Sports Medicine

, Volume 36, Issue 4, pp 327–358 | Cite as

Oxidative Stress

Relationship with Exercise and Training
  • Julien FinaudEmail author
  • Gérard Lac
  • Edith Filaire
Review Article


Free radicals are reactive compounds that are naturally produced in the human body. They can exert positive effects (e.g. on the immune system) or negative effects (e.g. lipids, proteins or DNA oxidation). To limit these harmful effects, an organism requires complex protection — the antioxidant system. This system consists of antioxidant enzymes (catalase, glutathione peroxidase, superoxide dismutase) and non-enzymatic antioxidants (e.g. vitamin E [tocopherol], vitamin A [retinol], vitamin C [ascorbic acid], glutathione and uric acid). An imbalance between free radical production and antioxidant defence leads to an oxidative stress state, which may be involved in aging processes and even in some pathology (e.g. cancer and Parkinson’s disease). Physical exercise also increases oxidative stress and causes disruptions of the homeostasis. Training can have positive or negative effects on oxidative stress depending on training load, training specificity and the basal level of training. Moreover, oxidative stress seems to be involved in muscular fatigue and may lead to overtraining.


Oxidative Stress Reactive Oxygen Species Uric Acid CoQ10 Total Antioxidant Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review. This work is dedicated to the late Prof. Robert (2004) and the late Prof. Bedo (2006).


  1. 1.
    Cooper CE, Vollaard NBJ, Choueiri T, et al. Exercise, free radicals and oxidative stress. Biochem Soc Trans 2002; 30 (2): 280–285PubMedCrossRefGoogle Scholar
  2. 2.
    Lachance PA, Nakat Z, Jeong WS. Antioxidants: an integrative approach. Nutrition 2001; 17: 835–838PubMedCrossRefGoogle Scholar
  3. 3.
    Golden TR, Hinerfeld DA, Melov S. Oxidative stress and aging: beyond correlation. Aging Cell 2002; 1: 117–123PubMedCrossRefGoogle Scholar
  4. 4.
    Thomas MJ. The role of free radicals and antioxidants. Nutrition 2000; 16 (7–8): 716–718PubMedCrossRefGoogle Scholar
  5. 5.
    Sen CK. Antioxidant and redox regulation of cellular signaling: introduction. Med Sci Sports Exerc 2001; 33 (3): 368–370PubMedCrossRefGoogle Scholar
  6. 6.
    Guilland JC, Penaranda T, Gallet C, et al. Vitamin status of young athletes including the effects of supplementation. Med Sci Sports Exerc 1989; 21 (4): 441–449PubMedGoogle Scholar
  7. 7.
    Laursen PB. Free radicals and antioxidant vitamins: optimizing the health of the athlete. Strength Cond J 2001; 23 (2): 17–25Google Scholar
  8. 8.
    McKenzie DC. Markers of excessive exercise. Can J Appl Physiol 1999; 24 (1): 66–73PubMedCrossRefGoogle Scholar
  9. 9.
    Petibois C, Cazorla G, Poortmans JR, et al. Biochemical aspects of overtraining in endurance sports. Sports Med 2002; 32 (13): 867–878PubMedCrossRefGoogle Scholar
  10. 10.
    Jenkins RR. Free radical chemistry: relationship to exercise. Sports Med 1988; 5: 156–170PubMedCrossRefGoogle Scholar
  11. 11.
    Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull 1993; 49 (3): 481–493PubMedGoogle Scholar
  12. 12.
    Rimbach G, Hohler D, Fischer A, et al. Methods to assess free radicals and oxidative stress in biological systems. Arch Tierernahr 1999; 52 (3): 203–222PubMedCrossRefGoogle Scholar
  13. 13.
    Prior RL, Cao G. In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med 1999; 27 (11–12): 1173–1181PubMedCrossRefGoogle Scholar
  14. 14.
    Giles GI, Jacob C. Reactive sulfur species: an emerging concept in oxidative stress. Biol Chem 2002; 383: 375–388PubMedCrossRefGoogle Scholar
  15. 15.
    Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 1998; 92: 3007–3017PubMedGoogle Scholar
  16. 16.
    Leewenburgh C, Hansen PA, Holloszy JO, et al. Hydroxyl radical generation during exercise increases mitochondrial protein oxidation and levels of urinary dityrosine. Free Radic Biol Med 1999; 27 (1–2): 186–192CrossRefGoogle Scholar
  17. 17.
    Fehrenbach E, Northoff H. Free radicals, exercise, apoptosis, and heat shock proteins. Exerc Immunol Rev 2001; 7: 66–89PubMedGoogle Scholar
  18. 18.
    Aruoma OI. Free radicals, antioxidants and international nutrition. Asia Pac J Clin Nutr 1999; 8 (1): 53–63CrossRefGoogle Scholar
  19. 19.
    Di Meo S, Venditti P. Mitochondria in exercise-induced oxidative stress. Biol Signals Recept 2001; 10: 125–140PubMedCrossRefGoogle Scholar
  20. 20.
    Sjodin B, Hellsten Westing Y, et al. Biochemical mechanism for oxygen free radical formation during exercise. Sports Med 1990; 10: 236–254PubMedCrossRefGoogle Scholar
  21. 21.
    Jenkins RR, Goldfarb A. Introduction: oxidant stress, aging and exercise. Med Sci Sport Exerc 1993; 25 (2): 210–212Google Scholar
  22. 22.
    Clarkson PM. Antioxidants and physical performance. Crit Rev Food Sci Nutr 1995; 35: 131–141PubMedCrossRefGoogle Scholar
  23. 23.
    Lenaz G. Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1998; 1366 (1–2): 53–67PubMedGoogle Scholar
  24. 24.
    Nohl H, Jordan W. The mitochondrial site of superoxide formation. Biochem Biophys Res Commun 1986; 138 (2): 533–539PubMedCrossRefGoogle Scholar
  25. 25.
    Lenaz G, D’Aurelio M, Merlo Pich M, et al. Mitochondrial bioenergetics in aging. Biochim Biophys Acta 2000; 1459: 397–404PubMedCrossRefGoogle Scholar
  26. 26.
    Nohl H, Kozlov AV, Gille L, et al. Cell respiration and formation of reactive oxygen species: facts and artifacts. Biochem Soc Trans 2003; 31 (6): 1308–1311PubMedCrossRefGoogle Scholar
  27. 27.
    Servais S, Couturier K, Koubi H, et al. Effect of voluntary exercise on H2O2 release by subsarcolemmal and intermy-ofibrillar mitochondria. Free Radic Biol Med 2003; 35 (1): 25–32CrossRefGoogle Scholar
  28. 28.
    Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 1980; 191: 421–427PubMedGoogle Scholar
  29. 29.
    Genova ML, Pich MM, Bernacchia A, et al. The mitochondrial production of reactive oxygen species in relation to aging and pathologies. Ann N Y Acad Sci 2004; 1011: 86–100PubMedCrossRefGoogle Scholar
  30. 30.
    Thompson-Gorman SL, Zweier JL. Evaluation of the role of xanthine oxidase in myocardial reperfusion injury. J Biol Chem 1990; 265 (12): 6656–6663PubMedGoogle Scholar
  31. 31.
    Jackson MJ, O’Farrell S. Free radicals and muscle damage. Br Med Bull 1993; 49 (3): 630–641PubMedGoogle Scholar
  32. 32.
    Frederiks WM, Bosch KS. The role of xanthine oxidase in ischemia/reperfusion damage of rat liver. Histol Histopathol 1995; 10: 111–116PubMedGoogle Scholar
  33. 33.
    Goldfarb AH. Nutritional antioxidants as therapeutic and preventive modalities in exercise-induced muscle damage. Can J Appl Physiol 1999; 24 (3): 249–266PubMedCrossRefGoogle Scholar
  34. 34.
    Heunks LMA, Vina J, Van Herwaarden AV, et al. Xanthine oxidase is involved in exercise-induced oxidative stress in chronic obstrutive pulmonary disease. Am J Physiol 1999; 277: R1697–R1704PubMedGoogle Scholar
  35. 35.
    Gunther MR, Sampath V, Caughey WS. Potential roles of myoglobin autoxidation in myocardial ischemia-reperfusion injury. Free Radic Biol Med 1999; 26 (11–12): 1388–1395PubMedCrossRefGoogle Scholar
  36. 36.
    Ames BN, Catchcart R, Schwiers E, et al. Uric acid provides an antioxidant defense in humans against oxidant and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A 1981; 78 (11): 6858–6862PubMedCrossRefGoogle Scholar
  37. 37.
    Misra HP, Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem 1972; 21: 6960–6962Google Scholar
  38. 38.
    Wallace JW, Houtchens RA, Maxwell JC, et al. Mechanism of autoxidation for hemoglobins and myoglobins: promotion of superoxide production by protons and anions. J Biol Chem 1982; 257 (9): 4966–4977PubMedGoogle Scholar
  39. 39.
    Gohil K, Viguie C, Stanley W, et al. Blood glutathion oxidation during human exercise. J Appl Physiol 1988; 64 (1): 115–119PubMedGoogle Scholar
  40. 40.
    Brantley RE, Smerdon SJ, Wilkinson AJ, et al. The mechanism of autoxidation of myoglobin. J Biol Chem 1993; 268 (10): 6995–7010PubMedGoogle Scholar
  41. 41.
    Harel S, Kanner J. The generation of ferryl or hydroxyl radicals during interaction of haemproteins with hydrogen peroxide. Free Radic Res Commun 1988; 5 (1): 21–33PubMedCrossRefGoogle Scholar
  42. 42.
    Giulivi C, Cadenas E. Heme protein radicals: formation, fate, and biological consequences. Free Radic Biol Med 1998; 24 (2): 269–279PubMedCrossRefGoogle Scholar
  43. 43.
    Kelman DJ, DeGray JA, Mason RP. Reaction of myoglobin with hydrogen peroxide forms a peroxyl radical which oxidizes substrates. J Biol Chem 1994; 269 (10): 7458–7463PubMedGoogle Scholar
  44. 44.
    Clarkson PM, Thompson HS. Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 2000; 72 (S): 637–646Google Scholar
  45. 45.
    Malm C. Exercise-induced muscle damage and inflammation: fact or fiction. Acta Physiol Scand 2001; 171: 233–239PubMedCrossRefGoogle Scholar
  46. 46.
    Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J 1996; 10: 709–720PubMedGoogle Scholar
  47. 47.
    Reid MB. Plasticity in skeletal, cardiac, and smooth muscle. Invited review: redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 2001; 90: 724–731PubMedCrossRefGoogle Scholar
  48. 48.
    Linnane AW, Zhang C, Yarovaya N, et al. Human aging and global function of coenzyme Q10. Ann N Y Acad Sci 2002; 959: 396–411PubMedCrossRefGoogle Scholar
  49. 49.
    Andrade FH, Reid MB, Allen DG, et al. Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J Physiol 1998; 509 (2): 565–575PubMedCrossRefGoogle Scholar
  50. 50.
    Coombes JS, Powers SK, Rowell B, et al. Effects of vitamin E and α-lipoic acid on skeletal muscle contractile properties. J Appl Physiol 2001; 90: 1424–1430PubMedGoogle Scholar
  51. 51.
    Alessio HM. Exercise-induced oxidative stress. Med Sci Sports Exerc 1993; 25 (2): 218–224PubMedGoogle Scholar
  52. 52.
    Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000; 63: 1035–1042PubMedCrossRefGoogle Scholar
  53. 53.
    Vasankari TJ, Kujala UM, Vasankari TM, et al. Effects of acute prolonged exercise on serum and LDL oxidation and antioxidants defenses. Free Radic Biol Med 1997; 22 (3): 509–513PubMedCrossRefGoogle Scholar
  54. 54.
    Young IS, McEneny J. Lipoprotein oxidation and atherosclerosis. Biochem Soc Trans 2001; 29 (2): 358–362PubMedCrossRefGoogle Scholar
  55. 55.
    Morel DW, Hessler JR, Chisolm GM. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J Lipid Res 1983; 24: 1070–1076PubMedGoogle Scholar
  56. 56.
    Ma YS, Stone WL, Leclair IO. The effects of vitamin C and urate on the oxidation kinetics of human low-density lipoprotein. Proc Soc Exp Biol Med 1994; 206: 53–59PubMedGoogle Scholar
  57. 57.
    Terentis AC, Thomas SR, Burr JA, et al. Vitamin E oxidation in human atherosclerotic lesions. Circ Res 2002; 90 (3): 333–339PubMedCrossRefGoogle Scholar
  58. 58.
    Liu ML, Bergholm R, Makimattila S, et al. A marathon run increases the susceptibility of LDL to oxidation in vitro and modifies plasma antioxidants. Am J Physiol 1999; 276 (6): E1083–E1091PubMedGoogle Scholar
  59. 59.
    Pincemail J, Lecomte J, Castiau J, et al. Evaluation of autoantibodies against oxidized LDL and antioxidant status in top soccer and basketball players after 4 months of competition. Free Radic Biol Med 2000; 28 (4): 559–565PubMedCrossRefGoogle Scholar
  60. 60.
    Radak Z, Kaneko T, Tahara S, et al. The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: evidence for beneficial outcomes. Free Radic Biol Med 1999; 27 (1–2): 69–74PubMedCrossRefGoogle Scholar
  61. 61.
    Tavazzi B, Di Pierro D, Amorini AM, et al. et al. Energy metabolism and lipid peroxidation of human erythrocytes as a function of increased oxidative stress. Eur J Biochem 2000; 267: 684–689PubMedCrossRefGoogle Scholar
  62. 62.
    Szweda PA, Friguet B, Szweda LI. Proteolysis, free radicals, and aging. Free Radic Biol Med 2002; 33 (1): 29–36PubMedCrossRefGoogle Scholar
  63. 63.
    Packer L. Oxidants, antioxidant nutrients and the athlete. J Sports Sci 1997; 15 (3): 353–363PubMedCrossRefGoogle Scholar
  64. 64.
    Renke J, Popadiuk S, Korzon M, et al. Protein carbonyl groups’ content as a useful clinical marker of antioxidant barrier impairment in plasma of children with juvenile chronic arthrisis. Free Radic Biol Med 2000; 29 (2): 101–104PubMedCrossRefGoogle Scholar
  65. 65.
    Levine RL. Carbonyl modified proteins in cellular regulation, aging and disease. Free Radic Biol Med 2002; 32 (9): 790–796PubMedCrossRefGoogle Scholar
  66. 66.
    Stadtman ER, Levine RL. Protein oxidation. Ann N Y Acad Sci 2000; 899: 191–208PubMedCrossRefGoogle Scholar
  67. 67.
    Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997; 272 (33): 20313–20316PubMedCrossRefGoogle Scholar
  68. 68.
    Wallace SS. Biological consequences of free radical-damaged DNA bases. Free Radic Biol Med 2002; 33 (1): 1–14PubMedCrossRefGoogle Scholar
  69. 69.
    Dizdaroglu M, Jaruga P, Birincioglu M, et al. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 2002; 32 (11): 1102–1115PubMedCrossRefGoogle Scholar
  70. 70.
    Beckman KB, Ames BN. Oxidative decay of DNA. J Biol Chem 1997; 272 (32): 19633–19636PubMedCrossRefGoogle Scholar
  71. 71.
    Kasai H. Chemistry-based studies on oxidative DNA damage: formation, repair, and mutagenesis. Free Radic Biol Med 2002; 33 (4): 450–456PubMedCrossRefGoogle Scholar
  72. 72.
    Reid MB, Haack KE, Franchek KM, et al. Reactive oxygen in skeletal muscle I: intracellular oxidant kinetics and fatigue invitro. J Appl Physiol 1992; 73 (5): 1797–1804PubMedGoogle Scholar
  73. 73.
    Tiidus PM. Radical species in inflammation and overtraining. Can J Physiol Pharmacol 1998; 76: 533–538PubMedCrossRefGoogle Scholar
  74. 74.
    Powers SK, Lennon SL. Analysis of cellular responses to free radicals: focus on exercise and skeletal muscle. Proc Nutr Soc 2000; 58: 1025–1033CrossRefGoogle Scholar
  75. 75.
    McArdle A, Pattwell D, Vasilaki A, et al. Contractile activity-induced oxidative stress: cellular origin and adaptative responses. Am J Physiol 2001; 280: C621–C627Google Scholar
  76. 76.
    Dawson B, Henry GJ, Goodman C, et al. Effect of vitamin C and E supplementation on biochemical and ultrastructural indices of muscle damage after 21 km run. Int J Sports Med 2002; 23: 10–15PubMedCrossRefGoogle Scholar
  77. 77.
    Coombes JS, Rowell B, Dodd SL, et al. Effects of vitamin E deficiency on fatigue and muscle contractile properties. Eur J Appl Physiol 2002; 87: 272–277PubMedCrossRefGoogle Scholar
  78. 78.
    Evans WJ. Vitamin E, vitamin C, and exercise. Am J Clin Nutr 2000; 72 (S): 647–652Google Scholar
  79. 79.
    Childs A, Jacobs C, Kaminski T, et al. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med 2001; 31 (6): 745–753PubMedCrossRefGoogle Scholar
  80. 80.
    Sen CK, Kolosova I, Hanninen O, et al. Inward potassium transport systems in skeletal muscle derived cells are highly sensitive to oxidant exposure. Free Radic Biol Med 1995; 18 (4): 795–800PubMedCrossRefGoogle Scholar
  81. 81.
    Radak Z, Pucsok J, Mecseki S, et al. Muscle soreness-induced reduction in force generation is accompanied by increased nitric oxide content and DNA damage in human skeletal muscle. Free Radic Biol Med 1999; 26 (7–8): 1059–1063PubMedCrossRefGoogle Scholar
  82. 82.
    Bigard AX. Lesions musculaires induites par l’exercice et surentrainement. Sci Sports 2001; 16: 204–215CrossRefGoogle Scholar
  83. 83.
    Petibois C, Cazorla G, Poortmans JR, et al. Biochemical aspects of overtraining in endurance sports: the metabolism alteration process syndrome. Sports Med 2003; 33 (2): 83–94PubMedCrossRefGoogle Scholar
  84. 84.
    Dekkers JC, van Doornen LJ, Kemper HC. The role of antioxidant vitamins and enzymes in the prevention of exercise-induced muscle damage. Sports Med 1996; 21 (3): 213–238PubMedCrossRefGoogle Scholar
  85. 85.
    Das KC, Lewis-Molock Y, White CW. Elevation of manganese superoxide dismutase gene expression by thioredoxin. Am J Respir Cell Mol Biol 1997; 17: 713–726PubMedGoogle Scholar
  86. 86.
    Antunes F, Derick H, Cadenas E. Relative contributions of heart mitochondria glutathione peroxidase and catalase to H2O2 detoxification in in vivo conditions. Free Radic Biol Med 2002; 33 (9): 1260–1267PubMedCrossRefGoogle Scholar
  87. 87.
    Ji LL. Oxidative stress during exercise: implication of antioxidant nutrients. Free Radic Biol Med 1995; 18 (6): 1079–1086PubMedCrossRefGoogle Scholar
  88. 88.
    Fuchs J, Weber S, Podda M, et al. HPLC analysis of vitamin E isoforms in human epidermis: correlation with minimal erythema dose and free radical scavenging activity. Free Radic Biol Med 2003; 34 (3): 330–336PubMedCrossRefGoogle Scholar
  89. 89.
    Liebler DC, Kling DS, Reed DJ. Antioxidant protection of lipid balayers by α-tocopherol: control of α-tocopherol status and lipid peroxidation by ascorbic acid and glutathione. J Biol Chem 1986; 261: 12144–12149Google Scholar
  90. 90.
    Mastaloudis A, Leonard SW, Traber MG. Oxidative stress in athletes during extreme endurance exercise. Free Radic Biol Med 2001; 31 (7): 911–922PubMedCrossRefGoogle Scholar
  91. 91.
    Mitmesser SH, Giraud DW, Driskell JA. Dietary and plasma level of carotenoids, vitamin E, vitamin C in a group of young and middle-aged nonsupplemented women and men. Nutr Res 2000; 20 (11): 1537–1546CrossRefGoogle Scholar
  92. 92.
    Goldfard AH. Antioxidant: role of supplementation to prevent exercise-induced oxidative stress. Med Sci Sports Exerc 1993; 25: 232–236Google Scholar
  93. 93.
    Willcox JK, Catignani GL, Roberts LJ. Dietary flavonoids fail to suppress F2-isoprostane formation in-vivo. Free Radic Biol Med 2002; 34 (7): 795–799CrossRefGoogle Scholar
  94. 94.
    McBride JM, Kraemer WJ, Triplett-McBride T, et al. Effect of resistance exercise on free radical production. Med Sci Sports Exerc 1998; 30 (1): 67–72PubMedCrossRefGoogle Scholar
  95. 95.
    Takanami Y, Iwane H, Kawai Y, et al. Vitamin E, supplementation and endurance exercise. Sports Med 2000; 29 (2): 73–83PubMedCrossRefGoogle Scholar
  96. 96.
    Palmer FM, Nieman DC, Henson DA, et al. Influence of vitamin C supplementation on oxidative and salivary IgA changes following an ultramarathon. Eur J Appl Physiol 2003; 89: 100–107PubMedCrossRefGoogle Scholar
  97. 97.
    Ashton T, Young IS, Peters JR, et al. Electron spin resonance spectroscopy, exercise, and oxidative stress: an ascorbic acid intervention study. J Appl Physiol 1999; 87 (6): 2032–2036PubMedGoogle Scholar
  98. 98.
    Chung WY, Chung JKO, Szeto YT, et al. Plasma ascorbic acid: measurement, stability and clinical utility revisited. Clin Biochem 2001; 34: 623–627PubMedCrossRefGoogle Scholar
  99. 99.
    Thompson D, Williams C, Garcia-Roves P, et al. Post-exercise vitamin C supplementation and recovery from demanding exercise. Eur J Appl Physiol 2003; 89: 393–400PubMedCrossRefGoogle Scholar
  100. 100.
    Ozhogina OA, Kasaikina OT. ß-carotene as an interceptor of free radicals. Free Radic Biol Med 1995; 19 (5): 575–581PubMedCrossRefGoogle Scholar
  101. 101.
    Livrea MA, Tesoriere L, Bongiorno A, et al. Contribution of vitamin A to the oxidation resistance of human low density lipoproteins. Free Radic Biol Med 1995; 18 (3): 401–409PubMedCrossRefGoogle Scholar
  102. 102.
    Schröder H, Navarro E, Mora J, et al. Effects of α-tocopherol, ß-carotene and ascorbic acid on oxidative, hormonal and enzymatic exercise stress markers in habitual training activity of professional basketball players. Eur J Nutr 2001; 40: 178–184PubMedCrossRefGoogle Scholar
  103. 103.
    Singh A, Moses FM, Deuster PA. Chronic multivitamin-mineral supplementation does not enhance physical performance. Med Sci Sports Exerc 2001; 24 (6): 726–732Google Scholar
  104. 104.
    Wedworth SM, Lynch S. Dietary flavonoids in atherosclerosis prevention. Ann Pharmacother 1995; 29 (6): 627–628PubMedGoogle Scholar
  105. 105.
    Depeint F, Gee JM, Williamson G, et al. Evidence for consistent patterns between flavonoids structures and cellular activities. Proc Nutr Soc 2002; 61 (1): 97–103PubMedCrossRefGoogle Scholar
  106. 106.
    Morand C, Crespy V, Manach C, et al. Plasma metabolites of quercetin and their antioxidant properties. Am J Physiol 1998; 275 (44): R212–R219PubMedGoogle Scholar
  107. 107.
    Cotelle N. Role of flavonoids in oxidative stress. Curr Top Med Chem 2001; 1 (6): 569–590PubMedCrossRefGoogle Scholar
  108. 108.
    Arts MJTJ, Haenen GRMM, Wilms LC, et al. Interactions between flavonoids and proteins: effect on the total antioxidant capacity. J Agric Food Chem 2002; 50: 1184–1187PubMedCrossRefGoogle Scholar
  109. 109.
    Sen CK, Packer L. Thiol homeostasis and supplements in physical exercise. Am J Clin Nutr 2000; 72: 653S–669SPubMedGoogle Scholar
  110. 110.
    May JM, Qu Z, Whitesell RR, et al. Ascorbate recycling in human erythrocytes: role of GSH in reducing dehydroascorbate. Free Radic Biol Med 1996; 20 (4): 543–551PubMedCrossRefGoogle Scholar
  111. 111.
    Groussard C, Rannou-Bekono F, Machefer G, et al. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur J Appl Physiol 2003; 89: 14–20PubMedCrossRefGoogle Scholar
  112. 112.
    Tessier F, Margaritis I, Richard MJ, et al. Selenium and training effects on the glutathione system and aerobic performance. Med Sci Sports Exerc 1995; 27 (3): 390–396PubMedGoogle Scholar
  113. 113.
    Svensson M, Ekblom B, Cotgreave I, et al. Adaptative stress response of glutathione and acid uric metabolism in man following controlled exercise and diet. Acta Physiol Scand 2002; 176: 43–56PubMedCrossRefGoogle Scholar
  114. 114.
    Schulz JB, Lindenau J, Seyfried J, et al. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 2000; 267: 4904–4911PubMedCrossRefGoogle Scholar
  115. 115.
    Shang F, Lu M, Dudek E, et al. Vitamin C and vitamin E restore the resistance of GSH-depleted lens cells to H2O2. Free Radic Biol Med 2003; 34 (5): 521–530PubMedCrossRefGoogle Scholar
  116. 116.
    Serbinova E, Reznick SKAZ, Packer L. Thioctic acid protects against ischemia-reperfusion injury in the isolated langendorff heart. Free Radic Res Commun 1992; 17: 49–58PubMedCrossRefGoogle Scholar
  117. 117.
    Scott BC, Aruoma OI, Evans PJ, et al. Lipoic and dihydrolipoic acids as antioxidants: a critical evaluation. Free Radic Res 1994; 20: 119–130PubMedCrossRefGoogle Scholar
  118. 118.
    Khanna S, Atalay M, Laaksonen DE, et al. α-lipoic acid supplementation: tissue glutathione homeostasis at rest and after exercise. J Appl Physiol 1999; 86 (4): 1191–1196PubMedGoogle Scholar
  119. 119.
    Maulik N, Yoshida T, Engelman RM, et al. Dietary coenzyme Q10 supplement renders swine hearts resistant to ischemia-reperfusion injury. Am J Physiol 2000; 278: H1084–H1090Google Scholar
  120. 120.
    Witt EH, Reznick AZ, Viguie CA, et al. Exercise, oxidative damage and effects of antioxidant manipulation. J Nutr 1992; 122 (3 Suppl.): 766–773PubMedGoogle Scholar
  121. 121.
    Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr 2001; 20 (6): 591–598PubMedGoogle Scholar
  122. 122.
    Crestanello JA, Doliba NM, Babsky AM, et al. Effects of coenzyme Q10 supplementation on mitochondrial function after myocardial ischemia reperfusion. J Surg Res 2002; 102 (2): 221–228PubMedCrossRefGoogle Scholar
  123. 123.
    Rosenfelt FL, Pepe S, Linnane A, et al. Coenzyme Q10 protects the aging heart against stress: studies in rats, human tissues, and patients. Ann N Y Acad Sci 2002; 959: 355–359CrossRefGoogle Scholar
  124. 124.
    Braun B, Clarkson PM, Freedson PS, et al. Effects of coenzyme Q10 supplementation on exercise performance, VO2 max, and lipid peroxidation in trained cyclists. Int J Sport Nutr 1991; 1 (4): 353–365PubMedGoogle Scholar
  125. 125.
    Svensson M, Malm C, Tonkonogi M, et al. Effect of Q10 supplementation on tissue Q10 levels and adenine nucleotide catabolism during high-intensity exercise. Int J Sport Nutr 1999; 9 (2): 166–180PubMedGoogle Scholar
  126. 126.
    Grootveld M, Halliwell B. Measurement of allantoin and uric acid in human body fluids: a potential index of free-radical reactions in vivo. Biochem J 1987; 243: 803–808PubMedGoogle Scholar
  127. 127.
    Hellsten Y, Tullson PC, Richter EA, et al. Oxidation of urate in human skeletal muscle during exercise. Free Radic Biol Med 1997; 22 (1–2): 169–174PubMedCrossRefGoogle Scholar
  128. 128.
    Green HJ, Fraser IG. Differential effects of exercise intensity on serum uric acid concentration. Med Sci Sports Exerc 1988; 20 (2): 55–59PubMedGoogle Scholar
  129. 129.
    Hellsten Y, Sjödin B, Richter EA, et al. Urate uptake and lowered ATP levels in human muscle after high-intensity intermittent exercise. Am J Physiol 1998; 274: E600–E606PubMedGoogle Scholar
  130. 130.
    Kaur H, Halliwell B. Action of biologically-relevant oxidizing species upon uric acid: identification of uric acid oxidation products. Chem-Biol Interactions 1990; 73: 235–247CrossRefGoogle Scholar
  131. 131.
    Wayner DDM, Burton GW, Ingold KU, et al. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta 1987; 924: 408–419PubMedCrossRefGoogle Scholar
  132. 132.
    Hooper DC, Spitsin S, Kean RB, et al. Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalo-myelitis and multiple sclerosis. Proc Natl Acad Sci U S A 1998; 95: 675–680PubMedCrossRefGoogle Scholar
  133. 133.
    Hooper DC, Scott GS, Zborek A, et al. Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood-CNS barrier permeability changes and tissue damage in a mouse model of multiple sclerosis. FASEB J 2000; 14: 691–698PubMedGoogle Scholar
  134. 134.
    Kean RB, Spitsin SV, Mikheeva T, et al. The peroxynitrite scavenger uric acid prevents inflammatory cell invasion into the central nervous system in experimental allergic encephalo-myelitis through maintenance of blood-central nervous system barrier integrity. J Immunol 2000; 165: 6511–6518PubMedGoogle Scholar
  135. 135.
    Davies KJA, Sevanian A, Muakkassah-Kelly SF, et al. Uric acid-iron ion complexes: a new aspect of the antioxidant functions of uric acid. Biochem J 1986; 235: 747–754PubMedGoogle Scholar
  136. 136.
    Sevanian A, Davies KJA, Hochstein P. Serum urate as an antioxidant for ascorbic acid. Am J Clin Nutr 1991; 54: 1129S–11234SPubMedGoogle Scholar
  137. 137.
    Marklund N, Östman B, Nalmo L, et al. Hypoxanthine, uric acid and allantoin as indicators of in vivo free radical reactions: description of a HPLC method and human brain microdialysis data. Acta Neurochir (Wien) 2000; 142: 1135–1142CrossRefGoogle Scholar
  138. 138.
    Hellsten Y, Svensson M, Sjodin B, et al. Allantoin formation and urate and glutathione exchange in human muscle during submaximal exercise. Free Radic Biol Med 2001; 31 (11): 1313–1322PubMedCrossRefGoogle Scholar
  139. 139.
    Nishizawa J, Nakai A, Matsuda K, et al. Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart. Circulation 1999; 99: 934–941PubMedCrossRefGoogle Scholar
  140. 140.
    Hamilton KL, Staib JL, Phillips T, et al. Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med 2003; 34 (7): 800–809PubMedCrossRefGoogle Scholar
  141. 141.
    Smolka MB, Zoppi CC, Alves AA, et al. HSP72 as a complementary protection against oxidative stress induced by exercise in the soleus muscle of rats. Am J Physiol Regul Integr Comp Physiol 2000; 279: R1539–R1545PubMedGoogle Scholar
  142. 142.
    Meneghini R. Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med 1997; 23 (5): 783–792PubMedCrossRefGoogle Scholar
  143. 143.
    Cairo G, Recalcati S, Pietrangelo A, et al. The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage. Free Radic Biol Med 2002; 32 (12): 1237–1243PubMedCrossRefGoogle Scholar
  144. 144.
    Orino K, Lehman L, Tsuji Y, et al. Ferritin and the response to oxidative stress. Biochem J 2001; 357: 241–247PubMedCrossRefGoogle Scholar
  145. 145.
    Arosio P, Levi S. Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med 2002; 33 (4): 457–463PubMedCrossRefGoogle Scholar
  146. 146.
    Applegate LA, Scaletta C, Panizzon R, et al. Evidence that ferritin is UV inducible in human skin: part of putative defense mechanism. J Invest Dermatol 1998; 111: 159–163PubMedCrossRefGoogle Scholar
  147. 147.
    Erario MA, Gonzales S, Noriega GO, et al. Bilirubin and ferritin as protectors against hemin-induced oxidative stress in liver. Cell Mol Biol 2002; 48 (8): 877–884PubMedGoogle Scholar
  148. 148.
    Nikolaidis MG, Michailidis Y, Mougios V. Variation of soluble transferring receptor and ferritin concentrations in human serum during recovery and exercise. Eur J Appl Physiol 2003; 89: 500–502PubMedCrossRefGoogle Scholar
  149. 149.
    Atanasiu RL, Stea D, Mateescu MA, et al. Direct evidence of caeruloplasmin antioxidant properties. Moll Cell Biochem 1998; 189: 127–135CrossRefGoogle Scholar
  150. 150.
    Yesikaya A, Yegin A, Ozdem S, et al. The effect of bilirubin on lipid peroxidation and antioxidant enzymes in cumene hydroperoxide-treated erythrocytes. Int J Clin Lab Res 1998; 28 (4): 230–234CrossRefGoogle Scholar
  151. 151.
    Kaur H, Hugues MN, Green CJ, et al. Interaction of bilirubin and biliverdin with reactive nitrogen species. FEBS Lett 2003; 543 (1–3): 113–119PubMedCrossRefGoogle Scholar
  152. 152.
    Margaritis I, Palazzetti S, Rousseau AS, et al. Antioxidant supplementation and tapering exercise improve exercise-induced antioxidant response. J Am Coll Nutr 2003; 22 (2): 147–156PubMedGoogle Scholar
  153. 153.
    Palazzetti S, Richard MJ, Favier A, et al. Overload training increases exercise-induced oxidative stress and damage. Can J Appl Physiol 2003; 28 (4): 588–604PubMedCrossRefGoogle Scholar
  154. 154.
    Palazzetti S, Rousseau AS, Richard MJ, et al. Antioxidant supplementation preserves antioxidant response in physical training and low antioxidant intake. Br J Nutr 2004; 91: 91–100PubMedCrossRefGoogle Scholar
  155. 155.
    Finaud J, Scislowski V, Lac G, et al. Antioxidant status and oxidative stress in professional rugby players: evolution throughout a season. Int J Sports Med 2006; 27: 87–93PubMedCrossRefGoogle Scholar
  156. 156.
    Schröder H, Navarro E, Tramullas A, et al. Nutrition antioxidant status and oxidative stress in professional basketball players: effects of a three compound antioxidative supplement. Int J Sports Med 2000; 21 (2): 146–150PubMedCrossRefGoogle Scholar
  157. 157.
    Herbert V. Symposium: prooxidant effects of antioxidant vita- mins. J Nutr 1996; 126: 1197–1200Google Scholar
  158. 158.
    Choi EJ, Chee KM, Lee BH. Anti- and prooxidant effects of chronic quercitin administration in rats. Eur J Pharmacol 2003; 482: 281–285PubMedCrossRefGoogle Scholar
  159. 159.
    James AM, Smith RAJ, Murphy MP. Antioxidant and prooxidant properties of mitochondrial coenzyme Q. Arch Biochem Biophys 2004; 423: 47–56PubMedCrossRefGoogle Scholar
  160. 160.
    Duthié GG. Determination of activity of antioxidants in human subjects. Proc Nutr Soc 1999; 58 (4): 1015–1024PubMedCrossRefGoogle Scholar
  161. 161.
    Jenkins RR. Exercise and oxidative stress methodology: a critique. Am J Clin Nutr 2000; 72 (2- Suppl.): 670–674Google Scholar
  162. 162.
    Ashton T, Rowlands CC, Jones E, et al. Electron spin resonance spectroscopic detection of oxygen-centred radicals in human serum following exhaustive exercise. Eur J Appl Physiol 1998; 77 (6): 498–502CrossRefGoogle Scholar
  163. 163.
    Frank J, Pompella A, Biesalski HK. Histochemical visualization of oxidant stress. Free Radic Biol Med 2000; 29 (11): 1096–1105PubMedCrossRefGoogle Scholar
  164. 164.
    Chen SS, Chang LS, Wei YH. Oxidative damage to proteins and decrease of antioxidant capacity in patients with varicocele. Free Radic Biol Med 2001; 30 (11): 1328–1334PubMedCrossRefGoogle Scholar
  165. 165.
    Hofer T, Möller L. Optimization of the workup procedure for the analysis of 8-oxo-7,8-dihydro-2’-deoxyguanosine with electrochemical detection. Chem Res Toxicol 2002; 15: 426–432PubMedCrossRefGoogle Scholar
  166. 166.
    Ortenblad N, Madsen K, Djurhuus MS. Antioxidant status and lipid peroxidation after short-term maximal exercise in trained and untrained humans. Am J Physiol 1997; 272 (4): R1258–R1263PubMedGoogle Scholar
  167. 167.
    Varlet-Marie E, Maso F, Lac G, et al. Hemorheological disturbances in the overtraining syndrome. Clin Hemorheol Microcirc 2004; 30: 211–218PubMedGoogle Scholar
  168. 168.
    Marzatico F, Pansarasa O, Bertorelli L, et al. Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. J Sports Med Phys Fitness 1997; 37: 235–239PubMedGoogle Scholar
  169. 169.
    Miyazaki H, Oh-ishi S, Ookawara T, et al. Strenuous endurance training in humans reduces oxidative stress following exhaustive exercise. Eur J Appl Physiol 2001; 84: 1–6PubMedCrossRefGoogle Scholar
  170. 170.
    Cao G, Prior RL. Postprandrial increases in serum antioxidant capacity in older women. J Appl Physiol 2000; 89: 877–883PubMedGoogle Scholar
  171. 171.
    Kohen R, Vellaichamy E, Hrbac J, et al. Quantification of the overall reactive oxygen species scavenging capacity of biological fluids and tissues. Free Radic Biol Med 2000; 28 (6): 871–879PubMedCrossRefGoogle Scholar
  172. 172.
    Davies KJ, Quintanilha AT, Brooks GA, et al. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 1982; 107: 1198–1205PubMedCrossRefGoogle Scholar
  173. 173.
    Child RB, Wilkinson DM, Fallowfield JL, et al. Elevated serum antioxidant capacity and plasma malondialdehyde concentration in response to a simulated half-marathon run. Med Sci Sports Exerc 1998; 30 (11): 1603–1607PubMedCrossRefGoogle Scholar
  174. 174.
    Lovlin R, Cottle W, Pyke I, et al. Are indices of radical damage related to exercise intensity? Eur J Appl Physiol 1987; 56: 313–316CrossRefGoogle Scholar
  175. 175.
    Aguilo A, Tauler P, Fuentespina E, et al. Antioxidant response to oxidative stress induced by exhaustive exercise. Physiol Behav 2005; 84 (1): 1–7PubMedCrossRefGoogle Scholar
  176. 176.
    Vider J, Lehtmaa J, Kullisaar T, et al. Acute immune response in respect to exercise-induced oxidative stress. Pathophysiology 2001; 7: 263–270PubMedCrossRefGoogle Scholar
  177. 177.
    Margaritis I, Tessier F, Richard MJ, et al. No evidence of oxidative stress after a triathlon race in highly trained competitors. Int J Sports Med 1997; 18 (3): 186–190PubMedCrossRefGoogle Scholar
  178. 178.
    Inal M, Akyüz F, Turgut A, et al. Effect of aerobic and anaerobic metabolism on free radical generation swimmers. Med Sci Sports Exerc 2001; 33 (4): 564–567PubMedGoogle Scholar
  179. 179.
    Chevion S, Moran DS, Heled Y, et al. Plasma antioxidant status and cell injury after severe physical exercise. Proc Natl Acad Sci U S A 2003; 100 (9): 5119–5123PubMedCrossRefGoogle Scholar
  180. 180.
    Ji LL, Fu R. Antioxidant enzyme response to exercise and aging. Med Sci Sport Exerc 1993; 25 (2): 225–231CrossRefGoogle Scholar
  181. 181.
    Criswell D, Powers S, Dodd S, et al. High intensity training-induced changes in skeletal muscle anti-oxidant enzyme activity. Med Sci Sports Exerc 1993; 25 (10): 1135–1140PubMedGoogle Scholar
  182. 182.
    Radak Z, Nakamura A, Nakamoto H, et al. A period of anaerobic exercise increases the accumulation of reactive carbonyl derivatives in the lungs of rats. Plügers Arch 1998; 435: 439–441CrossRefGoogle Scholar
  183. 183.
    Kayatekin BM, Gönenc S, Açikgöz O, et al. Effects of sprint exercise on oxidative stress in skeletal muscle and liver. Eur J Appl Physiol 2002; 87: 141–144PubMedCrossRefGoogle Scholar
  184. 184.
    Goldfarb AH, Bloomer RJ, McKenzie MJ. Combined antioxidant treatment effects on blood oxidative stress after eccentric exercise. Med Sci Sports Exerc 2005; 37 (2): 234–239PubMedCrossRefGoogle Scholar
  185. 185.
    Ramel A, Wagner KH, Elmadfa I. Plasma antioxidants and lipid oxidation after submaximal resistance exercise in men. Eur J Nutr 2004; 43: 2–6PubMedCrossRefGoogle Scholar
  186. 186.
    Sahlin K, Cizinsky S, Warholm M, et al. Repetitive static muscle contractions in humans: a trigger of metabolic and oxidative stress? Eur J Appl Physiol 1992; 64: 228–236CrossRefGoogle Scholar
  187. 187.
    Saxton JM, Donnelly AE, Roper HP. Indices of free-radical-mediated damage following maximum voluntary eccentric and concentric muscular work. Eur J Appl Physiol 1994; 68: 189–193CrossRefGoogle Scholar
  188. 188.
    Groussard C, Machefer G, Rannou F, et al. Physical fitness and plasma non-enzymatic antioxidant status at rest and after a Wingate test. Can J Appl Physiol 2003; 28 (1): 79–92PubMedCrossRefGoogle Scholar
  189. 189.
    Chang CK, Tseng HF, Hsuuw YD, et al. Higher LDL oxidation at rest and after a rugby game in weekend warriors. Ann Nutr Metab 2002; 46: 103–107PubMedCrossRefGoogle Scholar
  190. 190.
    Elosua R, Molina L, Fito M, et al. Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis 2003; 167: 327–334PubMedCrossRefGoogle Scholar
  191. 191.
    Ohno H, Yahata T, Sato Y, et al. Physical training and fasting erythrocyte activities of free radical scavenging enzyme systems in sedentary men. Eur J Appl Physiol 1988; 57 (2): 173–176CrossRefGoogle Scholar
  192. 192.
    Accominotti M, Dutey P, Lahet C, et al. Evolution des taux de selenium et de glutathion peroxydase sanguins de sportifs de haut niveau. Sci Sports 1991; 6: 165–172CrossRefGoogle Scholar
  193. 193.
    Bergholm R, Makimattila S, Valkonen M, et al. Intense physical training decreases circulating antioxidants and endothelium-dependant vasodilatation in-vivo. Atherosclerosis 1999; 145 (2): 341–349PubMedCrossRefGoogle Scholar
  194. 194.
    Venditti P, Di Meo S. Effect of training on antioxidant capacity, tissue damage, and endurance of adult male rats. Int J Sports Med 1997; 18: 497–502PubMedCrossRefGoogle Scholar
  195. 195.
    Hollander J, Fiebig R, Gore M, et al. Superoxide dismutase gene expression in skeletal muscle: fiber-specific adaptation to endurance training. Am J Physiol 1999; 277 (46): R856–R862PubMedGoogle Scholar
  196. 196.
    Selamoglu S, Turgay F, Kayatekin BM, et al. Aerobic and anaerobic training effects on the antioxidant enzymes in the blood. Acta Physiol Hung 2000; 87 (3): 267–273PubMedCrossRefGoogle Scholar
  197. 197.
    Powers SK, Ji LL, Leewenburgh C. Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc 1999; 31 (7): 987–997PubMedCrossRefGoogle Scholar
  198. 198.
    Child RB, Wilkinson DM, Fallowfield JL. Resting serum anti-oxidant status is positively correlated with peak oxygen uptake in endurance trained runners. J Sports Med Phys Fitness 1999; 39 (4): 282–284PubMedGoogle Scholar
  199. 199.
    Rall LC, Roubenoff R, Meydani SN, et al. Urinary 8-hy-droxy-2’-deoxyguanosine (8-OHdG) as a marker of oxidative stress in rheumatoid arthritis and aging: effect of progressive resistance training. J Nutr Biochem 2000; 11: 581–584PubMedCrossRefGoogle Scholar
  200. 200.
    Vincent KR, Vincent HK, Braith RW, et al. Resistance exercise training attenuates exercise-induced lipid peroxidation in the elderly. Eur J Appl Physiol 2002; 87: 416–423PubMedCrossRefGoogle Scholar
  201. 201.
    Hellsten Y, Apple FS, Sjodin B. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle. J Appl Physiol 1996; 81 (4): 1484–1487PubMedGoogle Scholar
  202. 202.
    Cazzola R, Russo-Volpe S, Cervato G, et al. Biochemical assessments of oxidative stress, erythrocyte membrane fluidity and antioxidant status in professional soccer players and sedentary controls. Eur J Clin Invest 2003; 33 (10): 924–930PubMedCrossRefGoogle Scholar
  203. 203.
    Metin G, Gumustas MK, Uslu E, et al. Effect of regular training on plasma thiols, malondialdehyde and carnitine concentrations in young soccer players. Chin J Physiol 2003; 46 (1): 35–39PubMedGoogle Scholar
  204. 204.
    Balakrishnan SD, Anuradha CV. Exercise, depletion of antioxidants and antioxidant manipulation. Cell Biochem Funct 1998; 16 (4): 269–275PubMedCrossRefGoogle Scholar
  205. 205.
    Brites FD, Evelson PA, Christiansen MG, et al. Soccer players under regular training show oxidative stress but an improved plasma antioxidant status. Clin Sci 1999; 96 (4): 381–385PubMedCrossRefGoogle Scholar
  206. 206.
    Subudhi AW, Davis SL, Kipp RW, et al. Antioxidant status and oxidative stress in elite alpine ski racers. Int J Sport Nutr Exerc Metab 2001; 11 (1): 32–41PubMedGoogle Scholar
  207. 207.
    Evelson P, Gambino G, Travacio M, et al. Higher antioxidant defences in plasma and low density lipoproteins from rugby players. Eur J Clin Invest 2002; 32 (11): 818–825PubMedCrossRefGoogle Scholar
  208. 208.
    Schippinger G, Wonisch W, Abuja PM, et al. Lipid peroxidation and antioxidant status in professional American football players during competition. Eur J Clin Invest 2002; 32 (9): 686–692PubMedCrossRefGoogle Scholar
  209. 209.
    Fry RW, Morton AR, Keast D. Overtraining in athletes: an update. Sports Med 1991; 12 (1): 32–65PubMedCrossRefGoogle Scholar
  210. 210.
    Rowbottom DG, Keast D, Goodman C, et al. The haematological, biochemical and immunological profile of athletes suffering from the overtraining syndrome. Eur J Appl Physiol 1995; 70: 502–509CrossRefGoogle Scholar
  211. 211.
    Urhausen A, Kindermann W. Diagnosis of overtraining: what tools do we have? Sports Med 2002; 32 (2): 95–102PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  1. 1.Laboratoire Biologie Interuniversitaire des Activités Physiques et SportivesUniversité Blaise Pascal de Clermont-FerrandAubière CedexFrance

Personalised recommendations