CNS Drugs

, Volume 15, Issue 4, pp 311–328 | Cite as

Circadian Rhythm Sleep Disorders

Pathophysiology and Potential Approaches to Management
Review Article

Abstract

An intrinsic body clock residing in the suprachiasmatic nucleus (SCN) within the brain regulates a complex series of rhythms in humans, including sleep/wakefulness. The individual period of the endogenous clock is usually >24 hours and is normally entrained to match the environmental rhythm.

Misalignment of the circadian clock with the environmental cycle may result in sleep disorders. Among these are chronic insomnias associated with an endogenous clock which runs slower or faster than the norm [delayed (DSPS) or advanced (ASPS) sleep phase syndrome, or irregular sleep-wake cycle], periodic insomnias due to disturbances in light perception (non-24-hour sleep-wake syndrome and sleep disturbances in blind individuals) and temporary insomnias due to social circumstances (jet lag and shift-work sleep disorder).

Synthesis of melatonin (N-acetyl-5-methoxytryptamine) within the pineal gland is induced at night, directly regulated by the SCN. Melatonin can relay time-of-day information (signal of darkness) to various organs, including the SCN itself. The phase-shifting effects of melatonin are essentially opposite to those of light. In addition, melatonin facilitates sleep in humans. In the absence of a light-dark cycle, the timing of the circadian clock, including the timing of melatonin production in the pineal gland, may to some extent be adjusted with properly timed physical exercise.

Bright light exposure has been demonstrated as an effective treatment for circadian rhythm sleep disorders. Under conditions of entrainment to the 24-hour cycle, bright light in the early morning and avoidance of light in the evening should produce a phase advance (for treatment of DSPS), whereas bright light in the evening may be effective in delaying the clock (ASPS).

Melatonin, given several hours before its endogenous peak at night, effectively advances sleep time in DSPS and adjusts the sleep-wake cycle to 24 hours in blind individuals. In some blind individuals, melatonin appears to fully entrain the clock. Melatonin and light, when properly timed, may also alleviate jet lag. Because of its sleep-promoting effect, melatonin may improve sleep in night-shift workers trying to sleep during the daytime. Melatonin replacement therapy may also provide a rational approach to the treatment of age-related insomnia in the elderly.

However, there is currently no melatonin formulation approved for clinical use, neither are there consensus protocols for light or melatonin therapies. The use of bright light or melatonin for circadian rhythm sleep disorders is thus considered exploratory at this stage.

References

  1. 1.
    Hastings M. The brain, circadian rhythms, and clock genes. BMJ 1998; 317(7174): 1704–7PubMedCrossRefGoogle Scholar
  2. 2.
    Klein DC, Moore RY, Reppert SM. Suprachiasmatic nucleus: the mind’sclock, 199 ed. New York (NY): Oxford University Press, 1991Google Scholar
  3. 3.
    Reiter RJ. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 1991; 12(2): 151–80PubMedCrossRefGoogle Scholar
  4. 4.
    Lewy AJ, Wehr TA, Goodwin FK, et al. Light suppresses melatonin secretion in humans. Science 1980; 210(4475): 1267–9PubMedCrossRefGoogle Scholar
  5. 5.
    Lewy AJ, Ahmed S, Jackson JM, et al. Melatonin shifts human circadian rhythms according to a phase-response curve. Chronobiol Int 1992; 9(5): 380–92PubMedCrossRefGoogle Scholar
  6. 6.
    Bartness TJ, Goldman BD. Mammalian pineal melatonin: a clock for all seasons. Experientia 1989; 45(10): 939–45PubMedCrossRefGoogle Scholar
  7. 7.
    Zhdanova IV, Lynch HJ, Wurtman RJ. Melatonin: a sleep-promoting hormone. Sleep 1997; 20(10): 899–907PubMedGoogle Scholar
  8. 8.
    Zhdanova IV SA, Leclair OU, Rosene DL, et al. Effects of melatonin on sleep in Macaca Nemestrina and Macaca Mulatta: dose dependency. Sleep 2000; 23 Suppl. 2: 161A-2AGoogle Scholar
  9. 9.
    Dollins AB, Zhdanova IV, Wurtman RJ, et al. Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance. Proc Natl Acad Sci U S A 1994; 91(5): 1824–8PubMedCrossRefGoogle Scholar
  10. 10.
    Petterborg LJ, Thalen BE, Kjellman BF, et al. Effect of melatonin replacement on serum hormone rhythms in a patient lacking endogenous melatonin. Brain Res Bull 1991; 27(2): 181–5PubMedCrossRefGoogle Scholar
  11. 11.
    Garfinkel D, Laudon M, Nof D, et al. Improvement of sleep quality in elderly people by controlled-release melatonin [see comments]. Lancet 1995; 346(8974): 541–4PubMedCrossRefGoogle Scholar
  12. 12.
    Haimov I, Lavie P, Laudon M, et al. Melatonin replacement therapy of elderly insomniacs. Sleep 1995; 18(7): 598–603PubMedGoogle Scholar
  13. 13.
    Wurtman RJ, Zhdanova I. Improvement of sleep quality by melatonin [letter]. Lancet 1995; 346(8988): 1491PubMedCrossRefGoogle Scholar
  14. 14.
    Iguchi H, Kato Kl, Ibayashi H. Melatonin serum levels and metabolic clearance rate in patients with liver cirrhosis. J Clin Endocrinol Metab 1982; 54(5): 1025–7PubMedCrossRefGoogle Scholar
  15. 15.
    Pierpaoli W, Maestroni GJM. Melatonin: a principal neuroimmunoregulatory and anti-stress hormone: its anti-aging effects. Immunol Lett 1987; 16: 355–61PubMedCrossRefGoogle Scholar
  16. 16.
    Waldhauser F, Weiszenbacher G, Tatzer E, et al. Alternations in nocturnal serum melatonin levels in humans with growth and aging. J Clin Endocrinol Metab 1988; 66: 648–52PubMedCrossRefGoogle Scholar
  17. 17.
    Sharma M, Palacios-Bois J, Schwartz G, et al. Circadian rhythms of melatonin and cortisol in aging. Biol Psychiatry 1989; 25: 305–19PubMedCrossRefGoogle Scholar
  18. 18.
    van Coevorden A, Mockel J, Laurent E, et al. Neuroendocrine rhythms and sleep in aging men. Am J Physiol 1991; 260 (4 Pt 1): E651–61PubMedGoogle Scholar
  19. 19.
    Kennaway DJ, Lushington K, Dawson D, et al. Urinary 6-sulfatoxymelatonin excretion and aging: new results and a critical review of the literature. J Pineal Res 1999; 27(4): 210–20PubMedCrossRefGoogle Scholar
  20. 20.
    Haimov I, Laudon M, Zisapel N, et al. Sleep disorders and melatonin rhythms in elderly people. BMJ 1994; 309(6948): 167PubMedCrossRefGoogle Scholar
  21. 21.
    Zeitzer JM, Daniels JE, Duffy JF, et al. Do plasma melatonin concentrations decline with age? Am J Med 1999; 107(5): 432–6PubMedCrossRefGoogle Scholar
  22. 22.
    Dunlap JC. Molecular bases for circadian clocks. Cell 1999; 96(2): 271–90PubMedCrossRefGoogle Scholar
  23. 23.
    Gillette MU, Tischkau SA. Suprachiasmatic nucleus: the brain’s circadian clock. Recent Prog Horm Res 1999; 54: 33–58PubMedGoogle Scholar
  24. 24.
    Jin X, Shearman LP, Weaver DR, et al. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 1999; 96(1): 57–68PubMedCrossRefGoogle Scholar
  25. 25.
    Liu C, Weaver DR, Jin X, et al. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 1997; 19(1): 91–102PubMedCrossRefGoogle Scholar
  26. 26.
    McArthur AJ, Gillette MU, Prosser RA. Melatonin directly resets the rat suprachiasmatic circadian clock in vitro. Brain Res 1991; 565(1): 158–61PubMedCrossRefGoogle Scholar
  27. 27.
    OkamuraH, Miyake S, Sumi Y, et al. Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock [see comments]. Science 1999; 286(5449): 2531–4CrossRefGoogle Scholar
  28. 28.
    Rousseau A, Petren S, Plannthin J, et al. Serum and cerebrospinal fluid concentrations of melatonin: a pilot study in healthy male volunteers. J Neural Transm 1999; 106(9–10): 883–8PubMedCrossRefGoogle Scholar
  29. 29.
    Hedlund L, Lischko MM, Rollag MD, et al. Melatonin: daily cycle in plasma and cerebrospinal fluid of calves. Science 1977; 195(4279): 686–7PubMedCrossRefGoogle Scholar
  30. 30.
    Waldhauser F, Waldhauser M, Lieberman HR, et al. Bioavailability of oral melatonin in humans. Neuroendocrinology 1984; 39(4): 307–13PubMedCrossRefGoogle Scholar
  31. 31.
    Arendt J, Bojkowski C, Folkard S, et al. Some effects of melatonin and the control of its secretion in humans. Ciba Found Symp 1985; 117: 266–83PubMedGoogle Scholar
  32. 32.
    Fellenberg AJ, Phillipou G, Seamark RF. Measurement of urinary production rates of melatonin as an index of human pineal function. Endocr Res Commun 1980; 7(3): 167–75PubMedCrossRefGoogle Scholar
  33. 33.
    Matthews CD, Guerin MV, Wang X. Human plasma melatonin and urinary 6-sulphatoxy melatonin: studies in natural annual photoperiod and in extended darkness. Clin Endocrinol (Oxf) 1991; 35(1): 21–7CrossRefGoogle Scholar
  34. 34.
    Baskett JJ, Cockrem JF, Antunovich TA. Sulphatoxymelatonin excretion in older people: relationship to plasma melatonin and renal function. J Pineal Res 1998; 24(1): 58–61PubMedCrossRefGoogle Scholar
  35. 35.
    Ebadi M, Govitrapong P. Neural pathways and neurotransmitters affecting melatonin synthesis. J Neural Transm Suppl 1986; 21: 125–55PubMedGoogle Scholar
  36. 36.
    Axelrod J. The pineal gland: a neurochemical transducer. Science 1974; 184(144): 1341–8PubMedCrossRefGoogle Scholar
  37. 37.
    Lewy AJ, Siever LJ, Uhde TW, et al. Clonidine reduces plasma melatonin levels. J Pharm Pharmacol 1986; 38(7): 555–6PubMedCrossRefGoogle Scholar
  38. 38.
    Cowen PJ, Bevan JS, Gosden B, et al. Treatment with beta-adrenoceptor blockers reduces plasma melatonin concentration. Br J Clin Pharmacol 1985; 19(2): 258–60PubMedCrossRefGoogle Scholar
  39. 39.
    McIntyre IM, Burrows GD, Norman TR. Suppression of plasma melatonin by a single dose of the benzodiazepine alprazolam in humans. Biol Psychiatry 1988; 24(1): 108–12PubMedCrossRefGoogle Scholar
  40. 40.
    Klein DC, Coon SL, Roseboom PH, et al. The melatonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog Horm Res 1997; 52: 307–57PubMedGoogle Scholar
  41. 41.
    Gastel JA, Roseboom PH, Rinaldi PA, et al. Melatonin production: proteasomal proteolysis in serotonin N-acetyltransferase regulation. Science 1998; 279(5355): 1358–60PubMedCrossRefGoogle Scholar
  42. 42.
    Buxton OM, L’Hermite-Baleriaux M, Hirschfeld U, et al. Acute and delayed effects of exercise on human melatonin secretion. J Biol Rhythms 1997; 12(6): 568–74PubMedCrossRefGoogle Scholar
  43. 43.
    Buxton OM, Frank SA, L’Hermite-Baleriaux M, et al. Roles of intensity and duration of nocturnal exercise in causing phase delays of human circadian rhythms. Am J Physiol 1997; 273 (3 Pt 1): E536–42PubMedGoogle Scholar
  44. 44.
    Van Reeth O, Sturis J, Byrne MM, et al. Nocturnal exercise phase delays circadian rhythms of melatonin and thyrotropin secretion in normal men. Am J Physiol 1994; 266 (6 Pt 1): E964–74PubMedGoogle Scholar
  45. 45.
    Skene DJ, Lockley SW, Arendt J. Melatonin in circadian sleep disorders in the blind. Biol Signals Recept 1999; 8(1–2): 90–5PubMedCrossRefGoogle Scholar
  46. 46.
    Sack RL, Lewy AJ, Blood ML, et al. Circadian rhythm abnormalities in totally blind people: incidence and clinical significance. J Clin Endocrinol Metab 1992; 75(1): 127–34PubMedCrossRefGoogle Scholar
  47. 47.
    Gilad E, Zisapel N. High-affinity binding of melatonin to hemoglobin. Biochem Mol Biol Int 1995; 56: 1–6Google Scholar
  48. 48.
    Armstrong SM, Cassone VM, Chesworth MJ, et al. Synchronization of mammalian circadian rhythms by melatonin. J Neural Transm Suppl 1986; 21: 375–94PubMedGoogle Scholar
  49. 49.
    Mallo C, Zaidan R, Faure A, et al. Effects of a four-day nocturnal melatonin treatment on the 24 h plasma melatonin, cortisol and prolactin profiles in humans. Acta Endocrinol (Copenh) 1988; 119(4): 474–80Google Scholar
  50. 50.
    Lewy AJ, Sack RL. The role of melatonin and light in the human circadian system. Prog Brain Res 1996; 111: 205–16PubMedCrossRefGoogle Scholar
  51. 51.
    Arendt J, Skene DJ, Middleton B, et al. Efficacy of melatonin treatment in jet lag, shift work, and blindness. J Biol Rhythms 1997; 12(6): 604–17PubMedCrossRefGoogle Scholar
  52. 52.
    Deacon S, Arendt J. Adapting to phase shifts. II. Effects of melatonin and conflicting light treatment. Physiol Behav 1996; 59(4–5): 675–82PubMedCrossRefGoogle Scholar
  53. 53.
    Cagnacci A, Soldani R, Yen SS. Contemporaneous melatonin administration modifies the circadian response to nocturnal bright light stimuli. Am J Physiol 1997; 272 (2 Pt 2): R482–6PubMedGoogle Scholar
  54. 54.
    Borbely A, Ascherman, P. Sleep regulation in humans: conceptual advances and novel approaches. Tokyo: Academic Press, 1997Google Scholar
  55. 55.
    Gallopin T FP, Eggermann E, Caull B, et al. Identification of sleep promoting neurons in vitro. Nature 2000 Apr 27; 404: 992–5PubMedCrossRefGoogle Scholar
  56. 56.
    Akerstedt T, Gillberg M, Wetterberg L. The circadian covariation of fatigue and urinary melatonin. Biol Psychiatry 1982; 17(5): 547–54PubMedGoogle Scholar
  57. 57.
    Lockley SW, Skene DJ, Arendt J, et al. Relationship between melatonin rhythms and visual loss in the blind. J Clin Endocrinol Metab 1997; 82(11): 3763–70PubMedCrossRefGoogle Scholar
  58. 58.
    Shochat T, Luboshitzky R, Lavie P. Nocturnal melatonin onset is phase locked to the primary sleep gate. Am J Physiol 1997; 273 (1 Pt 2): R364–70PubMedGoogle Scholar
  59. 59.
    Young SN. Melatonin, sleep, aging, and the health protection branch [editorial]. J Psychiatry Neurosci 1996; 21(3): 161–4PubMedGoogle Scholar
  60. 60.
    Cajochen C, Krauchi K, von Arx MA, et al. Daytime melatonin administration enhances sleepiness and theta/alpha activity in the waking EEG. Neurosci Lett 1996; 207(3): 209–13PubMedCrossRefGoogle Scholar
  61. 61.
    James SP, Mendelson WB, Sack DA, et al. The effect of melatonin on normal sleep. Neuropsychopharmacology 1987; 1(1): 41–4PubMedCrossRefGoogle Scholar
  62. 62.
    Ferini-Strambi L, Zucconi M, Biella G, et al. Effect of melatonin on sleep microstructure: preliminary results in healthy subjects. Sleep 1993; 16(8): 744–7PubMedGoogle Scholar
  63. 63.
    Dijk DJ, Roth C, Landolt HP, et al. Melatonin effect on daytime sleep in men: suppression of EEG low frequency activity and enhancement of spindle frequency activity. Neurosci Lett 1995; 201(1): 13–6PubMedCrossRefGoogle Scholar
  64. 64.
    Middleton B, Arendt J, Stone BM. Complex effects of melatonin on human circadian rhythms in constant dim light. J Biol Rhythms 1997; 12(5): 467–77PubMedGoogle Scholar
  65. 65.
    Lockley SW, Skene DJ, James K, et al. Melatonin administration can entrain the free-running circadian system of blind subjects. J Endocrinol 2000; 164 (1): R1-6Google Scholar
  66. 66.
    Thorpy M. Classification of sleep disorders. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine, 2nd ed. Philadelphia: WB Saunders, 1994: 426–36Google Scholar
  67. 67.
    Partinen M. Epidemiology of sleep disorders. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine, 2nd ed. Philadelphia: WB Saunders, 1994: 437–52Google Scholar
  68. 68.
    Duffy JF, Dijk DJ, Klerman EB, et al. Later endogenous circadian temperature nadir relative to an earlier wake time in older people. Am J Physiol 1998; 275 (part 2): R1478–87PubMedGoogle Scholar
  69. 69.
    Okawa M, Mishima K, Hishikawa Y, et al. Circadian rhythm disorders in sleep-waking and body temperature in elderly patients with dementia and their treatment. Sleep 1991; 14: 478–85PubMedGoogle Scholar
  70. 70.
    Tabandeh H, Lockley SW, Buttery R, et al. Disturbance of sleep in blindness. Am J Ophthalmol 1998; 126: 707–12PubMedCrossRefGoogle Scholar
  71. 71.
    Leger D, Guilleminault C, Defrance R, et al. Prevalence of sleep/wake disorders in persons with blindness. Clin Sci (Colch) 1999; 97(2): 193–9CrossRefGoogle Scholar
  72. 72.
    Czeisler CA, Richardson GS, Coleman RM, et al. Chronotherapy: resetting the circadian clocks of patients with delayed sleep phase insomnia. Sleep 1981; 4(1): 1–21PubMedGoogle Scholar
  73. 73.
    Oren DA, Turner EH, Wehr TA. Abnormal circadian rhythms of plasma melatonin and body temperature in the delayed sleep phase syndrome [letter]. J Neurol Neurosurg Psychiatry 1995; 58(3): 379PubMedCrossRefGoogle Scholar
  74. 74.
    Shibui K, Okawa M, Uchiyama M, et al. Continuous measurement of temperature in non-24 hour sleep-wake syndrome. Psychiatry Clin Neurosci 1998; 52(2): 236–7PubMedCrossRefGoogle Scholar
  75. 75.
    Terman M, Lewy AJ, Dijk DJ, et al. Light treatment for sleep disorders: consensus report. IV. Sleep phase and duration disturbances. J Biol Rhythms 1995; 10(2): 135–47Google Scholar
  76. 76.
    Dijk DJ, Boulos Z, Eastman CI, et al. Light treatment for sleep disorders: consensus report. II. Basic properties of circadian physiology and sleep regulation. J Biol Rhythms 1995; 10(2): 113–25Google Scholar
  77. 77.
    Yamadera H, Takahashi K, Okawa M. A multicenter study of sleep-wake rhythm disorders: therapeutic effects of vitamin B12, bright light therapy, chronotherapy and hypnotics. Psychiatry Clin Neurosci 1996; 50(4): 203–9PubMedCrossRefGoogle Scholar
  78. 78.
    Dahlitz M, Alvarez B, Vignau J, et al. Delayed sleep phase syndrome response to melatonin. Lancet 1991; 337(8750): 1121–4PubMedCrossRefGoogle Scholar
  79. 79.
    Oldani A, Ferini-Strambi L, Zucconi M, et al. Melatonin and delayed sleep phase syndrome: ambulatory polygraphic evaluation. Neuroreport 1994; 6(1): 132–4PubMedCrossRefGoogle Scholar
  80. 80.
    Nagtegaal JE, Kerkhof GA, Smits MG, et al. Delayed sleep phase syndrome: a placebo-controlled cross-over study on the effects of melatonin administered five hours before the individual dim light melatonin onset. J Sleep Res 1998; 7(2): 135–43PubMedCrossRefGoogle Scholar
  81. 81.
    Okawa M, Mishima K, Nanami T, et al. Vitamin B12 treatment for sleep-wake rhythm disorders. Sleep 1990; 13: 15–23PubMedGoogle Scholar
  82. 82.
    Okawa M, Takahashi K, Egashira K, et al. Vitamin B12 treatment for delayed sleep phase syndrome: a multi-center double-blind study. Psychiatry Clin Neurosci 1997; 51(5): 275–9PubMedCrossRefGoogle Scholar
  83. 83.
    Miles LE, Dement WC. Sleep and aging. Sleep 1980; 3(2): 1–220PubMedGoogle Scholar
  84. 84.
    Weitzman ED, Moline ML, Czeisler CA, et al. Chronobiology of aging: temperature, sleep-wake rhythms and entrainment. Neurobiol Aging 1982; 3(4): 299–309PubMedCrossRefGoogle Scholar
  85. 85.
    Sherman B, Wysham C, Pfohl B. Age-related changes in the circadian rhythm of plasma cortisol in man. J Clin Endocrinol Metab 1985; 61(3): 439–43PubMedCrossRefGoogle Scholar
  86. 86.
    Nair NP, Hariharasubramanian N, Pilapil C, et al. Plasma melatonin: an index of brain aging in humans? Biol Psychiatry 1986; 21(2): 141–50PubMedCrossRefGoogle Scholar
  87. 87.
    Czeisler CA, Dumont M, Duffy JF, et al. Association of sleep-wake habits in older people with changes in output of circadian pacemaker. Lancet 1992; 340(8825): 933–6PubMedCrossRefGoogle Scholar
  88. 88.
    Carrier J, Monk TH, Reynolds CF, 3rd, et al. Are age differences in sleep due to phase differences in the output of the circadian timing system? Chronobiol Int 1999; 16(1): 79–91PubMedCrossRefGoogle Scholar
  89. 89.
    Hughes RJ, Sack R, Lewy A. The role of melatonin and circadian phase in age-related sleep-maintenance insomnia: assessment in a clinical trial of melatonin replacement. Sleep 1998; 21: 52–68PubMedGoogle Scholar
  90. 90.
    Moldofsky H, Musisi S, Phillipson EA. Treatment of a case of advanced sleep phase syndrome by phase advance chronotherapy. Sleep 1986; 9(1): 61–5PubMedGoogle Scholar
  91. 91.
    Czeisler CA, Kronauer RE, Allan JS, et al. Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science 1989; 244(4910): 1328–33PubMedCrossRefGoogle Scholar
  92. 92.
    Czeisler CA, Allan JS, Strogatz SH, et al. Bright light resets the human circadian pacemaker independent of the timing of the sleep-wake cycle. Science 1986; 233(4764): 667–71PubMedCrossRefGoogle Scholar
  93. 93.
    Bonnet MH, Alter J. Effects of irregular versus regular sleep schedules on performance, mood and body temperature. Biol Psychol 1982; 14(3–4): 287–96PubMedCrossRefGoogle Scholar
  94. 94.
    Prinz PN, Peskind ER, Vitaliano PP, et al. Changes in the sleep and waking EEGs of nondemented and demented elderly subjects. J Am Geriatr Soc 1982; 30(2): 86–93PubMedGoogle Scholar
  95. 95.
    Swaab DF, Fliers E, Partiman TS. The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 1985; 342(1): 37–44PubMedCrossRefGoogle Scholar
  96. 96.
    Prinz PN, Christie C, Smallwood R, et al. Circadian temperature variation in healthy aged and in Alzheimer’s disease. J Gerontol 1984; 39(1): 30–5PubMedCrossRefGoogle Scholar
  97. 97.
    Skene DJ, Vivien-Roels B, Sparks DL, et al. Daily variation in the concentration of melatonin and 5-methoxytryptophol in the human pineal gland: effect of age and Alzheimer’s disease. Brain Res 1990; 528(1): 170–4PubMedCrossRefGoogle Scholar
  98. 98.
    Tohgi H, Abe T, Takahashi S, et al. Concentrations of serotonin and its related substances in the cerebrospinal fluid in patients with Alzheimer type dementia. Neurosci Lett 1992; 141(1): 9–12PubMedCrossRefGoogle Scholar
  99. 99.
    Dori D, Casale G, Solerte SB, et al. Chrono-neuroendocrinological aspects of physiological aging and senile dementia. Chronobiologia 1994; 21(1–2): 121–6PubMedGoogle Scholar
  100. 100.
    Uchida K, Okamoto N, Ohara K, et al. Daily rhythm of serum melatonin in patients with dementia of the degenerate type. Brain Res 1996; 717(1–2): 154–9PubMedCrossRefGoogle Scholar
  101. 101.
    Liu RY, Zhou JN, van Heerikhuize J, et al. Decreased Melatonin Levels in Postmortem Cerebrospinal Fluid in Relation to Aging, Alzheimer’s Disease, and Apolipoprotein E-epsilon4/4 Genotype. J Clin Endocrinol Metab 1999; 84(1): 323–7PubMedCrossRefGoogle Scholar
  102. 102.
    Nair N, Schwartz G, Kin NN, et al. Influence of age and gender on the circadian secretion of melatonin and cortisol in normal elderly subjects. The Aging Male 1998; 1 (S1): 26Google Scholar
  103. 103.
    Satlin A, Volicer L, Ross V, et al. Bright light treatment of behavioral and sleep disturbances in patients with Alzheimer’s disease. Am J Psychiatry 1992; 149(8): 1028–32PubMedGoogle Scholar
  104. 104.
    Koyama E MH, Nakano T. Bright light treatment for sleep-wake disturbances in aged individuals with dementia. Psychiatry Clin Neurosci 1999; 53(2): 227–9PubMedCrossRefGoogle Scholar
  105. 105.
    Mishima K, Okawa M, Hishikawa Y, et al. Morning bright light therapy for sleep and behavior disorders in elderly patients with dementia. Acta Psychiatr Scand 1994; 89(1): 1–7PubMedCrossRefGoogle Scholar
  106. 106.
    Jean-Louis G, Zizi F, von Gizycki H, et al. Effects of melatonin in two individuals with Alzheimer’s disease. Percept Mot Skills 1998; 87(1): 331–9PubMedCrossRefGoogle Scholar
  107. 107.
    Brusco LI, Marquez M, Cardinali DP. Monozygotic twins with Alzheimer’s disease treated with melatonin: case report. J Pineal Res 1998; 25(4): 260–3PubMedCrossRefGoogle Scholar
  108. 108.
    Brusco LI, Fainstein I, Marquez M, et al. Effect of melatonin in selected populations of sleep-disturbed patients. Biol Signals Recept 1999; 8(1–2): 126–31PubMedCrossRefGoogle Scholar
  109. 109.
    Wever RA. Characteristics of circadian rhythms in human functions. J Neural Transm Suppl 1986; 21: 323–73PubMedGoogle Scholar
  110. 110.
    Roelfsema F. The influence of light on circadian rhythms. Experientia 1987; 43(1): 7–13PubMedCrossRefGoogle Scholar
  111. 111.
    Czeisler CA, Duffy JF, Shanahan TL, et al. Stability, precision, and near-24-hour period of the human circadian pacemaker [see comments]. Science 1999; 284(5423): 2177–81PubMedCrossRefGoogle Scholar
  112. 112.
    Campbell S. Is there an intrinsic period of the circadian clock [letter]?. Science 2000; 288(5469): 1174–5PubMedCrossRefGoogle Scholar
  113. 113.
    Lockley SW, Skene DJ, Tabandeh H, et al. Relationship between napping and melatonin in the blind. J Biol Rhythms 1997; 12(1): 16–25PubMedCrossRefGoogle Scholar
  114. 114.
    Lewy AJ, Newsome DA. Different types of melatonin circadian secretory rhythms in some blind subjects. J Clin Endocrinol Metab 1983; 56(6): 1103–7PubMedCrossRefGoogle Scholar
  115. 115.
    Leger D, Prevot E, Philip P, et al. Sleep disorders in children with blindness. Ann Neurol 1999; 46(4): 648–51PubMedCrossRefGoogle Scholar
  116. 116.
    Shibui K, Uchiyama M, Iwama H, et al. Periodic fatigue symptoms due to desynchronization in a patient with non-24-h sleep-wake syndrome. Psychiatry Clin Neurosci 1998; 52(5): 477–81PubMedCrossRefGoogle Scholar
  117. 117.
    McArthur AJ, Lewy AJ, Sack RL. Non-24-hour sleep-wake syndrome in a sighted man: circadian rhythm studies and efficacy of melatonin treatment. Sleep 1996; 19(7): 544–53PubMedGoogle Scholar
  118. 118.
    Sack RL, Lewy AJ, Blood ML, et al. Melatonin administration to blind people: phase advances and entrainment. J Biol Rhythms 1991; 6(3): 249–61PubMedCrossRefGoogle Scholar
  119. 119.
    Folkard S, Arendt J, Aldhous M, et al. Melatonin stabilises sleep onset time in a blind man without entrainment of cortisol or temperature rhythms. Neurosci Lett 1990; 113(2): 193–8PubMedCrossRefGoogle Scholar
  120. 120.
    Palm L, Blennow G, Wetterberg L. Long-term melatonin treatment in blind children and young adults with circadian sleep-wake disturbances. Dev Med Child Neurol 1997; 39(5): 319–25PubMedCrossRefGoogle Scholar
  121. 121.
    Palm L, Blennow G, Wetterberg L. Correction of non-24-hour sleep/wake cycle by melatonin in a blind retarded boy. Ann Neurol 1991; 29(3): 336–9PubMedCrossRefGoogle Scholar
  122. 122.
    Tzischinsky O, Pal I, Epstein R, et al. The importance of timing in melatonin administration in a blind man. J Pineal Res 1992; 12(3): 105–8PubMedCrossRefGoogle Scholar
  123. 123.
    Sack RL, Brandes RW, Kendall AR, et al. Entrainment of free-running circadian rhythms by melatonin in blind people. New Engl J Med 2000; 343: 1070–77PubMedCrossRefGoogle Scholar
  124. 124.
    Sack RL, Lewy AJ. Melatonin as a chronobiotic: treatment of circadian desynchrony in night workers and the blind. J Biol Rhythms 1997; 12(6): 595–603PubMedCrossRefGoogle Scholar
  125. 125.
    Arendt J, Aldhous M, Marks V. Alleviation of jet lag by melatonin: preliminary results of controlled double blind trial. Br Med J (Clin Res Ed) 1986; 292(6529): 1170CrossRefGoogle Scholar
  126. 126.
    Arendt J, Marks V. Can melatonin alleviate jet lag [letter]? Br Med J (Clin Res Ed) 1983; 287(6389): 426CrossRefGoogle Scholar
  127. 127.
    Samel A, Wegmann HM, Vejvoda M, et al. Influence of melatonin treatment on human circadian rhythmicity before and after a simulated 9-hr time shift. J Biol Rhythms 1991; 6(3): 235–48PubMedCrossRefGoogle Scholar
  128. 128.
    Wynn VT, Arendt J. Effect of melatonin on the human electrocardiogram and simple reaction time responses. J Pineal Res 1988; 5(5): 427–35PubMedCrossRefGoogle Scholar
  129. 129.
    Nowak R. The salivary melatonin diurnal rhythm may be abolished after transmeridian flights in an eastward but not a westward direction [letter]. Med J Aust 1988; 149(6): 340–1PubMedGoogle Scholar
  130. 130.
    Petrie K, Conaglen JV, Thompson L, et al. Effect of melatonin on jet lag after long haul flights. BMJ 1989; 298(6675): 705–7PubMedCrossRefGoogle Scholar
  131. 131.
    Claustrat B, Brun J, David M, et al. Melatonin and jet lag: confirmatory result using a simplified protocol [see comments]. Biol Psychiatry 1992; 32(8): 705–11PubMedCrossRefGoogle Scholar
  132. 132.
    Petrie K, Dawson AG, Thompson L, et al. A double-blind trial of melatonin as a treatment for jet lag in international cabin crew. Biol Psychiatry 1993; 33(7): 526–30PubMedCrossRefGoogle Scholar
  133. 133.
    Comperatore CA, Lieberman HR, Kirby AW, et al. Melatonin efficacy in aviation missions requiring rapid deployment and night operations. Aviat Space Environ Med 1996; 67(6): 520–4PubMedGoogle Scholar
  134. 134.
    Suhner A, Schlagenhauf P, Johnson R, et al. Comparative study to determine the optimal melatonin dosage form for the alleviation of jet lag. Chronobiol Int 1998; 15(6): 655–66PubMedCrossRefGoogle Scholar
  135. 135.
    Spitzer RL, Terman M, Williams JB, et al. Jet lag: clinical features, validation of a new syndrome-specific scale, and lack of response to melatonin in a randomized, double-blind trial. Am J Psychiatry 1999; 156(9): 1392–6PubMedGoogle Scholar
  136. 136.
    Chesson Jr AL, Littner M, Davila D, et al. Practice parameters for the use of light therapy in the treatment of sleep disorders. Standards of Practice Committee, American Academy of Sleep Medicine. Sleep 1999; 22(5): 641–60Google Scholar
  137. 137.
    Jean-Louis G, von Gizycki H, Zizi F. Predictors of subjective sleepiness induced by melatonin administration. J Psychosom Res 1999; 47(4): 355–8PubMedCrossRefGoogle Scholar
  138. 138.
    Dawson D, Encel N, Lushington K. Improving adaptation to simulated night shift: timed exposure to bright light versus daytime melatonin administration. Sleep 1995; 18(1): 11–21PubMedGoogle Scholar
  139. 139.
    Monk T. Shift work. In: Kreyger M, Roth, T, Dement, WC, editor. Principles and practice of sleep medicine. 2nd ed. Philadelphia: WB Saunders Co, 1994: 471–6Google Scholar
  140. 140.
    Hilderbrandt G, Stratmann I. Circadian system response tp night shift work in relation to the individual circadian phase position. Int Arch Occup Environ Health 1979; 43: 73–83CrossRefGoogle Scholar
  141. 141.
    Akerstedt T, Torsvall L, Gillberg M. Sleepiness and shift work: field studies. Sleep 1982; 5Suppl. 2: S95–106PubMedGoogle Scholar
  142. 142.
    Czeisler CA, Johnson MP, Duffy JF, et al. Exposure to bright light and darkness to treat physiologic maladaptation to night work [see comments]. N Engl J Med 1990; 322(18): 1253–9PubMedCrossRefGoogle Scholar
  143. 143.
    Bjorvatn B, Kecklund G, Akerstedt T. Bright light treatment used for adaptation to night work and re-adaptation back to day life. J Sleep Res 1999; 8(2): 105–112PubMedCrossRefGoogle Scholar
  144. 144.
    Walsh JK, Muehlbach MJ, Schweitzer PK. Acute administration of triazolam for the daytime sleep of rotating shift workers. Sleep 1984; 7(3): 223–9PubMedGoogle Scholar
  145. 145.
    Folkard S, Arendt J, Clark M. Can melatonin improve shift workers’ tolerance of the night shift? Some preliminary findings. Chronobiol Int 1993; 10(5): 315–20PubMedCrossRefGoogle Scholar
  146. 146.
    Ferini-Strambi L, Oldani A, Zucconi M, et al. Triazolam and melatonin effects on cardiac autonomic function during sleep. Clin Neuropharmacol 1995; 18(5): 405–9PubMedCrossRefGoogle Scholar
  147. 147.
    Garfinkel D, Zisapel N, Wainstein J, et al. Facilitation of benzodiazepine discontinuation by melatonin: a new clinical approach. Arch Intern Med 1999; 159: 2456–60PubMedCrossRefGoogle Scholar
  148. 148.
    Krauchi K, Cajochen C, Werth E, et al. Functional link between distal vasodilation and sleep-onset latency? Am J Physiol Regul Integr Comp Physiol 2000; 278(3): R741–8PubMedGoogle Scholar
  149. 149.
    Gilbert SS, van den Heuvel CJ, Kennaway DJ, et al. Peripheral heat loss: a predictor of the hypothermic response to melatonin administration in young and older women. Physiol Behav 1999; 66: 365–70PubMedCrossRefGoogle Scholar
  150. 150.
    Sugden D. Psychopharmacological effects of melatonin in mouse and rat. J Pharmacol Exp Ther 1983; 227(3): 587–91PubMedGoogle Scholar
  151. 151.
    Nave R, Herer P, Haimov I, et al. Hypnotic and hypothermic effects of melatonin on daytime sleep in humans: lack of antagonism by flumazenil. Neurosci Lett 1996; 214(2–3): 123–6PubMedCrossRefGoogle Scholar
  152. 152.
    Wan Q, Man HY, Liu F, et al. Differential modulation of GABAA receptor function by Mel1a and Mel1b receptors. Nat Neurosci 1999; 2(5): 401–3PubMedCrossRefGoogle Scholar
  153. 153.
    Zisapel N, Egozi Y, Laudon M. Inhibition of dopamine release by melatonin: regional distribution in the rat brain. Brain Res 1982; 246(1): 161–3PubMedCrossRefGoogle Scholar
  154. 154.
    Zisapel N, Egozi Y, Laudon M Inhibition by melatonin of dopamine release from rat hypothalamus in vitro: variations with sex and the estrous cycle. Neuroendocrinology 1983; 37(1): 41–7PubMedCrossRefGoogle Scholar
  155. 155.
    Zisapel N, Shaharabani M, Laudon M. Regulation of melatonin’s activity in the female rat brain by estradiol: effects on neurotransmitter release and on iodomelatonin binding sites. Neuroendocrinology 1987; 46(3): 207–16PubMedCrossRefGoogle Scholar
  156. 156.
    Exposito I, Mora F, Zisapel N, et al. The modulatory effect of melatonin on the dopamine-glutamate interaction in the anterior hypothalamus during ageing. Neuroreport 1995; 6(17): 2399–403PubMedCrossRefGoogle Scholar
  157. 157.
    Dubocovich ML, Yun K, Al-Ghoul WM, et al. Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms. FASEB J 1998; 12(12): 1211–20PubMedGoogle Scholar
  158. 158.
    Ding JM, Faiman LE, Hurst WJ, et al. Resetting the biological clock: mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide. J Neurosci 1997; 17(2): 667–75PubMedGoogle Scholar
  159. 159.
    Field MD, Maywood ES, O’Brien JA, et al. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 2000; 25(2): 437–47PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2001

Authors and Affiliations

  1. 1.Department of NeurobiochemistryTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Neurobiochemistry, The George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations