CNS Drugs

, Volume 19, Issue 10, pp 805–819 | Cite as

COX-2 Inhibitors as Adjunctive Therapy in Schizophrenia

Rationale for Use and Evidence to Date
  • Michael Riedel
  • Martin Strassnig
  • Markus J. Schwarz
  • Norbert Müller
Leading Article


A better understanding of the human immune system and its complex interactions has resulted in new insights into the pathoaetiological mechanisms of psychiatric disorders. As a result, new treatment options are being explored. Several findings suggest that an imbalanced immune response is involved in the pathophysiology of schizophrenia. COX-2 inhibitors are known to influence the immune system in a way that may redirect this imbalance. Based on these suggestions, the COX-2 inhibitor celecoxib has been tested as a possible adjunctive therapeutic approach in the treatment of schizophrenia. While the first trial using celecoxib as add-on therapy to an atypical antipsychotic showed a significant beneficial effect, recent studies demonstrated that this effect may be limited to patients with recent-onset schizophrenia.



No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.


  1. 1.
    Brooks PM, Day RO. Nonsteroidal antiinflammatory drugs: differences and similarities. N Engl J Med 1991; 324(24): 1716–25PubMedCrossRefGoogle Scholar
  2. 2.
    Langman MJ. Ulcer complications and nonsteroidal anti-inflammatory drugs. Am J Med 1988; 84(2A): 15–9PubMedCrossRefGoogle Scholar
  3. 3.
    Robitaille A. Improved nonsteroidal anti-inflammatories. Can J Contin Med Educ 1998; 10(7): 85–97Google Scholar
  4. 4.
    Senior K. NSAIDs: from humble painkillers to super drugs? Lancet 2003; 361(9362): 1019PubMedCrossRefGoogle Scholar
  5. 5.
    Ketterer MW, Brymer J, Rhoads K, et al. Is aspirin, as used for antithrombosis, an emotion-modulating agent? J Psychosom Res 1996; 40(1): 53–8PubMedCrossRefGoogle Scholar
  6. 6.
    Ketterer MW, Buckholtz CD. Somatization disorder. J Am Osteopath Assoc 1989; 89(4): 489–90PubMedGoogle Scholar
  7. 7.
    Jiang HK, Chang DM. Non-steroidal anti-inflammatory drugs with adverse psychiatric reactions: five case reports. Clin Rheumatol 1999; 18(4): 339–45PubMedCrossRefGoogle Scholar
  8. 8.
    Giovannoni G, Baker D. Inflammatory disorders of the central nervous system. Curr Opin Neurol 2003; 16(3): 347–50PubMedCrossRefGoogle Scholar
  9. 9.
    Aisen PS. The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol 2002; 1(5): 279–84PubMedCrossRefGoogle Scholar
  10. 10.
    Leonard BE. The immune system, depression and the action of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25(4): 767–80PubMedCrossRefGoogle Scholar
  11. 11.
    Yolken RH, Torrey EF. Viruses, schizophrenia, and bipolar disorder. Clin Microbiol Rev 1995; 8(1): 131–45PubMedGoogle Scholar
  12. 12.
    Gaughran F. Immunity and schizophrenia: autoimmunity, cytokines, and immune responses. Int Rev Neurobiol 2002; 52: 275–302PubMedCrossRefGoogle Scholar
  13. 13.
    Anisman H, Merali Z. Cytokines, stress and depressive illness: brain-immune interactions. Ann Med 2003; 35(1): 2–11PubMedCrossRefGoogle Scholar
  14. 14.
    Frank E, Swartz HA, Kupfer DJ. Interpersonal and social rhythm therapy: managing the chaos of bipolar disorder. Biol Psychiatry 2000; 48(6): 593–604PubMedCrossRefGoogle Scholar
  15. 15.
    Denicoff KD, Rubinow DR, Papa MZ, et al. The neuropsychiatric effects of treatment with interleukin-2 and lymphokine-activated killer cells. Ann Intern Med 1987; 107(3): 293–300PubMedGoogle Scholar
  16. 16.
    McAllister CG, van Kammen DP, Rehn TJ, et al. Increases in CSF levels of interleukin-2 in schizophrenia: effects of recurrence of psychosis and medication status. Am J Psychiatry 1995; 152(9): 1291–7PubMedGoogle Scholar
  17. 17.
    Shanks N, Zalcman S, Zacharko RM, et al. Alterations of central norepinephrine, dopamine and serotonin in several strains of mice following acute Stressor exposure. Pharmacol Biochem Behav 1991; 38(1): 69–75PubMedCrossRefGoogle Scholar
  18. 18.
    Zalcman S, Murray L, Dyck DG, et al. Interleukin-2 and -6 induce behavioral-activating effects in mice. Brain Res 1998; 811(1-2): 111–21PubMedCrossRefGoogle Scholar
  19. 19.
    Zalcman S, Shanks N, Anisman H. Time-dependent variations of central norepinephrine and dopamine following antigen administration. Brain Res 1991; 557(1-2): 69–76PubMedCrossRefGoogle Scholar
  20. 20.
    Bosetti F, Weerasinghe GR, Rosenberger TA, et al. Valproic acid down-regulates the conversion of arachidonic acid to eicosanoids via cyclooxygenase-1 and -2 in rat brain. J Neurochem 2003; 85(3): 690–6PubMedCrossRefGoogle Scholar
  21. 21.
    Vane JR, Botting RM. Mechanism of action of aspirin-like drugs. Semin Arthritis Rheum 1997; 26(6 Suppl. 1): 2–10PubMedCrossRefGoogle Scholar
  22. 22.
    Smith WL. Prostanoid biosynthesis and mechanisms of action. Am J Physiol 1992; 263 (2 Pt 2): F181–91PubMedGoogle Scholar
  23. 23.
    Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 1971; 231(25): 232–5PubMedGoogle Scholar
  24. 24.
    Simmons DL, Levy DB, Yannoni Y, et al. Identification of a phorbol ester-repressible v-src-inducible gene. Proc Natl Acad Sci U S A 1989; 86(4): 1178–82PubMedCrossRefGoogle Scholar
  25. 25.
    Spencer AG, Woods JW, Arakawa T, et al. Subcellular localization of prostaglandin endoperoxide H synthases-1 and -2 by immunoelectron microscopy. J Biol Chem 1998; 273(16): 9886–93PubMedCrossRefGoogle Scholar
  26. 26.
    Garcia Rodriguez LA. The effect of NSAIDs on the risk of coronary heart disease: fusion of clinical pharmacology and pharmacoepidemiologic data. Clin Exp Rheumatol 2001; 19(6 Suppl. 25): S41–4PubMedGoogle Scholar
  27. 27.
    Hawkey CJ. Cyclooxygenase inhibition: between the devil and the deep blue sea. Gut 2002; 50Suppl. 3: III25–30PubMedCrossRefGoogle Scholar
  28. 28.
    Catella-Lawson F. Vascular biology of thrombosis: platelet-vessel wall interactions and aspirin effects. Neurology 2001; 57(5 Suppl. 2): S5–7PubMedCrossRefGoogle Scholar
  29. 29.
    Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-l and -2. J Biol Chem 1996; 271(52): 33157–60PubMedCrossRefGoogle Scholar
  30. 30.
    Hawkey CJ. COX-2 inhibitors. Lancet 1999; 353(9149): 307–14PubMedCrossRefGoogle Scholar
  31. 31.
    Kam PC, See AU. Cyclo-oxygenase isoenzymes: physiological and pharmacological role. Anaesthesia 2000; 55(5): 442–9PubMedCrossRefGoogle Scholar
  32. 32.
    Crofford LJ. COX-1 and COX-2 tissue expression: implications and predictions. J Rheumatol Suppl 1997; 49: 15–9PubMedGoogle Scholar
  33. 33.
    Katori M, Majima M. Cyclooxygenase-2: its rich diversity of roles and possible application of its selective inhibitors. Inflamm Res 2000; 49(8): 367–92PubMedCrossRefGoogle Scholar
  34. 34.
    Morham SG, Langenbach R, Loftin CD, et al. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 1995; 83(3): 473–82PubMedCrossRefGoogle Scholar
  35. 35.
    Dinchuk JE, Car BD, Focht RJ, et al. Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature 1995; 378(6555): 406–9PubMedCrossRefGoogle Scholar
  36. 36.
    Wong WY, Richards JS. Induction of prostaglandin H synthase in rat preovulatory follicles by gonadotropin-releasing hormone. Endocrinology 1992; 130(6): 3512–21PubMedCrossRefGoogle Scholar
  37. 37.
    Lim H, Paria BC, Das SK, et al. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell 1997; 91(2): 197–208PubMedCrossRefGoogle Scholar
  38. 38.
    Pinheiro RM, Calixto JB. Effect of the selective COX-2 inhibitors, celecoxib and rofecoxib in rat acute models of inflammation. Inflamm Res 2002; 51(12): 603–10PubMedCrossRefGoogle Scholar
  39. 39.
    Mastbergen SC, Lafeber FP, Bijlsma JW. Selective COX-2 inhibition prevents proinflammatory cytokine-induced cartilage damage. Rheumatology (Oxford) 2002; 41(7): 801–8CrossRefGoogle Scholar
  40. 40.
    Harris SG, Padilla J, Koumas L, et al. Prostaglandins as modulators of immunity. Trends Immunol 2002; 23(3): 144–50PubMedCrossRefGoogle Scholar
  41. 41.
    Hilkens CM, Snijders A, Snijdewint FG, et al. Modulation of T-cell cytokine secretion by accessory cell-derived products. Eur Respir J Suppl 1996; 22: 90s-4sGoogle Scholar
  42. 42.
    Hinson RM, Williams JA, Shacter E. Elevated interleukin 6 is induced by prostaglandin E2 in a murine model of inflammation: possible role of cyclooxygenase-2. Proc Natl Acad Sci U S A 1996; 93(10): 4885–90PubMedCrossRefGoogle Scholar
  43. 43.
    Stolina M, Sharma S, Lin Y, et al. Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol 2000; 164(1): 361–70PubMedGoogle Scholar
  44. 44.
    Meyer F, Ramanujam KS, Gobert AP, et al. Cutting edge: cyclooxygenase-2 activation suppresses Th1 polarization in response to Helicobacter pylori. J Immunol 2003; 171(8): 3913–7PubMedGoogle Scholar
  45. 45.
    Penglis PS, Cleland LG, Demasi M, et al. Differential regulation of prostaglandin E2 and thromboxane A2 production in human monocytes: implications for the use of cyclooxygenase inhibitors. J Immunol 2000; 165(3): 1605–11PubMedGoogle Scholar
  46. 46.
    Caughey GE, Cleland LG, Penglis PS, et al. Roles of cyclooxygenase (COX)-1 and COX-2 in prostanoid production by human endothelial cells: selective up-regulation of prosta-cyclin synthesis by COX-2. J Immunol 2001; 167(5): 2831–8PubMedGoogle Scholar
  47. 47.
    Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999; 18(49): 6853–66PubMedCrossRefGoogle Scholar
  48. 48.
    Baeuerle PA, Baichwal VR. NF-kappa B as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv Immunol 1997; 65: 111–37PubMedCrossRefGoogle Scholar
  49. 49.
    Niederberger E, Tegeder I, Vetter G, et al. Celecoxib loses its anti-inflammatory efficacy at high doses through activation of NF-kappaB. FASEB J 2001; 15(9): 1622–4PubMedGoogle Scholar
  50. 50.
    Tegeder I, Pfeilschifter J, Geisslinger G. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J 2001; 15(12): 2057–72PubMedCrossRefGoogle Scholar
  51. 51.
    Wu KK. Control of cyclooxygenase-2 transcriptional activation by pro-inflammatory mediators. Prostaglandins Leukot Essent Fatty Acids 2005; 72(2): 89–93PubMedCrossRefGoogle Scholar
  52. 52.
    Spellberg B, Edwards Jr JE. Type I/Type 2 immunity in infectious diseases. Clin Infect Dis 2001; 32(1): 76–102PubMedCrossRefGoogle Scholar
  53. 53.
    Kaufmann WE, Andreasson KI, Isakson PC, et al. Cyclooxygenases and the central nervous system. Prostaglandins 1997; 54(3): 601–24PubMedGoogle Scholar
  54. 54.
    Matsumura K, Watanabe Y, Imai-Matsumura K, et al. Mapping of prostaglandin E2 binding sites in rat brain using quantitative autoradiography. Brain Res 1992; 581(2): 292–8PubMedCrossRefGoogle Scholar
  55. 55.
    Kaufmann WE, Worley PF, Pegg J, et al. COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at post-synaptic sites in rat cerebral cortex. Proc Natl Acad Sci U S A 1996; 93(6): 2317–21PubMedCrossRefGoogle Scholar
  56. 56.
    Breder CD, Saper CB. Expression of inducible cyclooxygenase mRNA in the mouse brain after systemic administration of bacterial lipopolysaccharide. Brain Res 1996; 713(1-2): 64–9PubMedCrossRefGoogle Scholar
  57. 57.
    Yamagata K, Andreasson KI, Kaufmann WE, et al. Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 1993; 11(2): 371–86PubMedCrossRefGoogle Scholar
  58. 58.
    Adams J, Collaco-Moraes Y, de Belleroche J. Cyclooxygenase-2 induction in cerebral cortex: an intracellular response to synaptic excitation. J Neurochem 1996; 66(1): 6–13PubMedCrossRefGoogle Scholar
  59. 59.
    Planas AM, Soriano MA, Justicia C, et al. Induction of cyclooxygenase-2 in the rat brain after a mild episode of focal ischemia without tissue inflammation or neural cell damage. Neurosci Lett 1999; 275(2): 141–4PubMedCrossRefGoogle Scholar
  60. 60.
    Planas AM, Soriano MA, Rodriguez-Farre E, et al. Induction of cyclooxygenase-2 mRNA and protein following transient focal ischemia in the rat brain. Neurosci Lett 1995; 200(3): 187–90PubMedCrossRefGoogle Scholar
  61. 61.
    Tocco G, Freire-Moar J, Schreiber SS, et al. Maturational regulation and regional induction of cyclooxygenase-2 in rat brain: implications for Alzheimer’s disease. Exp Neurol 1997; 144(2): 339–49PubMedCrossRefGoogle Scholar
  62. 62.
    Fagarasan MO, Aisen PS. IL-1 and anti-inflammatory drugs modulate A beta cytotoxicity in PC12 cells. Brain Res 1996; 723(1-2): 231–4PubMedCrossRefGoogle Scholar
  63. 63.
    Campbell IL, Abraham CR, Masliah E, et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A 1993; 90(21): 10061–5PubMedCrossRefGoogle Scholar
  64. 64.
    Rapoport SI, Bosetti F. Do lithium and anticonvulsants target the brain arachidonic acid cascade in bipolar disorder? Arch Gen Psychiatry 2002; 59(7): 592–6PubMedCrossRefGoogle Scholar
  65. 65.
    Das I, Khan NS. Increased arachidonic acid induced platelet chemiluminescence indicates cyclooxygenase overactivity in schizophrenic subjects. Prostaglandins Leukot Essent Fatty Acids 1998; 58(3): 165–8PubMedCrossRefGoogle Scholar
  66. 66.
    Willard LB, Hauss-Wegrzyniak B, Danysz W, et al. The cytotoxicity of chronic neuroinflammation upon basal fore-brain cholinergic neurons of rats can be attenuated by gluta-matergic antagonism or cyclooxygenase-2 inhibition. Exp Brain Res 2000; 134(1): 58–65PubMedCrossRefGoogle Scholar
  67. 67.
    Araki E, Forster C, Dubinsky JM, et al. Cyclooxygenase-2 inhibitor ns-398 protects neuronal cultures from lipo-polysaccharide-induced neurotoxicity. Stroke 2001; 32(10): 2370–5PubMedCrossRefGoogle Scholar
  68. 68.
    Hewett SJ, Uliasz TF, Vidwans AS, et al. Cyclooxygenase-2 contributes to N-methyl-D-aspartate-mediated neuronal cell death in primary cortical cell culture. J Pharmacol Exp Ther 2000; 293(2): 417–25PubMedGoogle Scholar
  69. 69.
    Hoozemans JJ, Veerhuis R, Rozemuller AJ, et al. Non-steroidal anti-inflammatory drugs and cyclooxygenase in Alzheimer’s disease. Curr Drug Targets 2003; 4(6): 461–8PubMedCrossRefGoogle Scholar
  70. 70.
    van Gool WA, Aisen PS, Eikelenboom P. Anti-inflammatory therapy in Alzheimer’s disease: is hope still alive? J Neurol 2003; 250(7): 788–92PubMedCrossRefGoogle Scholar
  71. 71.
    Mintzer JE. The search for better noncholinergic treatment options for Alzheimer’s disease. J Clin Psychiatry 2003; 64Suppl. 9: 18–22PubMedGoogle Scholar
  72. 72.
    Chen H, Zhang SM, Hernan MA, et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 2003; 60(8): 1059–64PubMedCrossRefGoogle Scholar
  73. 73.
    Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000; 21(3): 383–421PubMedCrossRefGoogle Scholar
  74. 74.
    in ’ t Veld BA, Launer LJ, et al. Pharmacologic agents associated with a preventive effect on Alzheimer’s disease: a review of the epidemiologic evidence. Epidemiol Rev 2002; 24(2): 248–68CrossRefGoogle Scholar
  75. 75.
    Jablensky A. Epidemiology of schizophrenia: the global burden of disease and disability. Eur Arch Psychiatry Clin Neurosci 2000; 250(6): 274–85PubMedCrossRefGoogle Scholar
  76. 76.
    Lader M. Some adverse effects of antipsychotics: prevention and treatment. J Clin Psychiatry 1999; 60Suppl. 12: 18–21PubMedGoogle Scholar
  77. 77.
    Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 2003; 160(1): 13–23PubMedCrossRefGoogle Scholar
  78. 78.
    Song C, Lin A, Kenis G, et al. Immunosuppressive effects of clozapine and haloperidol: enhanced production of the interleukin-1 receptor antagonist. Schizophr Res 2000; 42(2): 157–64PubMedCrossRefGoogle Scholar
  79. 79.
    Maes M, Bocchio CL, Bignotti S, et al. Effects of atypical antipsychotics on the inflammatory response system in schizophrenic patients resistant to treatment with typical neuroleptics. Eur Neuropsychopharmacol 2000; 10(2): 119–24PubMedCrossRefGoogle Scholar
  80. 80.
    Olney JW, Newcomer JW, Farber NB. NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 1999; 33(6): 523–33PubMedCrossRefGoogle Scholar
  81. 81.
    Kruit WH, Goey SH, Monson JR, et al. Clinical experience with the combined use of recombinant interleukin-2 (IL2) and in-terferon alfa-2a (IFN alpha) in metastatic melanoma. Br J Haematol 1991; 79Suppl. 1: 84–6PubMedCrossRefGoogle Scholar
  82. 82.
    Licinio J, Scibyl JP, Altemus M, et al. Elevated CSF levels of interleukin-2 in neuroleptic-free schizophrenic patients. Am J Psychiatry 1993; 150(9): 1408–10PubMedGoogle Scholar
  83. 83.
    Rapaport MH, McAllister CG, Pickar D, et al. CSF IL-1 and IL-2 in medicated schizophrenic patients and normal volunteers. Schizophr Res 1997; 25(2): 123–9PubMedCrossRefGoogle Scholar
  84. 84.
    Barak V, Barak Y, Levine J, et al. Changes in interleukin-1 beta and soluble interleukin-2 receptor levels in CSF and serum of schizophrenic patients. J Basic Clin Physiol Pharmacol 1995; 6(1): 61–9PubMedCrossRefGoogle Scholar
  85. 85.
    el Mallakh RS, Suddath RL, Wyatt RJ. Interleukin-1 alpha and interleukin-2 in cerebrospinal fluid of schizophrenic subjects. Prog Neuropsychopharmacol Biol Psychiatry 1993; 17(3): 383–91PubMedCrossRefGoogle Scholar
  86. 86.
    Mittleman BB, Castellanos FX, Jacobsen LK, et al. Cerebrospinal fluid cytokines in pediatric neuropsychiatrie disease. J Immunol 1997; 159(6): 2994–9PubMedGoogle Scholar
  87. 87.
    Kim YK, Kim L, Lee MS. Relationships between interleukins, neurotransmitters and psychopathology in drug-free male schizophrenics. Schizophr Res 2000; 44(3): 165–75PubMedCrossRefGoogle Scholar
  88. 88.
    Theodoropoulou ST, Spanakos G, Baxevanis CN, et al. Cytokine serum levels, autologous mixed lymphocyte reaction and surface marker analysis in never medicated and chronically medicated schizophrenic patients. Schizophr Res 2001; 47: 12–25CrossRefGoogle Scholar
  89. 89.
    Arolt V, Rothermundt M, Wandinger KP, et al. Decreased in vitro production of interferon-gamma and interleukin-2 in whole blood of patients with schizophrenia during treatment. Mol Psychiatry 2000; 5(2): 150–8PubMedCrossRefGoogle Scholar
  90. 90.
    Zhang XY, Zhou DF, Cao LY, et al. Decreased production of interleukin-2 (IL-2), IL-2 secreting cells and CD4+ cells in medication-free patients with schizophrenia. J Psychiatr Res 2002; 36(5): 331–6PubMedCrossRefGoogle Scholar
  91. 91.
    Kim YK, Lee MS, Suh KY. Decreased interleukin-2 production in Korean schizophrenic patients. Biol Psychiatry 1998; 43(9): 701–4PubMedCrossRefGoogle Scholar
  92. 92.
    Ganguli R, Brar JS, Solomon W, et al. Altered interleukin-2 production in schizophrenia: association between clinical state and autoantibody production. Psychiatry Res 1992; 44(2): 113–23PubMedCrossRefGoogle Scholar
  93. 93.
    Yang ZW, Chengappa KN, Shurin G, et al. An association between anti-hippocampal antibody concentration and lymphocyte production of IL-2 in patients with schizophrenia. Psychol Med 1994; 24(2): 449–55PubMedCrossRefGoogle Scholar
  94. 94.
    Ganguli R, Brar JS, Chengappa KR, et al. Mitogen-stimulated interleukin-2 production in never-medicated, first-episode schizophrenic patients. The influence of age at onset and negative symptoms. Arch Gen Psychiatry 1995; 52(8): 668–72Google Scholar
  95. 95.
    O’Donnell MC, Catts SV, Ward PB, et al. Increased production of interleukin-2 (IL-2) but not soluble interleukin-2 receptors (sIL-2R) in unmedicated patients with schizophrenia and schizophreniform disorder. Psychiatry Res 1996; 65(3): 171–8PubMedCrossRefGoogle Scholar
  96. 96.
    Cazzullo CL, Sacchetti E, Galluzzo A, et al. Cytokine profiles in drug-naive schizophrenic patients. Schizophr Res 2001; 47: 293–8PubMedCrossRefGoogle Scholar
  97. 97.
    Hornberg M, Arolt V, Wilke I, et al. Production of interferons and lymphokines in leukocyte cultures of patients with schizophrenia. Schizophr Res 1995; 15(3): 237–42PubMedCrossRefGoogle Scholar
  98. 98.
    Wilke I, Arolt V, Rothermundt M, et al. Investigations of cytokine production in whole blood cultures of paranoid and residual schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 1996; 246(5): 279–84PubMedCrossRefGoogle Scholar
  99. 99.
    Maes M, Bocchio CL, Bignotti S, et al. Increased serum interleukin-8 and interleukin-10 in schizophrenic patients resistant to treatment with neuroleptics and the stimulatory effects of clozapine on serum leukemia inhibitory factor receptor. Schizophr Res 2002; 54(3): 281–91PubMedCrossRefGoogle Scholar
  100. 100.
    Cazzullo CL, Scarone S, Grassi B, et al. Cytokines production in chronic schizophrenia patients with or without paranoid behaviour. Prog Neuropsychopharmacol Biol Psychiatry 1998; 22(6): 947–57PubMedCrossRefGoogle Scholar
  101. 101.
    Rothermundt M, Arolt V, Weitzsch C, et al. Immunological dysfunction in schizophrenia: a systematic approach. Neurop-sychobiology 1998; 37(4): 186–93Google Scholar
  102. 102.
    Zalcman S, Green-Johnson JM, Murray L, et al. Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and -6. Brain Res 1994; 643(1-2): 40–9PubMedCrossRefGoogle Scholar
  103. 103.
    Ringheim GE, Burgher KL, Heroux JA. Interleukin-6 mRNA expression by cortical neurons in culture: evidence for neuronal sources of interleukin-6 production in the brain. J Neuroimmunol 1995; 63(2): 113–23PubMedCrossRefGoogle Scholar
  104. 104.
    Ganguli R, Yang Z, Shurin G, et al. Serum interleukin-6 concentration in schizophrenia: elevation associated with duration of illness. Psychiatry Res 1994; 51(1): 1–10PubMedCrossRefGoogle Scholar
  105. 105.
    Garver DL, Tamas RL, Holcomb JA. Elevated interleukin-6 in the cerebrospinal fluid of a previously delineated schizophrenia subtype. Neuropsychopharmacology 2003; 28(8): 1515–20PubMedCrossRefGoogle Scholar
  106. 106.
    Maes M, Bosmans E, Calabrese J, et al. Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J Psychiatr Res 1995; 29(2): 141–52PubMedCrossRefGoogle Scholar
  107. 107.
    Naudin J, Mege JL, Azorin JM, et al. Elevated circulating levels of IL-6 in schizophrenia. Schizophr Res 1996; 20(3): 269–73PubMedCrossRefGoogle Scholar
  108. 108.
    Frommberger UH, Bauer J, Haselbauer P, et al. Interleukin-6-(IL-6) plasma levels in depression and schizophrenia: comparison between the acute state and after remission. Eur Arch Psychiatry Clin Neurosci 1997; 247(4): 228–33PubMedCrossRefGoogle Scholar
  109. 109.
    Lin A, Kenis G, Bignotti S, et al. The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res 1998; 32(1): 9–15PubMedCrossRefGoogle Scholar
  110. 110.
    Akiyama K. Serum levels of soluble IL-2 receptor alpha, IL-6 and IL-1 receptor antagonist in schizophrenia before and during neuroleptic administration. Schizophr Res 1999; 37(1): 97–106PubMedCrossRefGoogle Scholar
  111. 111.
    Haack M, Hinze SD, Fenzel T, et al. Plasma levels of cytokines and soluble cytokine receptors in psychiatric patients upon hospital admission: effects of confounding factors and diagnosis. J Psychiatr Res 1999; 33(5): 407–18PubMedCrossRefGoogle Scholar
  112. 112.
    Maes M, Bosmans E, Kenis G, et al. In vivo immunomodulatory effects of clozapine in schizophrenia. Schizophr Res 1997; 26(2-3): 221–5PubMedCrossRefGoogle Scholar
  113. 113.
    Schwarz MJ, Chiang S, Müller N, et al. T-helper-1 and T-helper-2 responses in psychiatric disorders. Brain Behav Immun 2001; 15(4): 340–70PubMedCrossRefGoogle Scholar
  114. 114.
    Schwarz MJ, Muller N, Riedel M, et al. The Th2-hypothesis of schizophrenia: a strategy to identify a subgroup of schizophrenia caused by immune mechanisms. Med Hypotheses 2001; 56(4): 483–6PubMedCrossRefGoogle Scholar
  115. 115.
    FitzGerald GA, Patrono C. The coxibs, selective inhibitors of cyclooxygenase-2. N Engl J Med 2001; 345(6): 433–42PubMedCrossRefGoogle Scholar
  116. 116.
    Ciceri P, Zhang Y, Shaffer AF, et al. Pharmacology of celecoxib in rat brain after kainate administration. J Pharmacol Exp Ther 2002; 302(3): 846–52PubMedCrossRefGoogle Scholar
  117. 117.
    Müller N, Riedel M, Scheppach C, et al. Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am J Psychiatry 2002; 159(6): 1029-34PubMedCrossRefGoogle Scholar
  118. 118.
    Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987; 13(2): 261–76PubMedCrossRefGoogle Scholar
  119. 119.
    Müller N, Riedel M, Dehning S, et al. Is the therapeutic effect of celecoxib in schizophrenia depending from duration of disease? [abstract]. Neuropsychopharmacology 2004; 29Suppl. 1: 176Google Scholar
  120. 120.
    Rappart F, Müller N. Celecoxib add-on therapy does not have beneficial antipsychotic effects over risperidone alone in schizophrenia [abstract]. Neuropsychopharmacology 2004; 29Suppl. 1: 222Google Scholar
  121. 121.
    Garver DL, Tamas RL, Holcomb JA. Elevated interleukin-6 in the cerebrospinal fluid of a previously delineated schizophrenia subtype. Neuropsychopharmacology 2003; 28(8): 1515–20PubMedCrossRefGoogle Scholar
  122. 122.
    Yao JK, Sistilli CG, van Kammen DP. Membrane polyunsaturated fatty acids and CSF cytokines in patients with schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2003; 69(6): 429–36PubMedCrossRefGoogle Scholar
  123. 123.
    Müller N, Empl M, Riedel M, et al. Neuroleptic treatment increases soluble IL-2 receptors and decreases soluble IL-6 receptors in schizophrenia. Eur Arch Psychiatry Clin Neurosci 1997; 247: 308–13PubMedCrossRefGoogle Scholar
  124. 124.
    Horrobin DF. A new category of psychotropic drugs: neuroactive lipids as exemplified by ethyl eicosapentaenoate (E-E). Prog Drug Res 2002; 59: 171–99PubMedCrossRefGoogle Scholar
  125. 125.
    Mahadik SP, Evans D, Lal H. Oxidative stress and role of antioxidant and omega-3 essential fatty acid supplementation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25(3): 463–93PubMedCrossRefGoogle Scholar
  126. 126.
    Freeman MP. Omega-3 fatty acids in psychiatry: a review. Ann Clin Psychiatry 2000; 12(3): 159–65PubMedGoogle Scholar
  127. 127.
    Mirnikjoo B, Brown SE, Kim HF, et al. Protein kinase inhibition by omega-3 fatty acids. J Biol Chem 2001; 276(14): 10888–96PubMedCrossRefGoogle Scholar
  128. 128.
    Shimozato T, Kincade PW. Prostaglandin E(2) and stem cell factor can deliver opposing signals to B lymphocyte precursors. Cell Immunol 1999; 198(1): 21–9PubMedCrossRefGoogle Scholar
  129. 129.
    Shinomiya S, Naraba H, Ueno A, et al. Regulation of TNFalpha and interleukin-10 production by prostaglandins I(2) and E(2): studies with prostaglandin receptor-deficient mice and prostaglandin E-receptor subtype-selective synthetic agonists. Biochem Pharmacol 2001; 61(9): 1153–60PubMedCrossRefGoogle Scholar
  130. 130.
    Hinz B, Kraus V, Pahl A, et al. Salicylate metabolites inhibit cyclooxygenase-2-dependent prostaglandin E(2) synthesis in murine macrophages. Biochem Biophys Res Commun 2000; 274(1): 197–202PubMedCrossRefGoogle Scholar
  131. 131.
    Bishop-Bailey D, Burke-Gaffney A, Hellewell PG, et al. Cyclooxygenase-2 regulates inducible ICAM-1 and VCAM-1 expression in human vascular smooth muscle cells. Biochem Biophys Res Commun 1998; 249(1): 44–7PubMedCrossRefGoogle Scholar
  132. 132.
    Schwarz MJ, Riedel M, Ackenheil M, et al. Decreased levels of soluble intercellular adhesion molecule-1 (sICAM-1) in unmedicated and medicated schizophrenic patients. Biol Psychiatry 2000; 47(1): 29–33PubMedCrossRefGoogle Scholar
  133. 133.
    Müller N, Riedel M, Hadjamu M, et al. Increase in expression of adhesion molecule receptors on T-helper cells during antipsychotic treatment and relationship to blood-brain barrier permeability in schizophrenia. Am J Psychiatry 1999; 156(4): 634–6PubMedGoogle Scholar
  134. 134.
    Casolini P, Catalani A, Zuena AR, et al. Inhibition of COX-2 reduces the age-dependent increase of hippocampal inflammatory markers, corticosterone secretion, and behavioral impairments in the rat. J Neurosci Res 2002; 68(3): 337–43PubMedCrossRefGoogle Scholar
  135. 135.
    Baik EJ, Kim EJ, Lee SH, et al. Cyclooxygenase-2 selective inhibitors aggravate kainic acid induced seizure and neuronal cell death in the hippocampus. Brain Res 1999; 843(1-2): 118–29PubMedCrossRefGoogle Scholar
  136. 136.
    Gasull T, Sarrri E, DeGregorio-Rocasolano N, et al. NMDA receptor overactivation inhibits phospholipid synthesis by decreasing choline-ethanolamine phosphotransferase activity. J Neurosci 2003; 23(10): 4100–7PubMedGoogle Scholar
  137. 137.
    Meldrum BS. Implications for neuroprotective treatments. Prog Brain Res 2002; 135: 487–95PubMedCrossRefGoogle Scholar
  138. 138.
    Carlson NG. Neuroprotection of cultured cortical neurons mediated by the cyclooxygenase-2 inhibitor APHS can be reversed by a prostanoid. J Neurosci Res 2003; 71(1): 79–88PubMedCrossRefGoogle Scholar
  139. 139.
    Kelley KA, Ho L, Winger D, et al. Potentiation of excitotoxicity in transgenic mice overexpressing neuronal cyclooxygenase-2. Am J Pathol 1999; 155(3): 995–1004PubMedCrossRefGoogle Scholar
  140. 140.
    Kim EJ, Lee JE, Kwon KJ, et al. Differential roles of cycloox-ygenase isoforms after kainic acid-induced prostaglandin E(2) production and neurodegeneration in cortical and hippocampal cell cultures. Brain Res 2001 Jul 20; 908(1): 1–9PubMedCrossRefGoogle Scholar
  141. 141.
    Kunz T, Oliw EH. The selective cyclooxygenase-2 inhibitor rofecoxib reduces kainate-induced cell death in the rat hippocampus. Eur J Neurosci 2001; 13(3): 569–75PubMedCrossRefGoogle Scholar
  142. 142.
    Mirjany M, Ho L, Pasinetti GM. Role of cyclooxygenase-2 in neuronal cell cycle activity and glutamate-mediated excitotoxicity. J Pharmacol Exp Ther 2002; 301(2): 494–500PubMedCrossRefGoogle Scholar
  143. 143.
    Carlsson A. Schizophrenie und Neurotransmitter-Störungen—Neue Perspektiven und therapeutische Ansätze (aus dem Englischen übersetzt von N. Müller und M. J. Schwarz). In: Möller H-J, Müller N, editors. Schizophrenie —Moderne Konzepte zu Diagnostik, Pathogenese und Therapie. Wien, New York: Springer, 1998: 93–116Google Scholar
  144. 144.
    Krystal JH, D’Souza DC, Mathalon D, et al. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl) 2003; 169(3-4): 215–33CrossRefGoogle Scholar
  145. 145.
    Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 2001; 286(8): 954–9PubMedCrossRefGoogle Scholar
  146. 146.
    Krum H, Liew D, Aw J, et al. Cardiovascular effects of selective cyclooxygenase-2 inhibitors. Expert Rev Cardiovasc Ther 2004; 2(2): 265–70PubMedCrossRefGoogle Scholar
  147. 147.
    Newcomer JW. Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review. CNS Drugs 2005; 19Suppl. 1: 1-93PubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2005

Authors and Affiliations

  • Michael Riedel
    • 1
  • Martin Strassnig
    • 2
  • Markus J. Schwarz
    • 1
  • Norbert Müller
    • 1
  1. 1.Department of Psychiatry and PsychotherapyLudwig-Maximilan University of MunichMunichGermany
  2. 2.Western Psychiatric Institute and ClinicUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations