Sports Medicine

, Volume 33, Issue 4, pp 285–300 | Cite as

Secular Trends in the Performance of Children and Adolescents (1980–2000)

An Analysis of 55 Studies of the 20m Shuttle Run Test in 11 Countries
  • Grant R. TomkinsonEmail author
  • Luc A. Léger
  • Tim S. Olds
  • Georges Cazorla
Review Article


It is widely believed that the performance of children and adolescents on aerobic fitness tests is declining. To test this hypothesis, this meta-analysis compared the results of 55 reports of the performance of children and adolescents aged 6–19 years who have used the 20m shuttle run test (20mSRT). All data were collected in the period 1981–2000.

Following corrections for methodological variation, the results of all studies were expressed using the common metric of running speed (km/h) at the last completed stage. Raw data were combined with pseudodata generated from reported means and standard deviations using Monte Carlo simulation. Where data were available on children and adolescents from the same country of the same age and sex, but tested at different times, linear regression was used to calculate rates of change. This was possible for 11 (mainly developed) countries, representing a total of 129 882 children and adolescents in 151 age × sex × country slices.

There has been a significant decline in performance in the 11 countries where data were available, and in most age × sex groups, with a sample-weighted mean decline of 0.43% of mean values per year. The decline was most marked in older age groups and the rate of decline was similar for boys and girls.

There has been a very rapid secular decline in the 20mSRT performance of children and adolescents over the last 20 years, at least in developed countries. The rate of decline is not related to the change in the country’s relative wealth, as quantified by per capita gross domestic product (GDP).


Gross Domestic Product Secular Trend Aerobic Fitness Australian Child Aerobic Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the following people for allowing them access to their data: Scott Baker and the South Australian Sports Institute, Georges Baquet, Serge Berthoin, Alberto Buonaccorsi, Sara Mulkearns and Jeff Walkley and the Australian Council for Health, Physical Education and Recreation. Thank you also to the following people for their kindness in providing extra information about their studies: Natalie Balagué, Mario Bellucci, Michael Booth, Colin Boreham, Jan Borms, Valerie Burke, Dean Cooley, William Duquet, Juan García, Giorgos Georgiadis, Beth Hands, Deborah Hoare, Johan Lefèvre, Matt Mahar, Craig Mahoney, Denis Massicotte, Lars McNaughton, Tony Okely, Ryszard Przeweda, Chris Riddoch, Javier Rivas, Willem van Mechelen and Emmanuel Van Praagh. No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.


  1. 1.
    Savage MP, Scott LB. Physical activity and rural middle school adolescents. J Youth Adolesc 1998; 27: 245–53CrossRefGoogle Scholar
  2. 2.
    French SA, Story M, Jeffery RW. Environmental influences on eating and physical activity. Annu Rev Public Health 2001; 22: 309–35PubMedCrossRefGoogle Scholar
  3. 3.
    Léger LA, Lambert J, Goulet A, et al. Capacité aérobie des Québécois de 6 à 17 ans -test navette de 20 mètres avec paliers de 1 minute. Can J Appl Sport Sci 1984; 9(2): 64–9PubMedGoogle Scholar
  4. 4.
    Léger LA, Mercier D, Gadoury C, et al. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci 1988; 6(2): 93–101PubMedCrossRefGoogle Scholar
  5. 5.
    Liu NY-S, Plowman SA, Looney MA. The reliability and validity of the 20-meter shuttle test in American students 12 to 15 years old. Res Q Exerc Sport 1992; 63(4): 360–5PubMedGoogle Scholar
  6. 6.
    van Mechelen W, Hlobil H, Kemper HCG. Validation of two running tests as estimates of maximal aerobic power in children. Eur J Appl Physiol Occup Physiol 1986; 55(5): 503–6PubMedCrossRefGoogle Scholar
  7. 7.
    Council of Europe. Eurofit: handbook for the Eurofit tests of physical fitness. Rome: Council of Europe, 1988Google Scholar
  8. 8.
    Australian Sports Commission. 20m shuttle run test: a progressive shuttle run test for measuring aerobic fitness. Belconnen (ACT): Australian Coaching Council, 1999Google Scholar
  9. 9.
    Brewer J, Ramsbottom R, Williams C. Multistage fitness test: a progressive shuttle-run test for the prediction of maximum oxygen uptake. Leeds: National Coaching Foundation, 1988Google Scholar
  10. 10.
    Cooper Institute for Aerobics Research. The Prudential FITNESSGRAM test administration manual. Dallas (TX): Cooper Institute for Aerobics Research, 1992Google Scholar
  11. 11.
    Riddoch CJ. The Northern Ireland health and fitness survey-1989: the fitness, physical activity, attitudes and lifestyles of Northern Ireland post-primary schoolchildren. Belfast: The Queen’s University of Belfast, 1990Google Scholar
  12. 12.
    Léger LA, Lambert J. A maximal multistage 20m shuttle run test to predict V̇O2max. Eur J Appl Physiol 1982; 49(1): 1–12CrossRefGoogle Scholar
  13. 13.
    Barnett A, Chan LYS, Bruce IC. A preliminary study of the 20m multistage shuttle run as a predictor of peak V̇O2 in Hong Kong Chinese students. Pediatr Exerc Sci 1993; 5(1): 42–50Google Scholar
  14. 14.
    Dollman J, Olds T, Norton K, et al. The evolution of fitness and fatness in 10–11-year-old Australian schoolchildren: changes in distributional characteristics between 1985 and 1997. Pediatr Exerc Sci 1999; 11(2): 108–21Google Scholar
  15. 15.
    Tomkinson GR, Olds TS, Gulbin J. Secular trends in physical performance of Australian children: evidence from the Talent Search program. J Sports Med Phys Fitness. In pressGoogle Scholar
  16. 16.
    Updyke WF, Willett MS. Physical fitness trends in American youth 1980–1989 [press release]. Bloomington (IL): Chrysler Fund-AAU Physical Fitness Program, 1989Google Scholar
  17. 17.
    Australian Council for Health, Physical Education and Recreation. Australian fitness education award: user’s manual and curriculum ideas. Adelaide (SA): ACHPER, 1996Google Scholar
  18. 18.
    Australian Sports Commission. Sport search: norms for sport related fitness tests in Australian students aged 12–17 years. Belconnen (ACT): Australian Sports Commission, 1994Google Scholar
  19. 19.
    Booth M, Macaskill P, McLellan L, et al. NSW schools fitness and physical activity survey 1997. Sydney (NSW): NSW Department of Education and Training, 1997Google Scholar
  20. 20.
    Brewer J, Ramsbottom R, Williams C. Multistage fitness test: a progressive shuttle-run test for the prediction of maximum oxygen uptake. Belconnen (ACT): Australian Coaching Council, 1988Google Scholar
  21. 21.
    Cooley D, McNaughton L. Aerobic fitness of Tasmanian secondary school children using the 20m shuttle run test. Percept Mot Skills 1999; 88(1): 188–98PubMedCrossRefGoogle Scholar
  22. 22.
    Hands B. Fitness and motor skill levels of Western Australian primary school children. Perth (WA): University of Western Australia, 2000Google Scholar
  23. 23.
    Jenner DA, Vandongen R, Beilin L. Relationships between blood pressure and measures of dietary energy intake, physical fitness, and physical activity in Australian children aged 11–12 years. J Epidemiol Community Health 1992; 46(2): 108–13PubMedCrossRefGoogle Scholar
  24. 24.
    Lloyd KC, Antonas KN. Nutritional habits and fitness levels of schoolchildren. Proceedings of the Nutrition Society of Australia twenty-fourth annual scientific meeting; 2000 Dec 3–6; Fremantle (WA). Adelaide (SA): Nutrition Society of Australia, 2000: 138Google Scholar
  25. 25.
    Okely AD, Gray T, Cotton WG. Effect of an extended stay outdoor education program on aerobic fitness. In: Gray T, Hayllar B, editors. Catalysts for change. Proceedings from the 10th National Outdoor Education Conference; 1997 Jan 20–24; Collaroy Beach (NSW). Sydney (NSW): The Outdoor Education Council, 1997: 206–10Google Scholar
  26. 26.
    Vandongen R, Jenner DA, Thompson C, et al. A controlled evaluation of a fitness and nutrition intervention program on cardiovascular health in 10- to 12-year-old children. Prev Med 1995; 24(1): 9–22PubMedCrossRefGoogle Scholar
  27. 27.
    Baquet G, Berthoin S, Padovano C, et al. Effets d’un cycle de course de duree de type intermittent (court-court) sur la condition physique des adolescents. Rev Educ Phys 2000; 40(2): 51–60Google Scholar
  28. 28.
    Beunen G, Borms J, Vrijens J, et al. Fysieke fitheid en sportbeoefening van de Vlaamse jeugd. Volumen 1: fysieke fitheid van de jeugd van 6 tot 18 jaar. Brussels: Bloso, 1991Google Scholar
  29. 29.
    Lefèvre J, Bouckaert J, Duquet W. De barometer van de fysieke fitheid van de Vlaamse jeugd 1997: de resultaten. Sport (Bloso Brussel) 1998; 4: 16–22Google Scholar
  30. 30.
    Pirnay F. Le baromètre de la condition physique. Sport 1995, 61Google Scholar
  31. 31.
    Poortmans J, Vlaeminck M, Collin M, et al. Estimation indirecte de la puissance aérobie maximale d’une population Bruxelloise masculine et féminine âgée de 6 à 23 ans. Comparaison avec une technique directe de la mesure de la consommation maximale d’oxygène. J Physiol 1986; 81: 195–201Google Scholar
  32. 32.
    Massicotte D. Partial curl-ups, push ups and multistage 20 meter shuttle run, national norms for 6 to 17 year-olds. Montreal: University of Quebec, 1990Google Scholar
  33. 33.
    Baquet G, Berthoin S, Gerbeaux M, et al. Assessment of the maximal aerobic speed with the incremental running field tests in children. Biol Sport 1999; 16(1): 23–30Google Scholar
  34. 34.
    Baquet G, Berthoin S, Gerbeaux M, et al. High-intensity aerobic training during a 10 week one-hour physical education cycle: effect on physical fitness of adolescents aged 11 to 16. Int J Sports Med 2001; 22(4): 295–300PubMedCrossRefGoogle Scholar
  35. 35.
    Baquet G, Berthoin S, Dupont G, et al. Effects d’un entrainement intermittent a haute intensite sur le pic de V̇O2 de garcons et de filles prepuberes. Sci Sports 2001; 16 (1 Suppl.): 19S–21SCrossRefGoogle Scholar
  36. 36.
    Blonc S, Falgairette G, Fayet J-C, et al. Performance aux tests de terrain d’enfants de 11 è 16 ans: influence de l’âge, du sexe et de l’activité physique. Sci Motricité 1992; 17: 11–7Google Scholar
  37. 37.
    Cazorla G. Batterie France-eval: Mesures, épreuves et barêmes: evaluation des qualités physiques des jeunes Français d’âge scolaire: 7–11 ans. Rapport pour le Secrétariat d’Etat auprès du Premier Ministre Chargé de la Jeunesse et de Sports. Paris: Ministère de la Jeunne et de Sports, 1987Google Scholar
  38. 38.
    Cazorla G, Portes A, James F. Opération Martinique-eval. Centre d’Evaluation Sport Santé, Fort de France (Martinique). Rapport pour l’Inspection d’Académie de la Martinique. Fort de France: Centre d’Evaluation Sport Santé, 1997Google Scholar
  39. 39.
    Van Praagh E, Bedu M, Falgairette G, et al. Comparaison entre V̇O2 direct et indirect chez l’enfant de 7 et 12 ans. Validation d’une épreuve de terrain. Sci Sports 1988; 3(4): 327–32CrossRefGoogle Scholar
  40. 40.
    Georgiadis G. Evaluation of physical fitness of Greek youth aged 6–18 years [dissertation]. Athens: University of Athens, 1993Google Scholar
  41. 41.
    Manios Y, Kafatos A, Codrington C. Gender differences in physical activity and physical fitness in young children in Crete. J Sports Med Phys Fitness 1999; 39(1): 24–30PubMedGoogle Scholar
  42. 42.
    Bellucci M. I test Eurofit nella scuola media Mameli di Roma. Alcmeone 1997; 1: 22–7Google Scholar
  43. 43.
    Cilia G, Bellucci M. Eurofit: tests Europei di attitudine fisica. Roma: Istituto Superiore Statale di Educazione Fisica, 1993Google Scholar
  44. 44.
    Cilia G, Bellucci M, Riva M, et al. Eurofit 1995. Roma: Istituto Superiore Statale di Educazione Fisica, 1996Google Scholar
  45. 45.
    Cilia G, Bellucci M, Bazzano C, et al. Eurofit 1997: banche dati per la scuola. Alcmeone 1997; 3: 13–32Google Scholar
  46. 46.
    Cilia G, Bazzano C, Bellucci M, et al. I risultati dei test Eurofit nella scuola Matteuccii di Roma. Alcmeone 1998; 2: 16–20Google Scholar
  47. 47.
    Council of Europe. Évaluation de l’aptitude physique: Eurofit batterie expérimentale. Rome: Council of Europe, 1986Google Scholar
  48. 48.
    van Mechelen W, van Lier WH, Hlobil H, et al. Eurofit: Handleiding met referentieschalen voor 12- tot en met 16-jarige jongens en meisjes in Nederland. Haarlem: Uitgeverij de Vrieseborch, 1991Google Scholar
  49. 49.
    Boreham CAG, Paliczka VJ, Nichols AK. A comparison of the PWC170 and 20-MST tests of aerobic fitness in adolescent schoolchildren. J Sports Med Phys Fitness 1990; 30(1): 19–23PubMedGoogle Scholar
  50. 50.
    Boreham CAG, Paliczka VJ, Nichols AK. Fitness testing of Belfast schoolchildren. 5th European research seminar on testing physical fitness; 1986 May 12–17; Formia, Italy. Strasbourg: Council of Europe, 1987: 52–7Google Scholar
  51. 51.
    Boreham C, Twisk J, Murray L, et al. Fitness, fatness, and coronary heart disease risk in adolescents: the Northern Ireland Young Hearts Project. Med Sci Sports Exerc 2001; 33(2): 270–4PubMedGoogle Scholar
  52. 52.
    Mahoney CA, Boreham CAG. Validity and reliability of fitness testing in primary school children. In: Williams T, Almond L, Sparkes A, editors. Sport and physical activity: moving towards excellence. London: E & FN Spon, 1992: 429–37Google Scholar
  53. 53.
    Mahoney C. 20-MST and PWC170 validity in non-Caucasian children in the UK. Br J Sports Med 1992; 26(1): 45–7PubMedCrossRefGoogle Scholar
  54. 54.
    Nichols AK, Riddoch CJ. The development of fitness test batteries for use in higher education. In: Trends and developments in physical education. Proceedings of the VIII Commonwealth and International Conference on Sport, Physical Education, Dance, Recreation and Health; 1986 Jul 18–23; Glasgow. London: E & FN Spon, 1986: 378–84Google Scholar
  55. 55.
    Twisk JWR, Boreham C, Cran G, et al. Clustering of biological risk factors for cardiovascular disease and the longitudinal relationship with lifestyle of an adolescent population: the Northern Ireland Young Hearts Project. J Cardiovasc Risk 1999; 6: 355–62PubMedGoogle Scholar
  56. 56.
    Mleczko E, Ozimek M. Rozwój somatyczny i motoryczny mlodziezy Krakowskiej miedzy 15 a 19 rokiem zycia z uwzglednieniem czynników srodowiskowych. Kraków: Akademia Wychowania Fizycznego, 2000Google Scholar
  57. 57.
    Przeweda R. KBN Research Project No. 002-15. Warsaw: Akademia Wychowania Fizycznego, 1999Google Scholar
  58. 58.
    Brito EM, Navarro M, García D, et al. La condición física en la población escolar de gran Canaria (10–19 años). Las Palmas de Gran Canaria, Spain: Excmo. Cabildo Insular de Gran Canaria 1995Google Scholar
  59. 59.
    García J. La condición fisica en la educación secundaria. Trabajo de investigación [dissertation]. Madrid: Universidad Nacional de Educación a Distancia, 1999Google Scholar
  60. 60.
    Prat JA, Casamort J, Balagué N, et al. Eurofit: la batería Eurofit en Catalunya. Barcelona: Secretaria General de l’Esport, 1998Google Scholar
  61. 61.
    Sainz RM. Aptitudes psiquicas y fisicas: estudio ed la aptitud fisica de los adolescentes de la provincia de Vizcaya y su relacion con la personalidad [dissertation]. Bilbao, Spain: Universidad de Deusto, 1992Google Scholar
  62. 62.
    Sainz RM. La batería Eurofit en Euskadi. Vitoria-Gasteiz, Spain: Instituto Vasco de Educación Fisica, 1996Google Scholar
  63. 63.
    Mahar MT, Rowe DA, Parker CR, et al. Criterion-referenced and norm-referenced agreement between the mile run/walk and PACER. Meas Phys Educ Exerc Sci 1997; 1(4): 245–58CrossRefGoogle Scholar
  64. 64.
    Wolford N. The difference in physical fitness levels of fifth graders according to socioeconomic groups and genders [dissertation]. Lawrence (KS): University of Kansas, 1998Google Scholar
  65. 65.
    Anderson GS. The 1600m run and multistage 20m shuttle run as predictive tests of aerobic capacity in children. Pediatr Exerc Sci 1992; 4(4): 312–8Google Scholar
  66. 66.
    Armstrong N, Williams J, Ringham D. Peak oxygen uptake and progressive shuttle run performance in boys aged 11–14 years. Res Suppl 1988; 4: 11–2Google Scholar
  67. 67.
    McVeigh SK, Payne AC, Scott S. The reliability and validity of the 20-meter shuttle test as a predictor of peak oxygen uptake in Edinburgh school children, age 13 to 14 years. Pediatr Exerc Sci 1995; 7(1): 69–79Google Scholar
  68. 68.
    Van Praagh E, Bedu M, Falgairette G, et al. Comparaison entre V̇O2max direct et indirect chez l’enfant de 7 et 12 ans. Validation d’une épreuve de terrain. Sci Sports 1988; 3(4): 327–32CrossRefGoogle Scholar
  69. 69.
    Van Praagh E, Falgairette G, Bedu M, et al. Laboratory and field tests in 7-year-old boys. In: Oseid S, Carlsen K-H, editors. Children and exercise XIII. Champaign (IL): Human Kinetics, 1989: 11–7Google Scholar
  70. 70.
    Armstrong N, Welsman JR. Assessment and interpretation of aerobic fitness in children and adolescents. Exerc Sport Sci Rev 1994; 22: 435–76PubMedCrossRefGoogle Scholar
  71. 71.
    McNaughton L, Morgan R, Smith P, et al. An investigation into the fitness levels of Tasmanian primary schoolchildren. ACHPER Healthy Lifestyles J 1996; 43(1): 4–10Google Scholar
  72. 72.
    Dawson K, Hamlin M, Ross J. Trends in the health-related physical fitness of 10–14 year old New Zealand children. J Phys Educ N Z 2001; 34(1): 26–39Google Scholar
  73. 73.
    Ministry of Education, Science and Culture. Statistical abstract of education, science and culture. Tokyo: Ministry of Education, Science and Culture, 1999Google Scholar
  74. 74.
    Ministry of Education. Statistical yearbook of education. Seoul: Ministry of Education, 1999Google Scholar
  75. 75.
    Ministry of Culture and Tourism. National survey of physical fitness. Seoul: Korean Sport Science Institute, 1998Google Scholar
  76. 76.
    Merni F, Carbonaro G. Test motori. Rome: Comitato Olimpico Nazionale Italiano, 1981Google Scholar
  77. 77.
    Przeweda R, Trzesniowski R. Sprawnosc fizyczna Polskiej mlodziezy w swietle badan z roku 1989. Warsaw: Akademia Wychowania Fizycznego, 1996Google Scholar
  78. 78.
    Harten NR. The evolution of body size and shape in Australian children [dissertation]. Adelaide (SA): University of South Australia, 1999Google Scholar
  79. 79.
    Olds TS, Harten NR. One hundred years of growth: the evolution of height, mass, and body composition in Australian children, 1899–1999. Hum Biol 2001; 73: 727–38PubMedCrossRefGoogle Scholar
  80. 80.
    Prentice AM, Jebb SA. Obesity in Britain: gluttony or sloth? BMJ 1995; 311(7002): 437–9PubMedCrossRefGoogle Scholar
  81. 81.
    Durnin JVGA. Physical activity levels: past and present. In: Norgan NG, editor. Physical activity and health. 34th symposium volume of the Society for the Study of Human Biology. New York: Cambridge University Press, 1992: 20–7CrossRefGoogle Scholar
  82. 82.
    Food and Agriculture Organisation [online]. Available from URL: [Accessed 2001 Jan 20]
  83. 83.
    Harnack LJ, Jeffery RW, Boutelle KN. Temporal trends in energy intake in the United States: an ecologic perspective. Am J Clin Nutr 2000; 71(6): 1478–84PubMedGoogle Scholar
  84. 84.
    Armstrong N, Balding J, Gentle P, et al. Peak oxygen uptake and physical activity in 11- to 16-year-olds. Pediatr Exerc Sci 1990; 2(4): 349–58Google Scholar
  85. 85.
    Cunningham DA, Stapleton JJ, MacDonald IC, et al. Daily energy expenditure of young boys as related to maximal aerobic power. Can J Appl Sport Sci 1981; 6(4): 207–11PubMedGoogle Scholar
  86. 86.
    Black C, Collins A, Snell M. Encouraging walking: the case of journey-to-school trips in compact urban areas. Urban Stud 2001; 38: 1121–41CrossRefGoogle Scholar
  87. 87.
    Roberts I. Safely to school [letter]? Lancet 1996; 347(9016): 1642PubMedCrossRefGoogle Scholar
  88. 88.
    Tudor-Locke C, Ainsworth BE, Popkin BM. Active commuting to school: an overlooked source of children’s physical activity? Sports Med 2001; 31(5): 309–13PubMedCrossRefGoogle Scholar
  89. 89.
    Pratt M, Macera CA, Blanton C. Levels of physical activity and inactivity in children and adults in the United States: current evidence and research issues. Med Sci Sports Exerc 1999; 31 (11 Suppl.): S526S–S33Google Scholar
  90. 90.
    Heath GW, Pratt M, Warren CM, et al. Physical activity patterns in American high school students: results from the 1990 Youth Behavior Risk Survey. Arch Pediatr Adolesc Med 1994; 148(11): 1131–6PubMedCrossRefGoogle Scholar
  91. 91.
    Gortmaker SL, Must A, Sobol AM, et al. Television viewing as a cause of increasing obesity among children in the United States, 1986–1990. Arch Pediatr Adolesc Med 1996; 150: 356–62PubMedCrossRefGoogle Scholar
  92. 92.
    Robinson TN, Hammer LD, Killen JD, et al. Does television viewing increase obesity and decrease physical activity?: cross-sectional and longitudinal analyses among adolescent girls. Pediatrics 1993; 91(2): 273–80PubMedGoogle Scholar
  93. 93.
    Robinson J, Godbey G. Time for life: the surprising ways Americans use their time. Pennsylvania (PA): Pennsylvania State University Press, 1999Google Scholar
  94. 94.
    Energy Information Association. [online]. Available from URL: [Accessed 2002 Feb 6]

Copyright information

© Adis Data Information BV 2003

Authors and Affiliations

  • Grant R. Tomkinson
    • 1
    Email author
  • Luc A. Léger
    • 2
  • Tim S. Olds
    • 1
  • Georges Cazorla
    • 3
  1. 1.Computer Simulation Laboratory, School of Health SciencesUniversity of South AustraliaUnderdaleAustralia
  2. 2.Department of KinesiologyUniversity of Montreal, Centre-Ville BranchMontrealCanada
  3. 3.Association for Research and Evaluation of Physical Activity and Sports, Faculty of Sport SciencesUniversity of Bordeaux IITalenceFrance

Personalised recommendations