Advertisement

CNS Drugs

, Volume 14, Issue 6, pp 457–472 | Cite as

Brain Magnetic Resonance Spectroscopy

Role in Assessing Outcomes in Alzheimer’s Disease
  • P. Murali Doraiswamy
  • J. Gene Chen
  • H. Cecil Charles
Review Article

Abstract

Contemporary 1H-magnetic resonance spectroscopy (MRS) techniques can estimate the levels of brain metabolites with a high reproducibility and add only 10 minutes to a routine or volumetric magnetic resonance imaging scan. In patients with Alzheimer’s disease (AD), 1H-MRS demonstrates decreases in N- acetylaspartate (NAA) and increases in myo-inositol (Ino) levels. Changes in NAA and Ino levels correlate with dementia severity and may predict future cognitive decline. 1H-MRS could be a valuable outcome measure in clinical trials of individuals with AD for monitoring disease progression (using NAA and Ino levels) and evaluating therapeutic response to novel drugs (using NAA, choline and Ino levels). Further studies are warranted to evaluate the relative utility of 1H-MRS compared with other imaging markers, such as cerebral blood flow and volumetric measures of atrophy. Protocols combining magnetic resonance perfusion, volumetry and spectroscopy in AD may prove to be powerful research tools.

Keywords

Amyotrophic Lateral Sclerosis Mild Cognitive Impairment Magnetic Resonance Spectroscopy Temporal Lobe Epilepsy Magnetic Resonance Spectroscopy Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Supported in part by grants from the Paul Beeson Physician Faculty Scholar in Aging Research Award from the American Federation for Aging Research (P.M. Doraiswamy), Eisai/Pfizer (H. Cecil Charles, P.M. Doraiswamy), Novartis (P.M. Doraiswamy), Merck (P.M. Doraiswamy) and Bayer (P.M. Doraiswamy, H. Cecil Charles).

References

  1. 1.
    Young IR, Charles HC, editors. Magnetic resonance spectros-copy: clinical applications and techniques. London: Martin Dunitz, 1996: 1–623Google Scholar
  2. 2.
    Charles HC, Synderman T, Ahearn E. Magnetic resonance spectroscopy.In: Krishnan KR, Doraiswamy PM, editors. Brain imaging in clinical psychiatry. New York: Marcel Dekker, 1997: 13–23Google Scholar
  3. 3.
    Steffens DS. MRI and MRS in dementia. In:Krishnan KR, Doraiswamy PM, editors. Brain imaging in clinical psychiatry. New York: Marcel Dekker, 1997: 503–33Google Scholar
  4. 4.
    Vion-Dury J, Nicoli F, Salvan A, et al. Reversal of brain metabolic alterations with zidovudine detected by proton localised magnetic resonance spectroscopy. Lancet 1994; 345: 60–1CrossRefGoogle Scholar
  5. 5.
    Salvan A, Vion-Dury J, Confort-Gouny S, et al. Brain proton magnetic resonance spectroscopy in HIV-related encephalopathy: identification of evolving metabolic patterns in relation to dementia and therapy. AIDS Res Hum Retroviruses 1997; 13(12): 1055–66PubMedCrossRefGoogle Scholar
  6. 6.
    Kalra S, Cashman NR, Genge A, et al. Recovery of N-acetylaspartate in corticomotor neurons of patients with ALS after riluzole therapy. Neuroreport 1998; 9: 1757–61PubMedCrossRefGoogle Scholar
  7. 7.
    Lazeryas F, Charles HC, Tupler LA, et al. Metabolic brain mapping in Alzheimer’s disease using proton magnetic resonance spectroscopy. Psychiatr Res: Neuroimaging Section 1998; 82: 95–106CrossRefGoogle Scholar
  8. 8.
    Resnick SM, Costa PT. Comments on use of 1H MR spectroscopy for diagnosis of probable Alzheimer disease. Radiology 1995; 195: 14–5PubMedGoogle Scholar
  9. 9.
    Mohanakrishnan P, Fowler AH, Vonsattel JP, et al. An in vitro 1H nuclear magnetic resonance study of the temporoparietal cortex of Alzheimer brains. Exp Brain Res 1995; 102: 503–10PubMedCrossRefGoogle Scholar
  10. 10.
    Klunk WE, Panchalingam K, Moossy J, et al. N-acetyl-L-aspartate and other amino acid metabolites in Alzheimer’s disease brain: a preliminary proton nuclear magnetic resonance study. Neurology 1992; 42: 1578–85PubMedCrossRefGoogle Scholar
  11. 11.
    Klunk WE, Panchalingam K, McClure RJ, et al. Metabolic alterations in postmortem Alzheimer’s disease brain are exaggerated by ApoE4. Neurobiol Aging 1998; 19(6): 511–5PubMedCrossRefGoogle Scholar
  12. 12.
    Kwo-On-Yuen PF, Newmark RD, Budinger TF, et al. Brain N-acetyl-L-aspartic acid in Alzheimer’s disease: a proton magnetic resonance spectroscopy study. Brain Res 1994; 667: 167–74PubMedCrossRefGoogle Scholar
  13. 13.
    Lowe SL, Bowen DM, Francis PT, et al. Antemortem cerebral amino acid concentrations indicate selective degeneration of glutamate-enriched neurons in Alzheimer’s disease. Neuroscience 1990; 38: 571–7PubMedCrossRefGoogle Scholar
  14. 14.
    Schuff N, Amend D, Ezekiel F, et al. Changes of hippocampal N-acetyl aspartate and volume in Alzheimer’s disease: a proton MR spectroscopic imaging and MRI study. Neurology 1997; 49: 1513–21PubMedCrossRefGoogle Scholar
  15. 15.
    McClure RJ, Kanfer JN, Panchalingham K, et al. Magnetic resonance spectroscopy and its application to aging and Alzheimer’s disease. Neuroimaging Clin N Am 1995; 5(1): 69–86PubMedGoogle Scholar
  16. 16.
    Bolinger L, Lenkinski RE. Localization in clinical NMR spectroscopy. In: Berliner LJ, Reuben J, editors. Biological magnetic resonance. In-vivo spectroscopy, volume 11. New York: Plenum Press, 1992: 1Google Scholar
  17. 17.
    Martin ML, Delpuech JJ, Martin GJ. Practical NMR spectroscopy. Philadelphia: Heyden & Son, 1980Google Scholar
  18. 18.
    Howieson DB, Dame A, Camicioli R, et al. Cognitive markers preceding Alzheimer’s dementia in the healthy oldest old. J Am Geriatr Soc 1997; 45: 584–9PubMedGoogle Scholar
  19. 19.
    Christensen P, Schlosser A, Henriksen O. Reduced N-acetylaspartate content in the frontal part of the brain in patients with probable Alzheimer’s disease. Magn Reson Imaging 1995; 13(3): 457–62CrossRefGoogle Scholar
  20. 20.
    Constans JM, Meyerhoff DJ, Gerson J, et al. 1H MR spectroscopic imaging of white matter signal hyperintensities: Alzheimer disease and ischemic vascular dementia. Radiology 1995; 197: 517–23PubMedGoogle Scholar
  21. 21.
    Ernst T, Chang L, Melchor R, et al. Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H1 MR spectroscopy. Radiology 1997; 203: 829–36PubMedGoogle Scholar
  22. 22.
    Frederick B, Satlin A, Yurgelun-Todd DA, et al. In-vivo proton magnetic resonance spectroscopy of Alzheimer’s disease in the parietal and temporal lobes. Biol Psychiatry 1997; 42: 147–50PubMedCrossRefGoogle Scholar
  23. 23.
    Huen R, Schlegel S, Graf-Morgenstern M. Proton magnetic resonance spectroscopy in dementia of Alzheimer type. Int J Geriatr Psychiatry 1997; 12: 349–58CrossRefGoogle Scholar
  24. 24.
    Kattapong VJ, Brooks WM, Wesley MH, et al. Proton magnetic resonance spectroscopy of vascular and Alzheimer-type dementia. Arch Neurol 1996; 53(7): 678–80PubMedCrossRefGoogle Scholar
  25. 25.
    Longo R, Giorgini A, Magnaldi S, et al. Alzheimer’s disease histologically proven studied by MRI and MRS: two cases. Magn Reson Imaging 1993; 11: 1209–15PubMedCrossRefGoogle Scholar
  26. 26.
    MacKay S, Ezekiel F, Di Sclafani V, et al. Alzheimer disease and subcortical ischemic vascular dementia: evaluation by combining MR imaging segmentation and 1H-MR spectroscopy imaging. Radiology 1996; 198(2): 537–45PubMedGoogle Scholar
  27. 27.
    MacKay S, Ezekiel F, Di Sclafani V, et al. Alzheimer disease and subcortical ischemic vascular dementia: evaluation by combining MR imaging segmentation and 1H-MR spectroscopyimaging. Radiology 1996; 198(2): 537–45PubMedGoogle Scholar
  28. 28.
    Meyerhoff DJ, MacKay S, Constans JM, et al. Axonal injury and membrane alterations in Alzheimer’s disease suggested by in-vivo proton magnetic resonance spectroscopic imaging. Ann Neurol 1994; 36(1): 40–7PubMedCrossRefGoogle Scholar
  29. 29.
    Miller BL, Moats RA, Shonk T, et al. Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology 1993; 187: 433–7PubMedGoogle Scholar
  30. 30.
    Moats RA, Ernst T, Shonk TK, et al. Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 1994; 32(1): 110–5PubMedCrossRefGoogle Scholar
  31. 31.
    Parnetti L, Lowenthal DT, Presciutti O, et al. 1H-MRS, MRI-basedhippocampal volumetry, and 99mTc-HMPAO-SPECT in normal aging, age-associated memory impairment, and probable Alzheimer’s disease. J Am Geriatr Soc 1996; 44(2): 133–8PubMedGoogle Scholar
  32. 32.
    Parnetti L, Tarducci R, Presciutti O, et al. Proton magnetic resonance spectroscopy can differentiate Alzheimer’s disease from normal aging. Mech Ageing Dev 1997; 97: 9–14PubMedCrossRefGoogle Scholar
  33. 33.
    Schuff N, Amend DL, Meyerhoff DJ, et al. Alzheimer disease: quantitative H1 MR spectroscopic imaging of frontoparietal brain. Radiology 1998; 207: 91–102PubMedGoogle Scholar
  34. 34.
    Shonk TK, Moats RA, Gifford P, et al. Probable Alzheimer disease: diagnosis with proton MR spectroscopy. Radiology 1995; 195: 65–72PubMedGoogle Scholar
  35. 35.
    Tedeschi G, Bertolino A, Lundbom N, et al. Cortical and sub-corticalchemical pathology in Alzheimer’s disease as assessed by multislice proton magnetic resonance spectroscopic imaging. Neurology 1996; 47(3): 696–704PubMedCrossRefGoogle Scholar
  36. 36.
    Schuff N, Amend DL, Knowlton R, et al. Age-related metabolitechanges and volume loss in the hippocampus by magnetic resonance spectroscopy and imaging. Neurobiol Aging 1999; 20: 279–85PubMedCrossRefGoogle Scholar
  37. 37.
    Frederick B, Satlin A, Yurgelun-Todd DA, et al. In-vivo protonmagnetic resonance spectroscopy of Alzheimer’s disease in the parietal and temporal lobes. Biol Psychiatry 1997; 42: 147–50PubMedCrossRefGoogle Scholar
  38. 38.
    Regeur L, Badsberg JG, Pakkenberg H, et al. No global neocorticalnerve cell loss in brains from patients with senile dementia of Alzheimer’s type. Neurobiol Aging 1994; 15: 347–52PubMedCrossRefGoogle Scholar
  39. 39.
    Swaab DF, Hofman MA, Lucassen PJ, et al. Neuronal atrophy, not cell death is the main hallmark of Alzheimer’s disease. Neurobiol Aging 1994; 15: 369–71PubMedCrossRefGoogle Scholar
  40. 40.
    Moats RA, Ernst T, Shonk TK, et al. Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 1994; 32(1): 110–5PubMedCrossRefGoogle Scholar
  41. 41.
    Narayana PA, Johnston D, Flamig DP. In-vivo proton magnetic resonance spectroscopy studies of human brain. Magn Reson Imaging 1991; 9: 303–8PubMedCrossRefGoogle Scholar
  42. 42.
    Kreis R, Ross BD, Farrow NA, et al. Metabolic disorders of the brain in chronic hepatic encephalopathy detected with 1H MR spectroscopy. Radiology 1992; 182: 19–27PubMedGoogle Scholar
  43. 43.
    Haussinger D, Laubenberger J, vom Dahl S, et al. Proton magnetic resonance spectroscopy studies on human brain myoinositol in hypoosmolarity and hepatic encephalopathy. Gastroenterology 1994; 107: 1475–80PubMedGoogle Scholar
  44. 44.
    Kreis R, Ross BD. Cerebral metabolic disturbances in patients with subacute and chronic diabetes mellitus: detection with proton MR spectroscopy. Radiology 1992; 184: 123–30PubMedGoogle Scholar
  45. 45.
    Kruse B, Hanefeld F, Christen HJ, et al. Alterations of brainmetabolites in metachromatic leukodystrophy as detected bylocalized proton magnetic resonance spectroscopy in-vivo. J Neurol 1993; 241: 68–74PubMedCrossRefGoogle Scholar
  46. 46.
    Adalsteinsson E, Sullivan EV, Kleinhans N, et al. Longitudinal decline of the neuronal marker N-acetyl aspartate in Alzheimer’s disease. Lancet 2000; 355(9216): 1696–7PubMedCrossRefGoogle Scholar
  47. 47.
    Doraiswamy PM, Charles HC, Krishnan KR. Predicting cognitive decline in early Alzheimer’s disease. Lancet 1998; 352:1678PubMedCrossRefGoogle Scholar
  48. 48.
    Satlin A, Bodick N, Offen WW, et al. Brain proton magnetic resonance spectroscopy (1H-MRS) in Alzheimer’s disease: changes after treatment with xanomeline, an Ml selective cholinergic agonist. Am J Psychiatry 1997; 154(10): 1459–61PubMedGoogle Scholar
  49. 49.
    Waldman AD, McConnell JR, Rai GS, et al. Automated proton MRS of the brain at 1.0.T: reproducibility and clinical utility in Alzheimer’s disease [abstract]. Society for Magnetic Resonance in Medicine Annual Meeting; 1998 Apr 18–24; SydneyGoogle Scholar
  50. 50.
    Shonk T, Ross B. Role of increased cerebral myo-inositol in the dementia of Down syndrome. Magn Reson Med 1995; 33: 858–61PubMedCrossRefGoogle Scholar
  51. 51.
    Connelly A, Paesschen WV, Porter DA, et al. Proton MRS inMRI-negative temporal lobe epilepsy. Neurology 1998; 51:61–6PubMedCrossRefGoogle Scholar
  52. 52.
    Jenkins BG, Rosas HD, Chen YC, et al. 1H-NMR spectroscopystudies in Huntington’s disease: correlations with CAG repeatnumbers. Neurology 1998; 50: 1357–65PubMedCrossRefGoogle Scholar
  53. 53.
    Bolo N, Nedelec J, Muzet M, et al. Central effects of acamprosate:Part 2. Acamprosate modifies the brain in-vivo protonmagnetic resonance spectrum in healthy young male volunteers.Psychiatr Res: Neuroimaging Section 1998; 82: 115–27Google Scholar
  54. 54.
    De Stefano N, Matthews PM, Ford B, et al. Short-term dichloro-acetate treatment improves indices of cerebral metabolism in patients with mitochondrial disorders. Neurology 1995; 45: 1193–8PubMedCrossRefGoogle Scholar
  55. 55.
    Haseler LJ, Sibbitt WL, Mojtahedzadeh HN, et al. Proton MRspectroscopic measurement of neurometabolites in hepaticencephalopathy during oral lactulose therapy. Am J Neuro-radiol 1998; 19: 1681–6Google Scholar
  56. 56.
    Sarchielli P, Presciutti O, Tarducci R, et al. 1H-MRS in patients with multiple sclerosis undergoing treatment with interferon beta-la: results of a preliminary study. J Neurol Neurosurg Psychiatry 1998; 64: 204–12PubMedCrossRefGoogle Scholar
  57. 57.
    Chumas P, Condon B, Oluoch-Olunya D, et al. Early changes in peritumorous oedema and contralateral white matter after dexamethasone: a study using proton magnetic resonance spectroscopy. J Neurol Neurosurg Psychiatry 1997; 62: 590–5PubMedCrossRefGoogle Scholar
  58. 58.
    Stoll AL, Renshaw PF, Sachs GS, et al. The human brain resonance of choline-containing compounds is similar in patients receiving lithium treatment and controls: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry 1992;32: 944–9PubMedCrossRefGoogle Scholar
  59. 59.
    Wardlaw J, Signorini DF, Marshall I. Re: Serial precision ofmetabolite peak area ratios and water referenced metabolitepeak areas in proton MR spectroscopy of the human brain. Magn Reson Imaging 1998; 17(3): 483–487Google Scholar
  60. 60.
    Simmons A, Smail M, Moore E, et al. Serial precision of metabolite peak area ratios and water referenced metabolite peak areas in proton MR spectroscopy of the human brain. Magn Reson Imaging 1998; 16(3): 319–30PubMedCrossRefGoogle Scholar
  61. 61.
    Rose SE, de Zubicaray GI, Wang D, et al. A 1H MRS study of probable Alzheimer’s disease and normal aging: implications for longitudinal monitoring of dementia progression. Magn Reson Imaging 1999; 17(2): 291–9PubMedCrossRefGoogle Scholar
  62. 62.
    Charles HC, Lazeyras F, Tupler L, et al. Reproducibility of high spatial resolution proton magnetic resonance spectroscopic imaging in the human brain. Magn Reson Med 1996; 35: 606–10PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2000

Authors and Affiliations

  • P. Murali Doraiswamy
    • 1
    • 2
  • J. Gene Chen
    • 1
  • H. Cecil Charles
    • 3
  1. 1.Clinical Trials, Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamUSA
  2. 2.The Center for the Study of Aging and Human DevelopmentDuke University Medical CenterDurhamUSA
  3. 3.The Center for Advanced MR Development, Department of RadiologyDuke University Medical CenterDurhamUSA

Personalised recommendations