faculty of Charles UniversityPragueCzech Republic

Personalised recommendations