Skip to main content
Log in

Influence of Racial Origin and Skeletal Muscle Properties on Disease Prevalence and Physical Performance

  • Leading Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Skeletal muscle properties are related to disease (e.g. obesity) and physical performance. For example, a predominance of type I muscle fibres is associated with better performance in endurance sports and a lower risk of obesity. Disease and physical performance also differ among certain racial groups. African Americans are more likely than Caucasians to develop obesity, diabetes mellitus and hypertension. Empirical studies indicate that aerobic capacity is lower in African Americans than Caucasians. Because genetics is a partial determinant of skeletal muscle properties, it is reasonable to assume that skeletal muscle properties vary as a function of race. As such, genetically determined and race-specific skeletal muscle properties may partially explain racial disparities in disease and physical performance. However, additional research is needed in this area to enable the development of more definitive conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mokdad AH, Serdula MK, Dietz WH, et al. The spread of the obesity epidemic in the United States, 1991–1998. JAMA 1999; 282: 1519–22

    Article  PubMed  CAS  Google Scholar 

  2. Harris MI, Flegal KM, Cowie CC, et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in US adults. Diabetes Care 1998; 21: 518–24

    Article  PubMed  CAS  Google Scholar 

  3. Sacco RL, Boden-Albala B, Abel G, et al. Race-ethnic disparities in the impact of stroke risk factors: the northern Manhattan stroke study. Stroke 2001; 32: 1725–31

    Article  PubMed  CAS  Google Scholar 

  4. Anand SS, Yusuf S, Jacobs R, et al. Risk factors, atherosclerosis, and cardiovascular disease among Aboriginal people in Canada: the Study of Health Assessment and Risk Evaluation of Aboriginal People (SHARE-AP). Lancet 2001; 358: 1147–53

    Article  PubMed  CAS  Google Scholar 

  5. Bassett DR. Skeletal muscle characteristics: relationships to cardiovascular risk factors. Med Sci Sports Exerc 1994; 26: 957–66

    PubMed  Google Scholar 

  6. Simoneau JA, Bouchard C. Skeletal muscle metabolism in normal weight and obese men and women [abstract]. Int J Obesity 1993; 17: 31

    Google Scholar 

  7. Ama PFM, Simoneau JA, Boulay MR, et al. Skeletal muscle characteristics in sedentary black and Caucasian males. J Appl Physiol 1986; 61: 1758–61

    PubMed  CAS  Google Scholar 

  8. Duey WJ, Bassett DR, Torok DJ, et al. Skeletal muscle fiber type and capillary density in college-aged blacks and whites. Ann Hum Biol 1997; 24: 323–31

    Article  PubMed  CAS  Google Scholar 

  9. Wu Z, Tanner WJ, Pories WJ, et al. Effects of obesity and ethnicity on muscle fiber type [abstract]. Med Sci Sports Exerc 2000; 32 Suppl. 5: S284

    Google Scholar 

  10. Suminski RR, Robertson RJ, Goss FL, et al. Peak oxygen consumption and skeletal muscle bioenergetics in African American and Caucasian men. Med Sci Sports Exerc 2000; 32: 2059–66

    Article  PubMed  CAS  Google Scholar 

  11. Hunter GR, Weinsier RL, McCarthy JP, et al. Hemoglobin, muscle oxidative capacity, and V̇O2max in African-American and Caucasian women. Med Sci Sports Exerc 2001 Oct; 33 (10): 1739–43

    Article  PubMed  CAS  Google Scholar 

  12. Ivy JL, Costill DL, Maxwell BD. Skeletal muscle determinants of maximum aerobic power in man. Eur J Appl Physiol 1980; 44 (1): 1–8

    Article  CAS  Google Scholar 

  13. Boulay MR, Ama PFM, Bouchard C. Racial variation in work capacities and powers. Can J Sports Sci 1988; 13: 127–35

    CAS  Google Scholar 

  14. Walker AJ, Bassett DR, Duey WJ, et al. Cardiovascular and plasma catecholamine responses to exercise in Blacks and Whites. Hypertension 1992; 20: 542–8

    Article  PubMed  CAS  Google Scholar 

  15. Pivarnek JM, Dwyer MC, Lauderdale MA. The reliability of aerobic capacity (VȮ2max) testing in adolescent girls. Res Q Exerc Sport 1996; 67: 345–8

    Google Scholar 

  16. Trowbridge CA, Gower BA, Nagy TR, et al. Maximal aerobic capacity in African-American and Caucasian prepubertal children. Am J Physiol 1997; 273: E809–14

    Google Scholar 

  17. Duey WJ, Brien WL, Crutchfield AB, et al. Effects of exercise training on aerobic fitness inAfrican-American females. Ethn Dis 1998; 8: 306–11

    PubMed  CAS  Google Scholar 

  18. Hunter GR, Weinsier RL, Darnell BE, et al. Racial differences in energy expenditure and aerobic fitness in premenopausal women. Am J Clin Nutr 2000; 71: 500–6

    PubMed  CAS  Google Scholar 

  19. Weston AR, Mbambo Z, Myburch KH. Running economy of African and Caucasian distance runners. Med Sci Sports Exerc 2000; 33: 1130–4

    Google Scholar 

  20. Lillioja S, Young AA, Culter CL, et al. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J Clin Invest 1987; 80: 415–24

    Article  PubMed  CAS  Google Scholar 

  21. Kriketos AD, Pan DA, Lillioja S, et al. Interrelationship between muscle morphology, insulin action, and adiposity. Am J Physiol 1996; 270 (6 Pt 2): R1332–9

    Google Scholar 

  22. Lithel H, Lindgarde F, Hellsing K, et al. Body weight, skeletal muscle morphology, and enzyme activities in relation to fasting serum insulin concentration and glucose tolerance in 48- year-old men. Diabetes 1981; 30: 19–25

    Article  Google Scholar 

  23. Hernandez N, Torres SH, Vera O, et al. Muscle fiber composition and capillarization in relation to metabolic alterations in hypertensive men. J Med 2001; 32 (1–2): 67–82

    PubMed  CAS  Google Scholar 

  24. Bonen A, Tan MH, Watson-Wright WM. Insulin binding and glucose uptake differences in rodent skeletal muscles. Diabetes 1981; 30: 702–4

    Article  PubMed  CAS  Google Scholar 

  25. Henriksen EJ, Bourey RE, Rodnick KJ, et al. Glucose transporter protein content and glucose transport capacity in rat skeletal muscle. Am J Physiol 1990; 259: E593–8

    Google Scholar 

  26. Gaster M, Staehr P, Beck-Nielsen H, et al. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease. Diabetes 2001; 50 (6): 1324–9

    Article  PubMed  CAS  Google Scholar 

  27. Simoneau JA, Colberg SR, Thaete FL, et al. Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women. FASEB J 1995; 9 (2): 273–8

    PubMed  CAS  Google Scholar 

  28. Cortez MY, Torgan CE, Brozinick JT, et al. Insulin resistance of obese Zucker rats exercise trained at two different intensities. Am J Physiol 1991; 261: E613–9

    Google Scholar 

  29. Wade AJ, Marbut MM, Round JM. Muscle fiber type and etiology of obesity. Lancet 1990; 335 (8693): 805–8

    Article  PubMed  CAS  Google Scholar 

  30. Raben A, Mygind E, Astrup A. Lower activity of oxidative key enzymes and smaller fiber areas in skeletal muscle of postobese women. Am J Physiol 1998; 275 (3 Pt 1): E487–94

    Google Scholar 

  31. Colberg SR, Simoneau JA, Thaete FL, et al. Skeletal muscle utilization of free fatty acids in women with visceral obesity. J Clin Invest 1995; 95: 1846–53

    Article  PubMed  CAS  Google Scholar 

  32. Juhlin-Dannfelt A, Frisk-Homberg M, Karlsson J, et al. Central and peripheral circulation in relation to muscle-fibre composition in normo-and hyper-tensive man. Clin Sci 1979; 56: 335–40

    PubMed  CAS  Google Scholar 

  33. Frisk-Holmberg M, Jorfeldt L, Juhlin-Dannfelt A, et al. Muscle fiber composition in relation to blood pressure response to isometric exercise in normotensive and hypertensive subjects. Acta Med Scand 1983; 213: 21–6

    Article  PubMed  CAS  Google Scholar 

  34. Duey WA, Bassett DR, Torok DJ, et al. Racial comparison of hemodynamic responses to dynamic exercise and their relationship to muscle fiber composition [abstract]. Med Sci Sports Exerc 1993; 25 Suppl. 5: S7

    Google Scholar 

  35. Houmard JA, Weidner ML, Koves TR, et al. Association between muscle fiber composition and blood pressure levels during exercise in men. Am J Hypertens 2000; 13 (6 Pt 1): 586–92

    Article  PubMed  CAS  Google Scholar 

  36. Ricoy JR, Encinas AR, Cabello A, et al. Histochemical study of the vastus lateralis muscle fiber types of athletes. J Physiol Biochem 1998; 54 (1): 41–7

    PubMed  CAS  Google Scholar 

  37. Turner DL, Hoppeler H, Claassen H, et al. Effects of endurance training on oxidative capacity and structural composition of human arm and leg muscles. Acta Physiol Scand 1997; 161 (4): 459–64

    Article  PubMed  CAS  Google Scholar 

  38. Bell GJ, Syrotuik D, Martin TP, et al. Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. Eur J Appl Physiol 2000; 81 (5): 418–27

    Article  PubMed  CAS  Google Scholar 

  39. Boros-Hatfaludy S, Fekete G, Apor P. Metabolic enzyme activity patterns inmuscle biopsy samples in different athletes. Eur J Appl Physiol Occup Physiol 1986; 55 (3): 334–8

    Article  PubMed  CAS  Google Scholar 

  40. Chilibeck PD, Bell GJ, Socha T, et al. The effect of aerobic exercise training on the distribution of succinate dehydrogenase activity throughout muscle fibers. Can J Appl Physiol 1998; 23 (1): 74–86

    Article  PubMed  CAS  Google Scholar 

  41. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 1984; 56: 831–8

    PubMed  CAS  Google Scholar 

  42. Bergh U, Thorstensson A, Sjodin B. Maximal oxygen uptake and muscle fiber types in trained and untrained humans. Med Sci Sports 1978; 10: 151–4

    PubMed  CAS  Google Scholar 

  43. Taunton JE, Maron H, Wilkinson JG. Anaerobic performance in middle and long distance runners. Can J Appl Sport Sci 1981; 6 (3): 109–13

    PubMed  CAS  Google Scholar 

  44. Froese EA, Houston ME. Performance during the Wingate anaerobic test and muscle morphology inmales and females. Int J Sports Med 1987; 8 (1): 35–9

    Article  PubMed  CAS  Google Scholar 

  45. Inbar O, Kaiser P, Tesch P. Relationship between leg muscle fiber type distribution and leg exercise performance. Int J Sports Med 1981; 2 (3): 154–9

    Article  PubMed  CAS  Google Scholar 

  46. Lee J, Heng D, Chia KS, et al. Risk factors and incident coronary heart disease in Chinese, Malay and Asian Indian males: the Singapore Cardiovascular Cohort Study. Int J Epidemiol 2001; 30: 983–8

    Article  PubMed  CAS  Google Scholar 

  47. Riste L, Khan F, Cruickshank K. High prevalence of type 2 diabetes in all ethnic groups, including Europeans, in a British inner city: relative poverty, history, inactivity, or 21st Century Europe. Diabetes Care 2001; 24: 1377–83

    Article  PubMed  CAS  Google Scholar 

  48. Stern MP, Gonzalez C, Mitchell BD, et al. Genetic and environmental determinants of type II diabetes in Mexico City and San Antonio. Diabetes 1992; 41: 484–92

    Article  PubMed  CAS  Google Scholar 

  49. Mitchell BD, Kammerer CM, Blangero J, et al. Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans: the San Antonio Family Heart Study. Circulation 1996; 94 (9): 2159–70

    Article  PubMed  CAS  Google Scholar 

  50. Reed TE. Caucasian genes in American Negroes. Science 1969; 165: 762–8

    Article  PubMed  CAS  Google Scholar 

  51. Gleiberman L. Nativity and race. Hypertension 1999; 34 (5): e7

    Article  Google Scholar 

  52. Samson J, Yerles M. Racial differences in sports performance. Can J Sport Sci 1988; 13: 109–16

    PubMed  CAS  Google Scholar 

  53. The National Collegiate Athletic Association (NCAA) Research. NCAA student-athlete ethnicity percentages. NCAA [online]. Available from URL: http://www.ncaa.org/library/research/participation_rates/1982–2000/183–188.pdf [Accessed 2002 Jul 9]

  54. Lapchick RE, Mathews KJ. Sport in society: 2001 racial and gender report card. Northeastern University [online]. Available from URL: http://www.sportinsociety.org/rgrc2001.html [Accessed 2002 Jul 9]

  55. Walter JC. The changing status of the black athlete in the 20th century United States. City of Liverpool Community College. American Studies [online]. Available at URL: http://www.johncarlos.com/walters.htm [Accessed 2002 Jan 15]

  56. Rowe N, Champion R. Sports participation and ethnicity in England: National Survey 1999/2000. Sport England Research. 2000 Oct; SE1073. Sport England [online]. Available at URL: http://www.sportengland.org/resources/pdfs/people/ethnic_survey.pdf [Accessed 2002 Aug 1]

  57. Bosch AN, Goslin BR, Noakes TD, et al. Physiological differences between black and white runners during a treadmill marathon. Eur J Appl Physiol 1990; 61: 68–72

    Article  CAS  Google Scholar 

  58. Di Prampero PE, Cerretelli P. Maximal muscular power (aerobic and anaerobic) in African Natives. Ergonomics 1969; 12 (1): 51–9

    Article  PubMed  Google Scholar 

  59. Ama PFM, Lagasse P, Bouchard C, et al. Anaerobic performance in Black and White subjects. Med Sci Sports Exerc 1990; 22 (4): 508–11

    PubMed  CAS  Google Scholar 

  60. Weston AR, Karamizrak O, Smith A, et al. African runners exhibit greater fatigue resistance, lower lactate accumulation and higher oxidative enzyme activity. J Appl Physiol 1999; 86: 915–23

    PubMed  CAS  Google Scholar 

  61. Arnold DL, Matthews PM, Radda GK. Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31P NMR. Magn Reson Med 1984; 1: 307–15

    Article  PubMed  CAS  Google Scholar 

  62. Taylor DJ, Bore PJ, Styles P, et al. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol Biol Med 1983; 1: 77–94

    PubMed  CAS  Google Scholar 

  63. McCully KK, Boden BP, Tuchler M, et al.Wrist flexor muscles of elite rowers measured with magnetic resonance spectroscopy. J Appl Physiol 1989; 67: 926–32

    PubMed  CAS  Google Scholar 

  64. Mizuno M, Secher NH, Quistorff B. 31P-NMR spectroscopy, rsEMG, and histochemical fiber types of human wrist flexor muscles. J Appl Physiol 1994; 76: 531–8

    PubMed  CAS  Google Scholar 

  65. Gyulai L, Roth Z, Leigh JS, et al. Bioenergetic studies of mitochondrial oxidative phosphorylation using 31P-NMR. J Biol Chem 1985; 260: 3947–54

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard R. Suminski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suminski, R.R., Mattern, C.O. & Devor, S.T. Influence of Racial Origin and Skeletal Muscle Properties on Disease Prevalence and Physical Performance. Sports Med 32, 667–673 (2002). https://doi.org/10.2165/00007256-200232110-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200232110-00001

Keywords

Navigation