CNS Drugs

, Volume 16, Issue 7, pp 485–500

Cholinergic Nicotinic Systems in Alzheimer’s Disease

Prospects for Pharmacological Intervention
  • Robyn Vesey
  • Jennifer M. Birrell
  • Clare Bolton
  • Ruth S. Chipperfield
  • Andrew D. Blackwell
  • Tom R. Dening
  • Barbara J. Sahakian
Review Article


Within the last few years, research into the cause and progression of Alzheimer’s disease has made significant advances. Although there is still no preventative treatment or cure for this neurodegenerative illness, the development of drugs that may alleviate some of the cognitive symptoms associated with it is advancing. Cholinesterase inhibitors are at present the most effective form of treatment and have shown significant overall response rates in clinical trials. However, although some patients show substantial improvement when treated with this class of drugs, there is considerable variability in the amount of benefit gained in different individuals in terms of their cognitive and behavioural functioning. Furthermore, unfortunately some patients gain little or no benefit from these drugs. It would therefore be of great advantage to explore alternative therapeutic possibilities.

This article reviews the potential involvement of the nicotinic cholinergic system in Alzheimer’s disease and discusses the possibility of nicotinic pharmacotherapy. Substantial evidence indicates the involvement of the nicotinic cholinergic system in the pathology of Alzheimer’s disease. Drugs targeting these sites may not only have a positive effect on cognitive function, but also have additional therapeutic benefits in terms of restoring the hypoactivity in the excitatory amino acid pyramidal system and even slowing the emergence of Alzheimer’s disease pathology. The conclusion of this review is that nicotinic treatments are an important potential source of new therapeutic interventions in Alzheimer’s disease.


  1. 1.
    Evans DA, Funkenstein HH, Albert MS, et al. Prevalence of Alzheimer’s disease in a community population of older persons: higher than previously reported. JAMA 1989; 262: 2551–6PubMedCrossRefGoogle Scholar
  2. 2.
    White LR, Cartwright WS, Cornoni-Huntley J, et al. Geriatric epidemiology. Annu Rev Gerontol Geriatr 1986; 6: 215–311PubMedGoogle Scholar
  3. 3.
    Alzheimer’s Society. Appraisal of the drugs for Alzheimer’s disease: submission to the National Institute for Clinical Excellence [online]. Available from URL: [Accessed 2002 May 29]
  4. 4.
    Rogers SL, Farlow MR, Doody FS, et al. A 24-week, double-blind, placebo controlled trial of donepezil in patients with Alzheimer’s disease. Neurology 1998; 50: 136–45PubMedCrossRefGoogle Scholar
  5. 5.
    Botwinick J, Storandt M, Berg L. A longitudinal behavioural study of senile dementia of the Alzheimer type. Arch Neurol 1986; 43: 1124–7PubMedCrossRefGoogle Scholar
  6. 6.
    Huff J, Becker JT, Belle SH, et al. Cognitive deficits and clinical diagnosis of Alzheimer’s disease. Neurology 1987; 37: 1119–24PubMedCrossRefGoogle Scholar
  7. 7.
    Robbins TW, Elliott R, Sahakian BJ. Neuropsychology — dementia and affective disorders. Br Med Bull 1996; 52: 627–43PubMedCrossRefGoogle Scholar
  8. 8.
    Linn RT, Wolf PA, Bachman DL, et al. The “preclinical phase” of probable Alzheimer’s disease: a 13 year prospective study of the Framingham cohort. Arch Neurol 1995; 52: 485–90PubMedCrossRefGoogle Scholar
  9. 9.
    Tierney MC, Szalai JP, Snow WG, et al. Prediction of probably Alzheimer’s disease in memory impaired patients: a prospective longitudinal study. Neurology 1996; 46: 661–5PubMedCrossRefGoogle Scholar
  10. 10.
    Small BJ, Herlitz A, Fratiglioni L, et al. Cognitive predictors of incident Alzheimer’s disease: a prospective longitudinal study. Neuropsychology 1997; 11(3): 413–20PubMedCrossRefGoogle Scholar
  11. 11.
    Fowler KS, Saling MM, Conway EL, et al. Computerised neuropsychological tests in the early detection of dementia: prospective findings. J Int Neuropsychol Soc 1997; 3: 139–46PubMedGoogle Scholar
  12. 12.
    Swainson R, Hodges JR, Galton CJ, et al. Early detection and differential diagnosis of Alzheimer’s disease and depression with neuropsychological tasks. Dement Geriatr Cogn Disord 2001; 12: 265–80PubMedCrossRefGoogle Scholar
  13. 13.
    Lawrence A, Sahakian BJ. Alzheimer’s disease, attention and the cholinergic system. Alzheimer Dis Assoc Disord 1995; 9Suppl. 2: 43–9PubMedGoogle Scholar
  14. 14.
    Parasuraman R, Haxby JV. Attention and brain function in Alzheimer’s disease: a review. Neuropsychology 1993; 7: 242–72CrossRefGoogle Scholar
  15. 15.
    Perry RJ, Hodges JR. Attention and executive deficits in Alzheimer’s disease: a critical review. Brain 1999; 122: 383–404PubMedCrossRefGoogle Scholar
  16. 16.
    Rahman S, Swainson R, Sahakian BJ. Dementia of the Alzheimer’s type. In: Harrison JE, Owen AM, editors. Cognitive deficits in brain disorders. London: Dunitz, 2002Google Scholar
  17. 17.
    Borson S, Raskin MA. Clinical features and pharmacological treatments of behavioural symptoms in Alzheimer’s disease. Neurology 1997; 48Suppl. 6: 17–24CrossRefGoogle Scholar
  18. 18.
    Reisberg B, Auer SR, Monteiro I, et al. Behavioural disturbances in dementia: an overview of phenomenology and methodological concerns. Int Psychogeriatr 1996; 8Suppl. 2: 169–80PubMedGoogle Scholar
  19. 19.
    Citron M, Oltersdorf T, Haass C, et al. Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increase beta-amyloid protein production. Nature 1992; 360: 672–4PubMedCrossRefGoogle Scholar
  20. 20.
    Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol (Berl) 1991; 82: 239–59CrossRefGoogle Scholar
  21. 21.
    Terry RD, Wisniewski HM. Ultrastructure of senile dementia and of experimental analogs. In: Gaitz CM, editor. Aging and the brain. New York: Plenum Press, 1972: 89–116CrossRefGoogle Scholar
  22. 22.
    Trojanowski JQ, Shin RW, Schmidt ML, et al. Relationship between plaques, tangles, and dystrophic processes in Alzheimer’s disease. Neurobiol Aging 1995; 16(3): 335–45PubMedCrossRefGoogle Scholar
  23. 23.
    Sparks DL, Hunsaker JC, Scheff SW, et al. Cortical senile plaques in coronary artery disease, aging and Alzheimer’s disease. Neurobiol Aging 1990; 6: 601–7CrossRefGoogle Scholar
  24. 24.
    McKee AC, Kosik KS, Kowall NW. Neuritic pathology and dementia in Alzheimer’s disease. Ann Neurol 1991; 30(2): 156–65PubMedCrossRefGoogle Scholar
  25. 25.
    Arriagada PV, Growdon JH, Hedleywhyte ET, et al. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 1992; 42(3): 631–9PubMedCrossRefGoogle Scholar
  26. 26.
    Coleman PD, Flood DG. Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiol Aging 1987; 8(6): 521–45PubMedCrossRefGoogle Scholar
  27. 27.
    Gomez-Isla T, Hollister R, West H, et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 1997; 41: 17–24PubMedCrossRefGoogle Scholar
  28. 28.
    Davies DC, Horwood N, Isaacs SL, et al. The effect of age and Alzheimer’s disease on pyramidal neuron density in the individual fields of the hippocampal formation. Acta Neuropathol (Berl) 1992; 83(5): 510–7CrossRefGoogle Scholar
  29. 29.
    Neary D, Snowdon JS, Mann DM, et al. Alzheimer’s disease: a correlative study. J Neurol Neurosurg Psychiatry 1986; 49: 229–37PubMedCrossRefGoogle Scholar
  30. 30.
    Lippa CF, Hammos JE, Pulaskisalo D, et al. Alzheimer’s disease and aging — effects on perforant pathway perikarya and synapses. Neurobiol Aging 1992; 13(3): 405–11PubMedCrossRefGoogle Scholar
  31. 31.
    Gomez-Isla T, Price JL, McKeel DW, et al. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 1996; 16(14): 4491–500PubMedGoogle Scholar
  32. 32.
    Hyman BT, van Hoesen GW, Damasio AR, et al. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 1984; 225: 1168–70PubMedCrossRefGoogle Scholar
  33. 33.
    Mann DM. Pyramidal nerve cell loss in Alzheimer’s disease. Neurodegeneration 1996; 5(4): 423–7PubMedCrossRefGoogle Scholar
  34. 34.
    Geula C. Abnormalities of neural circuitry in Alzheimer’s disease: hippocampus and cortical cholinergic innervation. Neurology 1998; 51Suppl. 1: S18–28PubMedCrossRefGoogle Scholar
  35. 35.
    Whitehouse PJ, Price DL, Struble RG, et al. Alzheimer’s disease and senile dementia: loss of neurons in the basal fore-brain. Science 1982; 215: 1237–9PubMedCrossRefGoogle Scholar
  36. 36.
    Tomlinson BE, Irving D, Blessed G. Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J Neurol Sci 1981; 49(3): 419–28PubMedCrossRefGoogle Scholar
  37. 37.
    Yamamoto T, Hirano A. Nucleus raphé dorsalis in Alzheimer’s disease: neurofibrillary tangles and loss of large neurons. Ann Neurol 1985; 17: 573–7PubMedCrossRefGoogle Scholar
  38. 38.
    Palmer AM, Bowen DM. Neurochemical basis of dementia of the Alzheimer’s type: contribution of post-mortem and antemortem studies. In: Fowler C, Carlson LA, Gottfries CG, et al., editors. Biological markers of dementia of Alzheimer type. Proceedings of the Stiftelsen Gamla Tjänarinnor Symposium on Aging and Aging Disorders No. 1; 1989; Stockholm. London: SmithGordon and Co. Ltd, 1990: 89–105Google Scholar
  39. 39.
    Whitehouse P, Price DL, Clark AW, et al. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 1981; 10: 122–6PubMedCrossRefGoogle Scholar
  40. 40.
    Reinikained K, Riedinnen PJ, Paljarvi L, et al. Cholinergic deficit in AD: a study based on autopsy data. Neurochem Res 1998; 13: 135–46CrossRefGoogle Scholar
  41. 41.
    Bookheimer SY, Strojwas MH Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 2000; 343(7): 450–6PubMedCrossRefGoogle Scholar
  42. 42.
    Francis PT, Sims NR, Procter AW, et al. Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer’s disease: investigative and therapeutic perspectives. J Neurochem 1993; 60(5): 1589–604PubMedCrossRefGoogle Scholar
  43. 43.
    Davies P, Malony AJ. Selective loss of cholinergic neurons in Alzheimer’s disease [letter]. Lancet 1976; II: 1403CrossRefGoogle Scholar
  44. 44.
    Richter JA, Perry EK, Tomlinson BE. Acetylcholine and choline levels in post-mortem brain tissue: preliminary observations in Alzheimer’s disease. Life Sci 1980; 26: 1683–9PubMedCrossRefGoogle Scholar
  45. 45.
    Bowen DM, Allen SJ, Benton JS, et al. Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J Neurochem 1983; 41: 261–72Google Scholar
  46. 46.
    Pearson RC, Gatter KC, Brodal P, et al. The projection of the basal nucleus of Meynert upon the neocortex in the monkey. Brain Res 1983; 259: 132–6PubMedCrossRefGoogle Scholar
  47. 47.
    McGeer PL, McGeer EG, Suzuki J, et al. Aging, Alzheimer’s disease, and the cholinergic system of the basal forebrain. Neurology 1984; 34: 727–45CrossRefGoogle Scholar
  48. 48.
    Geula C, Mesulam MM. Systematic regional variations in the loss of cortical cholinergic fibres in Alzheimer’s disease. Cereb Cortex 1996; 6: 165–77PubMedCrossRefGoogle Scholar
  49. 49.
    Rossor M, Mountjoy CQ. Postmortem neurochemical changes in Alzheimer’s disease compared with normal aging. Can J Neurol Sci 1986; 13(4): 499–502PubMedGoogle Scholar
  50. 50.
    Drachman DA. Memory and cognitive function in man: does the cholinergic system have a specific role? Neurology 1977; 27: 783–90PubMedCrossRefGoogle Scholar
  51. 51.
    Little JT, Broocks A, Martin A, et al. Serotonergic modulation of anticholinergic effects on cognition and behaviour in elderly humans. Psychopharmacology (Berl) 1995; 120: 280–8CrossRefGoogle Scholar
  52. 52.
    Perry EK, Tomlinson BE, Blessed G, et al. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. BMJ 1978; 2: 1457–9PubMedCrossRefGoogle Scholar
  53. 53.
    Bartus RT, Dean RL, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982; 217: 408–17PubMedCrossRefGoogle Scholar
  54. 54.
    Ellis KA, Nathan PJ. The pharmacology of human working memory. Int J Neuropsychopharmacol 2001; 4: 299–313PubMedCrossRefGoogle Scholar
  55. 55.
    Robbins TW, Semple J, Kumar R, et al. Effects of scopolamine on delayed-matching-to-sample and paired associates tests of visual memory and learning in human subjects: comparison with diazepam and implications for dementia. Psychopharmacology (Berl) 1997; 134: 95–106CrossRefGoogle Scholar
  56. 56.
    Bowen DM, Benton JS, Spillane JA, et al. Choline acetyltransferase activity and histopathology of frontal neocortex from biopsies of demented patients. J Neurol Sci 1982; 57: 191–202PubMedCrossRefGoogle Scholar
  57. 57.
    Davis KL, Mohs RC, Marin D, et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 1999; 281: 1401–6PubMedCrossRefGoogle Scholar
  58. 58.
    Kuhar M. The anatomy of cholinergic neurons. In: Goldberg A, Hanin I, editors. Biology of cholinergic function. New York: Raven, 1976: 710Google Scholar
  59. 59.
    Carroll PT. Veratridine-induced release of acetylcholine from mouse forebrain minces: dependence on the hydrolysis of cytoplasmic acetylcholine for a source of choline. Brain Res 1984; 321: 55–62PubMedCrossRefGoogle Scholar
  60. 60.
    Rylett RH, Ball MJ, Colhoun EH. Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer’s disease. Brain Res 1983; 289: 169–75PubMedCrossRefGoogle Scholar
  61. 61.
    Arendt T, Bigl V, Walther F, et al. Decreased ratio of CSF acetylcholinesterase to butyryl-cholinesterase activity in Alzheimer’s disease [letter]. Lancet 1984; I: 173CrossRefGoogle Scholar
  62. 62.
    Atack JR, Perry EK, Perry RH, et al. Blood acetyl- and butyrylcholinesterase in senile dementia of Alzheimer-type. J Neurol Sci 1985; 70(1): 1–12PubMedCrossRefGoogle Scholar
  63. 63.
    Davies P, Verth AH. Regional distribution of muscarinic acetylcholine receptor in normal and Alzheimer’s-type dementia brains. Brain Res 1978; 138: 385–92CrossRefGoogle Scholar
  64. 64.
    Reisine TD, Yamamura HI, Bird ED, et al. Pre- and postsynaptic neurochemical alternations in Alzheimer’s disease. Brain Res 1978; 159: 477–81PubMedCrossRefGoogle Scholar
  65. 65.
    Rinne JO, Rinne JK, Laakso K, et al. Reduction in muscarinic receptor binding in limbic areas of Alzheimer brain. J Neurol Neurosurg Psychiatry 1984; 49: 651–3CrossRefGoogle Scholar
  66. 66.
    Birdsall NJ, Hulme EC, Stockton JM. Muscarinic receptor heterogeneity. Trends Pharmacol Sci 1984; Jan: 4-8Google Scholar
  67. 67.
    Caulfield MP, Straughan DW, Cross AJ, et al. Cortical muscarinic receptor subtypes and Alzheimer’s disease [letter]. Lancet 1982; II: 1277CrossRefGoogle Scholar
  68. 68.
    Davies P, Feisullin S. Postmortem stability of alpha-bungarotoxin binding sites in mouse and human brain. Brain Res 1981; 216: 449–54PubMedCrossRefGoogle Scholar
  69. 69.
    Lang W, Henke H. Cholinergic receptor binding and autoradiography in brains of non neurological and senile dementia of Alzheimer type patients. Brain Res 1983; 267: 271–80PubMedCrossRefGoogle Scholar
  70. 70.
    Morley BJ. The properties of brain nicotinic receptors. Pharmacol Ther 1981; 15: 111–22PubMedCrossRefGoogle Scholar
  71. 71.
    Clarke PB, Schwartz RD, Paul SM, et al. Nicotinic binding in rat brain: autoradiographic comparison of 3H acetylcholine, 3H nicotine, and 125I-alpha-bungarotoxin. J Neurosci 1985; 5: 1307–15PubMedGoogle Scholar
  72. 72.
    Whitehouse PJ, Martino AM, Price DL, et al. Reductions in nicotinic but not muscarinic cholinergic receptors in Alzheimer’s disease measured using 3H acetylcholine [abstract]. Ann Neurol 1985; 18: 145CrossRefGoogle Scholar
  73. 73.
    Whitehouse PJ, Martino AM, Marcus KA, et al. Reductions in 3H acetylcholine nicotinic binding sites in cortex in Alzheimer’s disease: an autoradiographic study [abstract]. Neurology 1986; 36: 270CrossRefGoogle Scholar
  74. 74.
    Whitehouse PJ, Martino AM, Antuono PG, et al. Nicotinic acetylcholine binding-sites in Alzheimer’s-disease. Brain Res 1986; 371: 146–51PubMedCrossRefGoogle Scholar
  75. 75.
    Nordberg A, Alafuzoff I, Winblad B. Nicotinic and muscarinic subtypes in the human brain — changes with aging and dementia. J Neurosci Res 1992; 31: 103–11PubMedCrossRefGoogle Scholar
  76. 76.
    Nordberg A, Larsson C, Adolffson R, et al. Muscarinic receptor compensation in the hippocampus of Alzheimer patients. J Neural Transm 1983; 56: 13–9PubMedCrossRefGoogle Scholar
  77. 77.
    Wilcock GK, Esiri MM, Bowen DM, et al. Alzheimer’s disease: correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. J Neurol Sci 1982; 57: 407–17PubMedCrossRefGoogle Scholar
  78. 78.
    Blessed G, Tomlinson BE, Roth M. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br J Psychiatry 1968; 114: 797–811PubMedCrossRefGoogle Scholar
  79. 79.
    Mann DM, Yates PO, Marcyniuk B. Correlation between senile plaque and neurofibrillary tangle counts in cerebral cortex and neuronal counts in cortex and subcortex structures in Alzheimer’s disease. Neurosci Lett 1985; 56: 51–5PubMedCrossRefGoogle Scholar
  80. 80.
    Voytko ML. Cognitive function of the basal forebrain cholinergic system in monkeys: memory or attention? Behav Brain Res 1996; 75: 13–25PubMedCrossRefGoogle Scholar
  81. 81.
    Robbins TW, McAlonan G, Muir JL, et al. Cognitive enhancers in theory and in practice: studies of the cholinergic hypothesis of cognitive deficits in Alzheimer’s disease. Behav Brain Res 1997; 83: 15–23PubMedCrossRefGoogle Scholar
  82. 82.
    Drachman DA, Noffsinger D, Sahakian BJ, et al. Aging, memory and the cholinergic system: a study of dichotic listening. Neurobiol Aging 1980; 1: 39–43PubMedCrossRefGoogle Scholar
  83. 83.
    Dunne M, Hartley LR. The effects of scopolamine on verbal memory: evidence for an attentional hypothesis. Acta Psychol (Amst) 1985; 58: 205–17CrossRefGoogle Scholar
  84. 84.
    Meador KJ, Moore EE, Nichols ME, et al. The role of the cholinergic system in visuospatial processing and memory. J Clin Exp Neuropsychol 1993; 15: 832–42PubMedCrossRefGoogle Scholar
  85. 85.
    Callaway E, Halliday R, Naylor H, et al. Drugs and human information processing. Neuropsychopharmacology 1994; 10: 9–19PubMedGoogle Scholar
  86. 86.
    Le Houzec J, Halliday R, Benowitz NL, et al. A low dose of subcutaneous nicotine improves information processing in non-smokers. Psychopharmacology (Berl) 1994; 114: 628–34CrossRefGoogle Scholar
  87. 87.
    Koelega HS. Stimulant drugs and vigilance performance — a review. Psychopharmacology (Berl) 1993; 111: 1–16CrossRefGoogle Scholar
  88. 88.
    Jones GM, Sahakian BJ, Levy R, et al. Effects of subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease. Psychopharmacology 1992; 108: 485–94PubMedCrossRefGoogle Scholar
  89. 89.
    Sahakian BJ, Jones GM, Levy R, et al. The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of the Alzheimer type. Br J Psychiatry 1989; 154: 797–800PubMedCrossRefGoogle Scholar
  90. 90.
    Sahakian BJ, Owen AM, Morant NJ, et al. Further analysis of the cognitive effects of tetrahydoaminoacridine (THA) in Alzheimer’s disease: assessment of attentional and mnemonic function using CANTAB. Psychopharmacology (Berl) 1993; 110: 395–401CrossRefGoogle Scholar
  91. 91.
    Robbins TW, Everitt B. Arousal systems and attention. In: Gazzaniga E, editor. The cognitive neurosciences. Cambridge (MA): MIT Press, 1995: 720Google Scholar
  92. 92.
    Sahakian BJ. Cholinergic drugs and human cognitive performance. In: Iversen LL, Iversen SD, Snyder SH, editors. Handbook of psychopharmacology of the aging nervous system. London: Plenum Press, 1988: 393–423Google Scholar
  93. 93.
    Thal LJ. Cholinomimetic treatment of Alzheimer’s disease. Prog Brain Res 1996; 109: 299–309PubMedCrossRefGoogle Scholar
  94. 94.
    Sirviö J. Strategies that support declining cholinergic neurotransmission in Alzheimer’s disease patients. Gerontology 1999; 45 Suppl. 1: 3–14Google Scholar
  95. 95.
    Kumar V, Calache M. Treatment of Alzheimer’s disease with cholinergic drugs. Int J Clin Pharmacol Ther 1991; 29: 23–37Google Scholar
  96. 96.
    Kristofikova Z, Fales E, Majer E, et al. (3H)hemicholinium-3 binding sites in postmortem brains of human patients with Alzheimer’s disease and multi-infarct dementia. Exp Gerontol 1995; 30(2): 125–36PubMedCrossRefGoogle Scholar
  97. 97.
    Rodriguez-Puertas R, Pazos A, Zarranz JJ, et al. Selective cortical decrease of high-affinity choline uptake carrier in Alzheimer’s disease: an autoradiographic study using 3H-hemicholinium- 3. J Neural Transm Park Dis Dement Sect 1994; 8(3): 161–9PubMedCrossRefGoogle Scholar
  98. 98.
    Quizilbash N, Whitehead A, Higgins J, et al. Cholinesterase inhibition for Alzheimer’s disease: a meta-analysis of the tacrine trials. Dementia Trialists’ Collaboration. JAMA 1998; 280: 1777–82Google Scholar
  99. 99.
    Sugimoto H, Limura Y, Yamanishi Y, et al. Synthesis and structural-activity relationships of acetylcholinesterase inhibitors l-benzyl-4-(5-dimethyl-1-oxoindon-2-yl) piperidine hydrochloride and related compounds. J Med Chem 1995; 38: 4821–9PubMedCrossRefGoogle Scholar
  100. 100.
    Samuels SC, Davis KL. A risk-benefit assessment of tacrine in the treatment of Alzheimer’s disease. Drug Saf 1997; 16: 66–77PubMedCrossRefGoogle Scholar
  101. 101.
    Wagstaff AJ, McTavish D. Tacrine: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in Alzheimer’s disease. Drugs Aging 1994; 41(6): 510–40CrossRefGoogle Scholar
  102. 102.
    Knapp MJ, Knopman DS, Soloman PR, et al. A 30-week randomised control trial of high dose tacrine in patients with Alzheimer’s disease. The Tacrine Study Group. JAMA 1994; 271: 985–91Google Scholar
  103. 103.
    Sugimoto H, Yamanishi Y, Ogura H, et al. Discovery and development of donepezil hydrochloride for the treatment of Alzheimer’s disease. Yakugaku Zasshi 1999; 119(2): 101–13PubMedGoogle Scholar
  104. 104.
    Snape MF, Anderson SM, Misra A, et al. A comparison of the cholinesterase inhibitors tacrine and E-2020 [abstract]. Br J Pharmacol 1996; 117: 163Google Scholar
  105. 105.
    Rosier M, Anand R, Cicin-Sain S, et al. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomised controlled trial. BMJ 1999; 318: 633–8Google Scholar
  106. 106.
    Raskind MA, Peskind ER, Wessel T, et al. Galantamine in AD: a 6-month randomized, placebo-controlled trial with a 6-month extension: the Galantamine USA-1 Study Group. Neurology 2000; 54: 2261–8PubMedCrossRefGoogle Scholar
  107. 107.
    Rahman S, Sahakian BJ, Gregory CA. Drug interventions in dementia. In: Hodges JR, editor. Early-onset dementia: a multi-disciplinary approach. Oxford: Oxford University Press, 2001Google Scholar
  108. 108.
    Rakonczay Z, Kovacs I. Cholinesterases in Alzheimer’s disease and cholinesterase inhibitors in Alzheimer therapy. Acta Biol Hung 1998; 49(1): 55–70Google Scholar
  109. 109.
    Riekkinen M, Soininen H, Riekkinen P, et al. Tetrahydroaminoacridine improves the recency effect in Alzheimer’s disease. Neuroscience 1998; 83(2): 471–9PubMedCrossRefGoogle Scholar
  110. 110.
    Gray JA, Enz A, Speigel R. Muscarinic agonists for senile dementia: past experience and future trends. Trends Pharmacol Sci 1989; Suppl.: 85-8Google Scholar
  111. 111.
    Quirion R, Richard J, Wilson A. Muscarinic and nicotinic modulation of cortical acetylcholine-release monitored by in-vivo microdialysis in freely moving adult rats. Synapse 1994; 17(2): 92–100PubMedCrossRefGoogle Scholar
  112. 112.
    Quirion R, Wilson A, Rowe W. Facilitation of acetylcholine-release and cognitive performance by an M(2)-muscarinic receptor antagonist in aged memory-impaired rates. J Neurosci 1995; 15(2): 1455–62PubMedGoogle Scholar
  113. 113.
    Holttum J, Gershon S. The cholinergic model of dementia, Alzheimer type-progression from the unitary transmitter concept. Dement Geriatr Cogn Disord 1992; 31(3): 174–85CrossRefGoogle Scholar
  114. 114.
    Avery EE, Baker LD, Asthana S. Potential role of muscarinic agonists in Alzheimer’s disease. Drugs Aging 1997; 11(6): 450–9PubMedCrossRefGoogle Scholar
  115. 115.
    Fisher A, Brandeis R, Chapman S, et al. M-1 muscarinic agonist treatment reverses cognitive and cholinergic impairments of apolipoprotein E-deficient mice. J Neurochem 1998; 70(5): 1991–7PubMedCrossRefGoogle Scholar
  116. 116.
    Stalin A, Bodick N, Offen WW, et al. Brain proton magnetic resonance spectroscopy (H-1-MRS) in Alzheimer’s disease: changes after treatment with xanomeline, an M1 selective cholinergic agonist. Am J Psychiatry 1997; 154(10): 1459–61Google Scholar
  117. 117.
    Chessell IP, Francis PT, Bowen DM. Changes in cortical nicotinic acetylcholine receptor numbers following unilateral destruction of pyramidal neurones by intrastriatal volkensin injections. Neurodegeneration 1995; 4(4): 415–24PubMedCrossRefGoogle Scholar
  118. 118.
    Dijk SN, Francis PT, Stratmann GC, et al. Cholinomimetics increase glutamate outflow via an action on the corticostriatal pathway -implications for Alzheimer’s disease. J Neurochem 1995; 65(5): 2165–9PubMedCrossRefGoogle Scholar
  119. 119.
    Court JA, Piggot MA, Lloyd S, et al. Nicotine binding in human striatum: elevation in schizophrenia and reductions in dementia with Lewy bodies, Parkinson’s disease and Alzheimer’s disease and in relation to neuroleptic medication. Neuroscience 2000; 98: 79–87PubMedCrossRefGoogle Scholar
  120. 120.
    Sahakian BJ, Coull JT. Nicotine and tetrahydroaminoacridine: evidence for improved attention in patients with dementia of the Alzheimer type. Drug Dev Res 1994; 31: 80–8CrossRefGoogle Scholar
  121. 121.
    Wilson AL, Langley LK, Monley J, et al. Nicotine patches in Alzheimer’s disease: pilot study on learning, memory, and safety. Pharmacol Biochem Behav 1995; 51: 509–14PubMedCrossRefGoogle Scholar
  122. 122.
    White HK, Levin ED. Four-week nicotine skin patch treatment effects on cognitive performance in Alzheimer’s disease. Psychopharmacology (Berl) 1999; 143: 158–65CrossRefGoogle Scholar
  123. 123.
    Potter A, Corwin J, Lang J, et al. Acute effects of the selective cholinergic channel activator (nicotinic agonist) ABT-418 in Alzheimer’s disease. Psychopharmacology (Berl) 1999; 142(4): 334–42CrossRefGoogle Scholar
  124. 124.
    Buccafusco JJ, Jackson WJ, Terry Jr AV, et al. Improvements in performance of a delayed matching-to-sample task by monkeys following ABT-418: a novel cholinergic channel activator for memory enhancement. Psychopharmacology (Berl) 1995; 120: 256–66CrossRefGoogle Scholar
  125. 125.
    Fowler KS, Saling MM, Conway EL, et al. Paired associate performance in the early detection of DAT. J Int Neuropsychol Soc 2002; 8(1): 58–71PubMedCrossRefGoogle Scholar
  126. 126.
    Perry EK, Martin-Ruiz CM, Court JA. Nicotinic receptor subtypes in human brain related to aging and dementia. Alcohol 2001; 24: 63–8PubMedCrossRefGoogle Scholar
  127. 127.
    Arendash GW, Sengstock GJ, Sanberg PR, et al. Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Res 1995; 674: 252–9PubMedCrossRefGoogle Scholar
  128. 128.
    Lloyd GK, Menzaghi F, Bontempi B, et al. The potential of subtype-selective neuronal nicotinic acetylcholine receptor agonists as therapeutic agents. Life Sci 1998; 62: 1601–6PubMedCrossRefGoogle Scholar
  129. 129.
    Maelicke A, Albuquerque EX. New approach to drug therapy of Alzheimer’s dementia. Drug Dis Today 1996; 1: 53–9CrossRefGoogle Scholar
  130. 130.
    Maelicke A, Albuquerque EX. Allosteric modulation of nicotinic acetylcholine receptors as a treatment strategy for Alzheimer’s disease. Eur J Pharmacol 2000; 393: 156–17CrossRefGoogle Scholar
  131. 131.
    Maelicke A, Samochocki M, Jostock R, et al. Allosteric sensitisation of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer’s disease. Biol Psychiatry 2001; 49: 279–88PubMedCrossRefGoogle Scholar
  132. 132.
    Nakamura S. Nicotine and Alzheimer’s disease. J Neuropsychopharmacol 1995; 17(7): 481–93Google Scholar
  133. 133.
    Zamani MR, Allen YS. Nicotine and its interaction with beta-amyloid protein: a short review. Behav Psychiatry 2001; 49(3): 221–32CrossRefGoogle Scholar
  134. 134.
    Fratiglioni L, Wang H. Smoking and Parkinson’s and Alzheimer’s disease: review of the epidemiological studies. Behav Brain Res 2000; 113: 117–20PubMedCrossRefGoogle Scholar
  135. 135.
    Jhee S, Shiovitz T, Crawford AW, et al. Beta-amyloid therapies in Alzheimer’s disease. Expert Opin Investig Drugs 2001; 10(4): 593–605PubMedCrossRefGoogle Scholar
  136. 136.
    Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. New Engl J Med 1997; 366: 1216–22CrossRefGoogle Scholar
  137. 137.
    Aisen PS. Inflammation and Alzheimer’s disease: mechanisms and therapeutic strategies. Gerontology 1997; 43: 143–9PubMedCrossRefGoogle Scholar
  138. 138.
    Koliatsos VE. Biological therapies for Alzheimer’s disease: focus on trophic factors. Crit Rev Neurobiol 1996; 10: 205–38PubMedCrossRefGoogle Scholar
  139. 139.
    Oken BS, Storzbach DM, Kaye JA. The efficacy of ginkgo biloba on cognitive function in Alzheimer’s disease. Arch Neurol 1998; 55: 1409–15PubMedCrossRefGoogle Scholar
  140. 140.
    McKernan RM, Rosahl TW, Reynolds DS, et al. Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alphal subtype. Nat Neurosci 2000; 3(6): 587–92PubMedCrossRefGoogle Scholar
  141. 141.
    Chessell IP. Acetylcholine receptor targets on cortical pyramidal neurones as targets for Alzheimer’s therapy. Neurodegeneration 1996; 5: 453–9PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  • Robyn Vesey
    • 1
  • Jennifer M. Birrell
    • 2
  • Clare Bolton
    • 1
  • Ruth S. Chipperfield
    • 3
  • Andrew D. Blackwell
    • 1
  • Tom R. Dening
    • 3
  • Barbara J. Sahakian
    • 1
  1. 1.Department of Psychiatry, University of Cambridge School of Clinical MedicineAddenbrooke’s HospitalCambridgeUK
  2. 2.Cambridge Cognition, BottishamCambridgeUK
  3. 3.Department of Psychiatric Services for the ElderlyFulbourn HospitalCambridgeUK

Personalised recommendations