CNS Drugs

, Volume 16, Issue 10, pp 669–694 | Cite as

Basic Pharmacology of Valproate

A Review After 35 Years of Clinical Use for the Treatment of Epilepsy
Review Article


Since its first marketing as an antiepileptic drug (AED) 35 years ago in France, valproate has become established worldwide as one of the most widely used AEDs in the treatment of both generalised and partial seizures in adults and children. The broad spectrum of antiepileptic efficacy of valproate is reflected in preclinical in vivo and in vitro models, including a variety of animal models of seizures or epilepsy.

There is no single mechanism of action of valproate that can completely account for the numerous effects of the drug on neuronal tissue and its broad clinical activity in epilepsy and other brain diseases. In view of the diverse molecular and cellular events that underlie different seizure types, the combination of several neurochemical and neurophysiological mechanisms in a single drug molecule might explain the broad antiepileptic efficacy of valproate. Furthermore, by acting on diverse regional targets thought to be involved in the generation and propagation of seizures, valproate may antagonise epileptic activity at several steps of its organisation.

There is now ample experimental evidence that valproate increases turnover of γ-aminobutyric acid (GABA) and thereby potentiates GABAergic functions in some specific brain regions thought to be involved in the control of seizure generation and propagation. Furthermore, the effect of valproate on neuronal excitation mediated by the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors might be important for its anticonvulsant effects. Acting to alter the balance of inhibition and excitation through multiple mechanisms is clearly an advantage for valproate and probably contributes to its broad spectrum of clinical effects.

Although the GABAergic potentiation and glutamate/NMDA inhibition could be a likely explanation for the anticonvulsant action on focal and generalised convulsive seizures, they do not explain the effect of valproate on nonconvulsive seizures, such as absences. In this respect, the reduction of γ-hydroxybutyrate (GHB) release reported for valproate could be of interest, because GHB has been suggested to play a critical role in the modulation of absence seizures.

Although it is often proposed that blockade of voltage-dependent sodium currents is an important mechanism of antiepileptic action of valproate, the exact role played by this mechanism of action at therapeutically relevant concentrations in the mammalian brain is not clearly elucidated.

By the experimental observations summarised in this review, most clinical effects of valproate can be explained, although much remains to be learned at a number of different levels about the mechanisms of action of valproate. In view of the advances in molecular neurobiology and neuroscience, future studies will undoubtedly further our understanding of the mechanisms of action of valproate.


  1. 1.
    Löscher W, editor. Valproate. Basel: Birkhäuser, 1999Google Scholar
  2. 2.
    Löscher W. Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Prog Neurobiol 1999; 58: 31–59PubMedCrossRefGoogle Scholar
  3. 3.
    Burton BS. On the propyl derivatives and decomposition products of ethylacetoacetate. Am Chem J 1882; 3: 385–95Google Scholar
  4. 4.
    Meunier H, Carraz G, Meunier Y, et al. Propriétés pharmacodynamiques de l’acide n-dipropylacétique. 1er mémoire: propriétés antiépileptiques. Thérapie 1963; 18: 435–8Google Scholar
  5. 5.
    Löscher W. The discovery of valproate. In: Löscher W, editor. Valproate. Basel: Birkhäuser, 1999: 1–3CrossRefGoogle Scholar
  6. 6.
    Carraz G, Fau R, Chateau R, et al. Communication à propos des premiers essais cliniques sur l’activité anti-épileptique de l’acide n-dipropylacétiques (sel de Na). Ann Med Psychol (Paris) 1964; 122: 577–85Google Scholar
  7. 7.
    Mattson RH, Cramer JA, Collins JF. A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic-clonic seizures in adults: The Department of Veterans Affairs Epilepsy Cooperative Study No. 264 Group. N Engl J Med 1992; 327: 765–1CrossRefGoogle Scholar
  8. 8.
    Richens A, Davidson DL, Cartlidge NE, et al. A multicentre comparative trial of sodium valproate and carbamazepine in adult onset epilepsy: the Adult EPITEG Collaborative Group. J Neurol Neurosurg Psychiatry 1994; 57: 682–7PubMedCrossRefGoogle Scholar
  9. 9.
    Verity CM, Hosking G, Easter DJ. A multicentre comparative trial of sodium valproate and carbamazepine in paediatric epilepsy: the Paediatric EPITEG Collaborative Group. Dev Med Child Neurol 1995; 37: 97–108PubMedCrossRefGoogle Scholar
  10. 10.
    Heller AJ, Chesterman P, Elwes RD, et al. Phenobarbitone, phenytoin, carbamazepine, or sodium valproate for newly diagnosed adult epilepsy: a randomised comparative monotherapy trial. J Neurol Neurosurg Psychiatry 1995; 58: 44–50PubMedCrossRefGoogle Scholar
  11. 11.
    de Silva M, Macardle B, Mcgowan M, et al. Randomised comparative monotherapy trial of phenobarbitone, phenytoin, carbamazepine, or sodium valproate for newly diagnosed childhood epilepsy. Lancet 1996; 347: 709–13PubMedCrossRefGoogle Scholar
  12. 12.
    Brodie MJ, Mumford JP. Double-blind substitution of vigabatrin and valproate in carbamazepine-resistant partial epilepsy: 012 Study Group. Epilepsy Res 1999; 34: 199–205PubMedCrossRefGoogle Scholar
  13. 13.
    Christe W, Kramer G, Vigonius U, et al. A double-blind controlled clinical trial: oxcarbazepine versus sodium valproate in adults with newly diagnosed epilepsy. Epilepsy Res 1997; 26: 451–60PubMedCrossRefGoogle Scholar
  14. 14.
    Fountain NB, Dreifuss FE. The future of valproate. In: Löscher W, editor. Valproate. Basel: Birkhäuser, 1999: 265–76CrossRefGoogle Scholar
  15. 15.
    Davis R, Peters DH, Mctavish D. Valproic acid: a reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs 1994; 47: 332–72PubMedCrossRefGoogle Scholar
  16. 16.
    Sarisjulis N, Dulac O. Valproate in the treatment of epilepsies in children. In: Löscher W, editor. Valproate. Basel: Birkhäuser, 1999: 131–52CrossRefGoogle Scholar
  17. 17.
    Schmidt D, Bourgeois B. A risk-benefit assessment of therapies for Lennox-Gastaut syndrome. Drug Saf 2000; 22: 467–77PubMedCrossRefGoogle Scholar
  18. 18.
    Vassella F, Rudeberg A, Da Silva V, et al. Double-blind study on the anti-convulsive effect of phenobarbital and valproate in the Lennox syndrome [in German]. Schweiz Med Wochenschr 1978; 108: 713–6PubMedGoogle Scholar
  19. 19.
    Dyken PR, DuRant RH, Minden DB, et al. Short term effects of valproate on infantile spasms. Pediatr Neurol 1985; 1: 34–7PubMedCrossRefGoogle Scholar
  20. 20.
    Schmidt D. Adverse effects and interactions with other drugs. In: Löscher W, editor. Valproate. Basel: Birkhäuser, 1999: 223–64CrossRefGoogle Scholar
  21. 21.
    Cotariu D, Zaidman JL, Evans S. Neurophysiological and biochemical changes evoked by valproic acid in the central nervous system. Progr Neurobiol 1990; 34: 343–54CrossRefGoogle Scholar
  22. 22.
    Johannessen CU. Mechanisms of action of valproate: a commentary. Neurochem Int 2000; 37: 103–10PubMedCrossRefGoogle Scholar
  23. 23.
    Perucca E. Pharmacological and therapeutic properties of valproate: a summary after 35 years of clinical experience. CNS Drugs 2002; 16(10): 695–714PubMedCrossRefGoogle Scholar
  24. 24.
    Browne TR, Holmes GL. Epilepsy. N Engl J Med 2001; 344: 1145–51PubMedCrossRefGoogle Scholar
  25. 25.
    McNamara JO. Emerging insights into the genesis of epilepsy. Nature 1999; 399: A15–22PubMedCrossRefGoogle Scholar
  26. 26.
    Proposal for revised clinical and electroencephalographic classification of epileptic seizures: the Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1981; 22: 489–501Google Scholar
  27. 27.
    Annegers JF, Rocca WA, Hauser WA. Causes of epilepsy: contributions of the Rochester Epidemiology Project. Mayo Clin Proc 1996; 71: 570–5PubMedCrossRefGoogle Scholar
  28. 28.
    Löscher W. Animal models of epilepsy and epileptic seizures. In: Eadie MJ, Vajda F, editors. Antiepileptic drugs: handbook of experimental pharmacology. Berlin: Springer, 1999: 19–62Google Scholar
  29. 29.
    Löscher W. New visions in the pharmacology of anticonvulsion. Eur J Pharmacol 1998; 342: 1–13PubMedCrossRefGoogle Scholar
  30. 30.
    Löscher W, Rogawski MA. Epilepsy. In: Lodge D, Danysz W, Parsons CG, editors. Ionotropic glutamate receptors as therapeutic targets. Johnson City (TN): Graham Publ., 2002: 91–132Google Scholar
  31. 31.
    Löscher W. Valproic acid. In: Frey H-H, Janz D, editors. Anti-epileptic drugs. Berlin: Springer Verlag, 1985: 507–36Google Scholar
  32. 32.
    Hönack D, Löscher W. Intravenous valproate: onset and duration of anticonvulsant activity against a series of electroconvulsions in comparison with diazepam and phenytoin. Epilepsy Res 1992; 13: 215–21PubMedCrossRefGoogle Scholar
  33. 33.
    Löscher W, Fisher JE, Nau H, et al. Marked increase in anticonvulsant activity but decrease in wet-dog shake behaviour during short-term treatment of amygdala-kindled rats with valproic acid. Eur J Pharmacol 1988; 150: 221–32PubMedCrossRefGoogle Scholar
  34. 34.
    Löscher W, Fisher JE, Nau H, et al. Valproic acid in amygdalakindled rats: alterations in anticonvulsant efficacy, adverse effects and drug and metabolite levels in various brain regions during chronic treatment. J Pharmacol Exp Ther 1989; 250: 1067–78PubMedGoogle Scholar
  35. 35.
    Löscher W, Hönack D. Comparison of anticonvulsant efficacy of valproate during prolonged treatment with one and three daily doses or continuous (“controlled release”) administration in a model of generalized seizures in rats. Epilepsia 1995; 36: 929–37PubMedCrossRefGoogle Scholar
  36. 36.
    Altrup U, Gerlach G, Reith H, et al. Effects of valproate in a model nervous system (buccal ganglia of Helix pomatia). I: antiepileptic actions. Epilepsia 1992; 33: 743–52Google Scholar
  37. 37.
    Wamil AW, Löscher W, Mclean MJ. Trans-2-en-valproic acid limits action potential firing frequency in mouse central neurons in cell culture. J Pharmacol Exp Ther 1997; 280: 1349–56PubMedGoogle Scholar
  38. 38.
    Silver JM, Shin C, McNamara JO. Antiepileptogenic effects of conventional anticonvulsants in the kindling model of epilepsy. Ann Neurol 1991; 29: 356–63PubMedCrossRefGoogle Scholar
  39. 39.
    Bolanos AR, Sarkisian M, Yang Y, et al. Comparison of valproate and phenobarbital treatment after status epilepticus in rats. Neurology 1998; 51: 41–8PubMedCrossRefGoogle Scholar
  40. 40.
    Temkin NR, Dikmen SS, Anderson GD, et al. Valproate therapy for prevention of posttraumatic seizures: a randomized trial. J Neurosurg 1999; 91: 593–600PubMedCrossRefGoogle Scholar
  41. 41.
    Hashimoto R, Hough C, Nakazawa T, et al. Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J Neurochem 2002; 80: 589–97PubMedCrossRefGoogle Scholar
  42. 42.
    Li R, El-Mallahk RS. A novel evidence of different mechanisms of lithium and valproate neuroprotective action on human SY5Y neuroblastoma cells: caspase-3 dependency. Neurosci Lett 2000; 294: 147–50PubMedCrossRefGoogle Scholar
  43. 43.
    Mora A, Gonzalez-Polo RA, Fuentes JM, et al. Different mechanisms of protection against apoptosis by valproate and Li+. Eur J Biochem 1999; 266: 886–91PubMedCrossRefGoogle Scholar
  44. 44.
    Thurston JH, Hauhart RE. Valproate doubles the anoxic survival time of normal developing mice: possible relevance to valproate-induced decreases in cerebral levels of glutamate and aspartate, and increases in taurine. Life Sci 1989; 45: 59–62PubMedCrossRefGoogle Scholar
  45. 45.
    Manji HK, Moore GJ, Rajkowska G, et al. Neuroplasticity and cellular resilience in mood disorders. Mol Psychiatry 2000; 5: 578–93PubMedCrossRefGoogle Scholar
  46. 46.
    Perucca E, Gram L, Avanzini G, et al. Antiepileptic drugs as a cause of worsening seizures. Epilepsia 1998; 39: 5–17PubMedCrossRefGoogle Scholar
  47. 47.
    Balfour JA, Bryson HM. Valproic acid: a review of its pharmacology and therapeutic potential in indications other than epilepsy. CNS Drugs 1994; 2: 144–73CrossRefGoogle Scholar
  48. 48.
    Vajda FJ, Donnan GA, Phillips J, et al. Human brain, plasma, and cerebrospinal fluid concentration of sodium valproate after 72 hours of therapy. Neurology 1981; 31: 486–7PubMedCrossRefGoogle Scholar
  49. 49.
    Nau H, Löscher W. Valproic acid and metabolites: pharmacological and toxicological studies. Epilepsia 1984; 25(1): 14–22CrossRefGoogle Scholar
  50. 50.
    Semmes RL, Shen DD. Comparative pharmacodynamics and brain distribution of E-delta2-valproate and valproate in rats. Epilepsia 1991; 32: 232–41PubMedCrossRefGoogle Scholar
  51. 51.
    Löscher W. Pharmacological, toxicological and neurochemical effects of delta2(E)-valproate in animals. Pharm Weekbl 1992; 14: 139–43CrossRefGoogle Scholar
  52. 52.
    Deckers CL, Czuczwar SJ, Hekster YA, et al. Selection of anti-epileptic drug polytherapy based on mechanisms of action: the evidence reviewed. Epilepsia 2000; 41: 1364–74PubMedCrossRefGoogle Scholar
  53. 53.
    Brodie MJ, Yuen AWC. Lamotrigine substitution study: evidence for synergism with sodium valproate? Epilepsy Res 1997; 26: 423–32PubMedCrossRefGoogle Scholar
  54. 54.
    Guberman AH, Besag FM, Brodie MJ, et al. Lamotrigine-associated ash: risk/benefit considerations in adults and children. Epilepsia 1999; 40: 985–1PubMedCrossRefGoogle Scholar
  55. 55.
    Faught E, Morris G, Jacobson M, et al. Adding lamotrigine to valproate: incidence of rash and other adverse effects. The Postmarketing Antiepileptic Drug Survey (PADS) Group. Epilepsia 1999; 40: 1135–40Google Scholar
  56. 56.
    Voskuyl RA, Ter Keurs HE, Meinardi H. Actions and interactions of dipropylacetate and penicillin on evoked potentials of excised prepiriform cortex of guinea pig. Epilepsia 1975; 16: 583–92PubMedCrossRefGoogle Scholar
  57. 57.
    Piredda S, Yonekawa W, Whittingham TS, et al. Effects of antiepileptic drugs on pentylenetetrazole-induced epileptiform activity in the in vitro hippocampus. Epilepsia 1986; 27: 341–6PubMedCrossRefGoogle Scholar
  58. 58.
    Tian LM, Alkadhi KA. Valproic acid inhibits the depolarizing rectification in neurons of rat amygdala. Neuropharmacology 1994; 33: 1131–8PubMedCrossRefGoogle Scholar
  59. 59.
    Bruckner C, Stenkamp K, Meierkord H, et al. Epileptiform discharges induced by combined application of bicuculline and 4-aminopyridine are resistant to standard anticonvulsants in slices of rats. Neurosci Lett 1999; 268: 163–5PubMedCrossRefGoogle Scholar
  60. 60.
    Bruckner C, Heinemann U. Effects of standard anticonvulsant drugs on different patterns of epileptiform discharges induced by 4-aminopyridine in combined entorhinal cortex-hippocampal slices. Brain Res 2000; 859: 15–20PubMedCrossRefGoogle Scholar
  61. 61.
    Fueta Y, Avoli M. Pattern- and age-dependency of the antiepileptic effects induced by valproic acid in the rat hippocampus. Can J Physiol Pharmacol 1991; 69: 1301–4PubMedCrossRefGoogle Scholar
  62. 62.
    Fueta Y, Siniscalchi A, Tancredi V, et al. Extracellular magnesium and anticonvulsant effects of valproate in young rat hippocampus. Epilepsia 1995; 36: 404–9PubMedCrossRefGoogle Scholar
  63. 63.
    Dreier JP, Heinemann U. Late low magnesium-induced epileptiform activity in rat entorhinal cortex slides becomes insensitive to the anticonvulsant valproic acid. Neurosci Lett 1990; 119: 68–70PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang CL, Dreier JP, Heinemann U. Paroxysmal epileptiform discharges in temporal lobe slices after prolonged exposure to low magnesium are resistant to clinically used anticonvulsants. Epilepsy Res 1995; 20: 105–11PubMedCrossRefGoogle Scholar
  65. 65.
    Sokolova S, Schmitz D, Zhang CL, et al. Comparison of effects of valproate and trans-2-en-valproate on different forms of epileptiform activity in rat hippocampal and temporal cortex slices. Epilepsia 1998; 39: 251–8PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang YF, Gibbs III JW, Coulter DA. Anticonvulsant drug effects on spontaneous thalamocortical rhythms in vitro: valproic acid, clonazepam, and alpha-methyl-alpha-phenylsuccinimide. Epilepsy Res 1996; 23: 37–53PubMedCrossRefGoogle Scholar
  67. 67.
    Macdonald RL. Cellular actions of antiepileptic drugs. In: Eadie MJ, Vajda FJE, editors. Antiepileptic drugs: pharmacology and therapeutics. Berlin: Springer, 1999: 123–50Google Scholar
  68. 68.
    Sypert GW, Reynolds AF. Single pyramidal-tract fiber analysis of neocortical propagated seizures with reference to inactivation responses. Exp Neurol 1974; 45: 228–40PubMedCrossRefGoogle Scholar
  69. 69.
    Rogawski MA, Porter RJ. Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 1990; 42: 223–86PubMedGoogle Scholar
  70. 70.
    Mutani R, Doriguzzi T, Fariello R, et al. Azione antiepilettica del sale di sodio dell’acido N-dipropilacetico: studio sperimentale sul gatto. Riv Patol Nerv Ment 1968; 89: 24–33PubMedGoogle Scholar
  71. 71.
    Salt TE, Tulloch IF, Walter DS. Anti-epileptic properties of sodium valproate in rat amygdaloid kindling. Br J Pharmacol 1980; 68(1): 134PGoogle Scholar
  72. 72.
    Ito T, Hori M, Yoshida K, et al. Effect of anticonvulsants on thalamic afterdischarge in rats and cats. Jpn J Pharmacol 1977; 27: 823–31PubMedCrossRefGoogle Scholar
  73. 73.
    Mutani R, Fariello R. Effetti dell’acido n-dipropilacetico (Depakine) sull’attività del focus epilettogeno da cobalto. Riv Patol Nerv Ment 1969; 90: 40–9Google Scholar
  74. 74.
    Fariello R, Mutani R. Modificazioni dell’attività del focus epilettogeno cortico-monotorio da alluminia indotte dal sale di sodio n-dipropylacetico (DPA). Acta Neurol (Napoli) 1970; 25: 116–22Google Scholar
  75. 75.
    van Duijn H, Beckmann MK. Dipropylacetic acid (Depakine) in experimental epilepsy in the alert cat. Epilepsia 1975; 16: 83–90PubMedCrossRefGoogle Scholar
  76. 76.
    Maresova D, Mares P. Influence of valproate and carbamazepine on symmetrical cortical penicillin foci in the rat. Physiol Bohemoslov 1985; 34: 562–6PubMedGoogle Scholar
  77. 77.
    Löscher W, Hönack D. Effects of the competitive NMDA receptor antagonist, CGP 37849, on anticonvulsant activity and adverse effects of valproate in amygdala-kindled rats. Eur J Pharmacol 1993; 234: 237–45PubMedCrossRefGoogle Scholar
  78. 78.
    Mares P, Maresova D, Pohl M, et al. Effect of anticonvulsant drugs on thalamo-cortical and hippocampo-cortical self-sustained after-discharges in the rat. Physiol Bohemoslov 1984; 33: 179–87PubMedCrossRefGoogle Scholar
  79. 79.
    Marescaux C, Micheletti G, Vergnes M, et al. A model of chronic spontaneous petit mal-like seizures in the rat: comparison with pentylenetetrazol-induced seizures. Epilepsia 1984; 25: 326–31PubMedCrossRefGoogle Scholar
  80. 80.
    Löscher W, Nau H, Marescaux C, et al. Comparative evaluation of anticonvulsant and toxic potencies of valproic acid and 2-en-valproic acid in different animal models of epilepsy. Eur J Pharmacol 1984; 99: 211–8PubMedCrossRefGoogle Scholar
  81. 81.
    Macdonald RL, Bergey GK. Valproic acid augments GABA-mediated postsynaptic inhibition in cultured mammalian neurons. Brain Res 1979; 170: 558–62PubMedCrossRefGoogle Scholar
  82. 82.
    Olpe HR, Steinmann MW, Pozza MF, et al. Valproate enhances GABA-A mediated inhibition of locus coeruleus neurons in vitro. Naunyn Schmiedeberg’s Arch Pharmacol 1988; 338: 655–7CrossRefGoogle Scholar
  83. 83.
    Baldino F, Geller HM. Effect of sodium valproate on hypothalamic neurons in vivo and in vitro. Brain Res 1981; 219: 231–7PubMedCrossRefGoogle Scholar
  84. 84.
    Zeise ML, Kasparaow S, Zieglgansberger W. Valproate suppresses N-methyl-D-aspartate evoked, transient depolarizations in the rat neocortex in vitro. Brain Res 1991;544: 345–8PubMedCrossRefGoogle Scholar
  85. 85.
    Czuczwar SJ, Frey H-H, Löscher W. Antagonism of N-methyl-D,L-aspartic acid-induced convulsions by antiepileptic drugs and other agents. Eur J Pharmacol 1985; 108: 273–80PubMedCrossRefGoogle Scholar
  86. 86.
    Musshoff U, Madeja M, Düsing R, et al. Valproate affects glutamate but not GABA receptors [abstract]. Eur J Neurosci 1996; Suppl. 9: 205Google Scholar
  87. 87.
    Chapman A, Keane PE, Meldrum BS, et al. Mechanism of anticonvulsant action of valproate. Progr Neurobiol 1982; 19: 315–59CrossRefGoogle Scholar
  88. 88.
    Kerwin RW, Taberner PV. The mechanism of action of sodium valproate. Gen Pharmacol 1981; 12: 71–5PubMedCrossRefGoogle Scholar
  89. 89.
    Farrant M, Webster RA. Neuronal activity, amino acid concentration and amino acid release in the substantia nigra of the rat after sodium valproate. Brain Res 1989; 504: 49–56PubMedCrossRefGoogle Scholar
  90. 90.
    Rohlfs A, Rundfeldt C, Koch R, et al. A comparison of the effects of valproate and its major active metabolite E-2-envalproate on single unit activity of substantia nigra pars reticulata neurons in rats. J Pharmacol Exp Ther 1996; 277: 1305–14PubMedGoogle Scholar
  91. 91.
    Löscher W. Valproate enhances GABA turnover in the substantia nigra. Brain Res 1989; 501: 198–203PubMedCrossRefGoogle Scholar
  92. 92.
    Löscher W, Ebert U. Basic mechanisms of seizure propagation: targets for rational drug design and rational polypharmacy. Epilepsy Res 1996; Suppl. 11: 17–44Google Scholar
  93. 93.
    Gale K. Progression and generalization of seizure discharge: anatomical and neurochemical substrates. Epilepsia 1988; 29Suppl. 2: S15–34PubMedCrossRefGoogle Scholar
  94. 94.
    McLean MJ, Macdonald RL. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986; 237: 1001–11PubMedGoogle Scholar
  95. 95.
    Van den Berg RJ, Kok P, Voskuyl RA. Valproate and sodium currents in cultured hippocampal neurons. Exp Brain Res 1993; 93: 279–87PubMedGoogle Scholar
  96. 96.
    Albus H, Williamson R. Electrophysiologic analysis of the actions of valproate on pyramidal neurons in the rat hippocampal slice. Epilepsia 1998; 39: 124–39PubMedCrossRefGoogle Scholar
  97. 97.
    Willow M, Kuenzel EA, Catterall WA. Inhibition of voltagesensitive sodium channels in neuroblastoma cells and synaptosomes by the anticonvulsant drugs diphenylhydantoin and carbamazepine. Mol Pharmacol 1984; 25: 228–34PubMedGoogle Scholar
  98. 98.
    Francis J, Burnham WM. [3H]Phenytoin identifies a novel anticonvulsant-binding domain on voltage-dependent sodium channels. Mol Pharmacol 1992; 42: 1097–103PubMedGoogle Scholar
  99. 99.
    Zona C, Avoli M. Effects induced by the antiepileptic drug valproic acid upon the ionic currents recorded in rat neocortical neurons in cell culture. Exp Brain Res 1990; 81: 313–7PubMedCrossRefGoogle Scholar
  100. 100.
    Vreugdenhil M, Vanveelen CWM, Vanrijen PC, et al. Effect of valproic acid on sodium currents in cortical neurons from patients with pharmaco-resistant temporal lobe epilepsy. Epilepsy Res 1998; 32: 309–20PubMedCrossRefGoogle Scholar
  101. 101.
    Vreugdenhil M, Wadman WJ. Modulation of sodium currents in rat CA1 neurons by carbamazepine and valproate after kindling epileptogenesis. Epilepsia 1999; 40: 1512–22PubMedCrossRefGoogle Scholar
  102. 102.
    Vreugdenhil M, Bruehl C, Voskuyl RA, et al. Polyunsaturated fatty acids modulate sodium and calcium currents in CA1 neurons. Proc Natl Acad Sci U S A 1996; 93: 12559–63PubMedCrossRefGoogle Scholar
  103. 103.
    Taverna S, Mantegazza M, Franceschetti S, et al. Valproate selectively reduces the persistent fraction of Na+ current in neocortical neurons. Epilepsy Res 1998; 32: 304–8PubMedCrossRefGoogle Scholar
  104. 104.
    Fariello RG, Varasi M, Smith MC. Valproic acid: mechanisms of action. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 581–604Google Scholar
  105. 105.
    Morre M, Keane PE, Vernières JC, et al. Valproate: recent findings and perspectives. Epilepsia 1984; 25Suppl. 1: S5–9PubMedCrossRefGoogle Scholar
  106. 106.
    Franceschetti S, Hannon B, Heinemann U. The action of valproate on spontaneous epileptiform activity in the absence of synaptic transmission and on evoked changes in [Ca2+]0 and [K+]0 in the hippocampal slice. Brain Res 1986; 386: 1–11PubMedCrossRefGoogle Scholar
  107. 107.
    Roderfeld H-J, Altrup U, Düsing R, et al. Effects of the antiepileptic drug valproate on cloned voltage-dependent potassium channels [abstract]. Pflügers Arch 1994; 426 Suppl.: R32Google Scholar
  108. 108.
    Coulter DA, Huguenard JR, Prince DA. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol 1989; 25: 582–93PubMedCrossRefGoogle Scholar
  109. 109.
    Kelly KM, Gross RA, Macdonald RL. Valproic acid selectively reduces the low-threshold (T) calcium current in rat nodose neurons. Neurosci Lett 1990; 116: 1–2CrossRefGoogle Scholar
  110. 110.
    Crowder JM, Bradford HF. Common anticonvulsants inhibit Ca2+ uptake and amino acid neurotransmitter release in vitro. Epilepsia 1987; 28: 378–82PubMedCrossRefGoogle Scholar
  111. 111.
    Perlman BJ, Goldstein DB. Membrane-disordering potency and anticonvulsant action of valproic acid and other short-chain fatty acids. Mol Pharmacol 1984; 26: 83–9PubMedGoogle Scholar
  112. 112.
    Rumbach L, Mutet C, Cremel G, et al. Effects of sodium valproate on mitochondrial membranes: electron paramagnetic resonance and transmembrane protein movement studies. Mol Pharmacol 1986; 30: 270–3PubMedGoogle Scholar
  113. 113.
    Godin Y, Heiner L, Mark J, et al. Effects of di-n-propylacetate, an anticonvulsive compound, on GABA metabolism. J Neurochem 1969; 16: 869–73PubMedCrossRefGoogle Scholar
  114. 114.
    Simler S, Ciesielski L, Maitre M, et al. Effect of sodium n-dipropylacetate on audiogenic seizures and brain γ-aminobutyric acid level. Biochem Pharmacol 1973; 22: 1701–8PubMedCrossRefGoogle Scholar
  115. 115.
    Schechter PJ, Tranier Y, Grove J. Effect of n-dipropylacetate on amino acid concentrations in mouse brain: correlations with anti-convulsant activity. J Neurochem 1978;31: 1325–7PubMedCrossRefGoogle Scholar
  116. 116.
    Martin DL, Olsen RW, Martin DL, et al., editors. GABA in the nervous system: the view at fifty years. Philadelphia (PA): Lippincott Williams & Wilkins, 2000Google Scholar
  117. 117.
    Löscher W. GABA and the epilepsies: experimental and clinical considerations. In: Bowery NG, Nisticò G, editors. GABA: basic research and clinical applications. Rome: Pythagora Press, 1989: 260–300Google Scholar
  118. 118.
    Avoli M. Epilepsy. In: Martin DL, Olsen W, editors. GABA in the nervous system: the view at fifty years. Philadelphia (PA): Lippincott Williams & Wilkins, 2000: 293–316Google Scholar
  119. 119.
    Simler S, Randrianarisoa H, Lehman A, et al. Effects du di-n-propylacétate sur les crises audiogènes de la souris. J Physiol (Paris) 1968; 60: 547Google Scholar
  120. 120.
    Sieghart W. Unraveling the function of GABA(A) receptor subtypes. Trends Pharmacol Sci 2000; 21: 411–3PubMedCrossRefGoogle Scholar
  121. 121.
    Möhler H, Fritschy JM, Rudolph U. A new benzodiazepine pharmacology. J Pharmacol Exp Ther 2002; 300: 2–8PubMedCrossRefGoogle Scholar
  122. 122.
    Rudolph U, Crestani F, Möhler H. GABA(A) receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci 2001; 22: 188–94PubMedCrossRefGoogle Scholar
  123. 123.
    Iadarola MJ, Gale K. Dissociation between drug-induced increases in nerve terminal and non-nerve terminal pools of GABA in vivo. Eur J Pharmacol 1979; 59: 125–9PubMedCrossRefGoogle Scholar
  124. 124.
    Löscher W, Vetter M. In vivo effects of aminooxyacetic acid and valproic acid on nerve terminal (synaptosomal) GABA levels in discrete brain areas of the rat: correlation to pharmacological activities. Biochem Pharmacol 1985; 34: 1747–56PubMedCrossRefGoogle Scholar
  125. 125.
    Iadarola MJ, Gale K. Cellular compartments of GABA in brain and their relationship to anticonvulsant activity. Mol Cell Biochem 1981; 39: 305–30PubMedCrossRefGoogle Scholar
  126. 126.
    Löscher W. GABA in plasma, CSF and brain of dogs during acute and chronic treatment with γ-acetylenic GABA and valproic acid. In: Okada Y, Roberts E, editors. Problems in GABA research: from brain to bacteria. Amsterdam: Exerpta Medica, 1982: 102–9Google Scholar
  127. 127.
    Petroff OA, Rothman DL, Behar KL, et al. Effects of valproate and other antiepileptic drugs on brain glutamate, glutamine, and GABA in patients with refractory complex partial seizures. Seizure 1999; 8: 120–7PubMedCrossRefGoogle Scholar
  128. 128.
    Petroff OA, Rothman DL. Measuring human brain GABA in vivo: effects of GABA-transaminase inhibition with vigabatrin. Mol Neurobiol 1998; 16: 97–121PubMedCrossRefGoogle Scholar
  129. 129.
    Löscher W. Valproate induced changes in GABA metabolism at the subcellular level. Biochem Pharmacol 1981; 30: 1364–6PubMedCrossRefGoogle Scholar
  130. 130.
    Phillips NI, Fowler LJ. The effects of sodium valproate on γ-aminobutyrate metabolism and behavior in naive and ethanolamine-O-sulphate pretreated rats and mice. Biochem Pharmacol 1982; 31: 2257–61PubMedCrossRefGoogle Scholar
  131. 131.
    Löscher W. Effect of inhibitors of GABA aminotransferase on the metabolism of GABA in brain tissue and synaptosomal fractions. J Neurochem 1981; 36: 1521–7PubMedCrossRefGoogle Scholar
  132. 132.
    Löscher W. In vivo administration of valproate reduces the nerve terminal (synaptosomal) activity of GABA aminotransferase in discrete brain areas of rats. Neurosci Lett 1993; 160: 177–80PubMedCrossRefGoogle Scholar
  133. 133.
    Larsson OM, Gram L, Schousboe I, et al. Differential effects of gamma-vinyl GABA and valproate on GABA-transaminase from cultured neurons and astrocytes. Neuropharmacology 1986; 25: 617–25PubMedCrossRefGoogle Scholar
  134. 134.
    Taberner PV, Charington CB, Unwin JW. Effects of GAD and GABA-T inhibitors on GABA metabolism in vivo. Brain Res Bull 1980; 5 Suppl. 2: 621–5CrossRefGoogle Scholar
  135. 135.
    Nau H, Löscher W. Valproic acid: brain and plasma levels of the drug and its metabolites, anticonvulsant effects and GABA metabolism in the mouse. J Pharmacol Exp Ther 1982; 220: 654–9PubMedGoogle Scholar
  136. 136.
    Wikinski SI, Acosta GB, Rubio MC. Valproic acid differs in its in vitro effect on glutamic acid decarboxylase activity in neonatal and adult rat brain. Gen Pharmacol 1996; 27: 635–8PubMedCrossRefGoogle Scholar
  137. 137.
    Bolanos JP, Medina JM. Evidence of stimulation of the gamma-aminobutyric acid shunt by valproate and E-delta-2-valproate in neonatal rat brain. Mol Pharmacol 1993; 43: 487–90PubMedGoogle Scholar
  138. 138.
    Löscher W, Frey H-H. Zum Wirkungsmechanismus von valproinsäure. Arzneimittel Forschung 1977; 27: 1081–2PubMedGoogle Scholar
  139. 139.
    Luder AS, Parks JK, Frerman F, et al. Inactivation of beef brain α-ketoglutarate dehydrogenase complex by valproic acid and valproic acid metabolites. J Clin Invest 1990; 86: 1574–81PubMedCrossRefGoogle Scholar
  140. 140.
    Gram L, Larsson OM, Johnsen AH, et al. Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res 1988; 2: 87–95PubMedCrossRefGoogle Scholar
  141. 141.
    Ekwuru MO, Cunningham JR. Phaclofen increases GABA release from valproate treated rats. Br J Pharmacol 1990; 99 Suppl.: 251PGoogle Scholar
  142. 142.
    Ueda Y, Willmore LJ. Molecular regulation of glutamate and GABA transporter proteins by valproic acid in rat hippocampus during epileptogenesis. Exp Brain Res 2000; 133: 334–9PubMedCrossRefGoogle Scholar
  143. 143.
    Biggs CS, Pearce BR, Fowler LJ, et al. The effect of sodium valproate on extracellular GABA and other amino acids in the rat ventral hippocampus: an in vivo microdialysis study. Brain Res 1992; 594: 138–42PubMedCrossRefGoogle Scholar
  144. 144.
    Rowley HL, Marsden CA, Martin KF. Differential effects of phenytoin and sodium valproate on seizure-induced changes in gamma-aminobutyric acid and glutamate release in vivo. Eur J Pharmacol 1995; 294: 541–6PubMedCrossRefGoogle Scholar
  145. 145.
    Wolf R, Tscherne U, Emrich HM. Suppression of preoptic GABA release caused by push-pull-perfusion with sodium valproate. Naunyn Schmiedeberg’s Arch Pharmacol 1988; 338: 658–63CrossRefGoogle Scholar
  146. 146.
    Timmermann W, Westerink BHC. Brain microdialysis of GABA and glutamate: what does it signify? Synapse 1997; 27: 242–61CrossRefGoogle Scholar
  147. 147.
    Ticku MK, Davis WC. Effect of valproic acid on [3H]diazepam and [3H]dihydroxypicrotoxinin binding sites at the benzodiazepine-GABA receptor ionophore complex. Brain Res 1981; 223: 218–22PubMedCrossRefGoogle Scholar
  148. 148.
    Miller LG, Greenblatt DJ, Barnhill JG, et al. “GABA shift” in vivo: enhancement of benzodiazepine binding in vivo by modulation of endogenous GABA. Eur J Pharmacol 1988; 148: 123–30PubMedCrossRefGoogle Scholar
  149. 149.
    Koe BK, Kondratas E, Russo LL. [3H]Ro 15-1788 binding to benzodiazepine receptors in mouse brain in vivo: marked enhancement by GABA agonists and other CNS drugs. Eur J Pharmacol 1987; 142: 373–84PubMedCrossRefGoogle Scholar
  150. 150.
    Nutt DJ, Cowen PJ, Little HJ. Unusual interactions of benzodiazepine receptor antagonists. Nature 1982; 295: 436–8PubMedCrossRefGoogle Scholar
  151. 151.
    Gent JP, Bentley M, Feely M, et al. Benzodiazepine cross-tolerance in mice extends to sodium valproate. Eur J Pharmacol 1986; 128: 9–15PubMedCrossRefGoogle Scholar
  152. 152.
    Liljequist S, Engel JA. Reversal of anticonflict action of valproate by various GABA and benzodiazepine antagonists. Life Sci 1984; 34: 2525–31PubMedCrossRefGoogle Scholar
  153. 153.
    Morag M, Myslobodsky M. Benzodiazepine antagonists abolish electrophysiological effects of sodium valproate in the rat. Life Sci 1982; 30: 1671–7PubMedCrossRefGoogle Scholar
  154. 154.
    Myslobodsky M, Feldon J, Lerner T. Anticonflict action of sodium valproate: interaction with convulsant benzodiazepine (Ro 5-3663) and imidazodiazepine (Ro 15-1788). Life Sci 1983; 33: 317–21PubMedCrossRefGoogle Scholar
  155. 155.
    Shephard RA, Stevenson D, Jenkinson S. Effects of valproate on hyponeophagia in rats: competitive antagonism with picrotoxin and non-competitive antagonism with RO 15-1788. Psychopharmacology (Berl) 1985; 86: 313–7CrossRefGoogle Scholar
  156. 156.
    Shephard RA, Hamilton MS. Chlordiazepoxide and valproate enhancement of saline drinking by nondeprived rats: effects of bicuculline, picrotoxin and Rol5-1788. Pharmacol Biochem Behav 1989; 33: 285–90PubMedCrossRefGoogle Scholar
  157. 157.
    Ong J, Kerr DI. Recent advances in GABAB receptors: from pharmacology to molecular biology. Acta Pharmacol Sin 2000; 21: 111–23PubMedGoogle Scholar
  158. 158.
    Caddick SJ, Hosford DA. The role of GABAB mechanisms in animal models of absence seizures. Mol Neurobiol 1996; 13: 23–32PubMedCrossRefGoogle Scholar
  159. 159.
    Czuczwar SJ, Patsalos PN. The new generation of GABA enhancers: potential in the treatment of epilepsy. CNS Drugs 2001; 15: 339–50PubMedCrossRefGoogle Scholar
  160. 160.
    Lloyd KG, Thuret F, Pilc A. Upregulation of gamma-amino-butyric (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. J Pharmacol Exp Ther 1985; 235: 191–9PubMedGoogle Scholar
  161. 161.
    Motohashi N. GABA receptor alterations after chronic lithium administration: comparison with carbamazepine and sodium valproate. Prog Neuropsychopharmacol Biol Psychiatry 1992; 16: 571–9PubMedCrossRefGoogle Scholar
  162. 162.
    DeFeudis FV. Gamma-aminobutyric acid-ergic analgesia: implications for gamma-aminobutyric acid-ergic therapy for drug addiction. Drug Alcohol Depend 1984; 14: 101–11PubMedCrossRefGoogle Scholar
  163. 163.
    Whittle SR, Turner AJ. Effects of the anticonvulsant sodium valproate on γ-aminobutyrate and aldehyde metabolism in ox brain. J Neurochem 1978; 31: 1453–9PubMedCrossRefGoogle Scholar
  164. 164.
    Vayer P, Cash CD, Maitre M. Is the anticonvulsant mechanism of valproate linked to its interaction with the cerebral γ-hydroxybutyrate system? Trends Pharmacol Sci 1988; 9: 127–9PubMedCrossRefGoogle Scholar
  165. 165.
    Whittle SR, Turner SJ. Effects of anticonvulsants on the formation of γ-hydroxybutyrate from γ-aminobutyrate in rat brain. J Neurochem 1982; 38: 848–51PubMedCrossRefGoogle Scholar
  166. 166.
    Snead OI. γ-Hydroxybutyrate model of generalized absence seizures: further characterization and comparison with other absence models. Epilepsia 1988; 29: 361–77PubMedCrossRefGoogle Scholar
  167. 167.
    Snead OCI, Bearden LJ, Pegram V. Effect of acute and chronic anticonvulsant administration on endogenous γ-hydroxybutyrate in rat brain. Neuropharmacology 1980; 19: 47–52PubMedCrossRefGoogle Scholar
  168. 168.
    Dixon JF, Hokin LE. The antibipolar drug valproate mimics lithium in stimulating glutamate release and inositol 1,4,5-trisphosphate accumulation in brain cortex slices but not accumulation of inositol monophosphates and bisphosphates. Proc Natl Acad Sci U S A 1997; 94: 4757–60PubMedCrossRefGoogle Scholar
  169. 169.
    Nilsson M, Hansson E, Ronnback L. Interactions between valproate, glutamate, aspartate, and GABA with respect to uptake in astroglial primary cultures. Neurochem Res 1992; 17: 327–32PubMedCrossRefGoogle Scholar
  170. 170.
    Biggs CS, Pearce BR, Fowler LJ, et al. Regional effects of sodium valproate on extracellular concentrations of 5-hydroxytryptamine, dopamine, and their metabolites in the rat brain: an in vivo microdialysis study. J Neurochem 1992; 59: 1702–8PubMedCrossRefGoogle Scholar
  171. 171.
    Horton RW, Anlezark GM, Sawaya MCB, et al. Monoamine and GABA metabolism and the anticonvulsant action of di-n-propylacetate and ethanolamine-O-sulphate. Eur J Pharmacol 1977; 41: 387–97PubMedCrossRefGoogle Scholar
  172. 172.
    Ichikawa J, Meltzer HY. Valproate and carbamazepine increase prefrontal dopamine release by 5-HT1A receptor activation. Eur J Pharmacol 1999; 380: R1–3PubMedCrossRefGoogle Scholar
  173. 173.
    Dreifuss FE. Valproic acid: toxicity. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4thed. New York: Raven, 1995: 641–8Google Scholar
  174. 174.
    Jones EA, Basile AS. Does ammonia contribute to increased GABA-ergic neurotransmission in liver failure? Metab Brain Dis 1998; 13: 351–60PubMedCrossRefGoogle Scholar
  175. 175.
    Nathanson JA. Cyclic nucleotides and nervous system function. Physiol Rev 1977; 57: 157–256PubMedGoogle Scholar
  176. 176.
    Lust WD, Kupferberg HJ, Yonekawa WD, et al. Changes in brain metabolites induced by convulsants or electroshock: effects of anticonvulsant agents. Mol Pharmacol 1978; 14: 347–56PubMedGoogle Scholar
  177. 177.
    McCandless DW, Feussner GK, Lust WD, et al. Metabolite levels in brain following experimental seizures: the effects of isoniazid and sodium valproate in cerebellar and cerebral cortical layers. J Neurochem 1979; 32: 755–60PubMedCrossRefGoogle Scholar
  178. 178.
    Frey H-H, Löscher W. Distribution of valproate across the interface between blood and cerebrospinal fluid. Neuropharmacology 1978; 17: 637–42PubMedCrossRefGoogle Scholar
  179. 179.
    Shen DD. Valproate: absorption, distribution, and excretion. In: Löscher W editor. Valproate. Basle: Birkhäuser, 1999: 77–90CrossRefGoogle Scholar
  180. 180.
    Huai-Yun H, Secrest DT, Mark KS, et al. Expression of multi-drug resistance-associated protein (MRP) in brain micro-vessel endothelial cells. Biochem Biophys Res Commun 1998; 243: 816–20PubMedCrossRefGoogle Scholar
  181. 181.
    Cutrer FM, Limmroth V, Moskowitz MA. Possible mechanisms of valproate in migraine prophylaxis. Cephalalgia 1997; 17: 93-100PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  1. 1.Department of PharmacologySchool of Veterinary Medicine, Toxicology and PharmacyHannoverGermany

Personalised recommendations