Advertisement

Sports Medicine

, Volume 22, Issue 3, pp 198–212 | Cite as

Stress Fractures

Current Concepts of Diagnosis and Treatment
  • Michael T. Reeder
  • Bruce H. Dick
  • Julia K. Atkins
  • Anneke B. Pribis
  • John M. Martinez
Injury Clinic

Abstract

The stress fracture is a common injury seen by healthcare professionals caring for athletes. They have been described in numerous areas of the skeletal system and in multiple sports. However, they are most commonly seen in the lower extremities, with running the reported cause in most cases.

Stress fractures result from repetitive, cyclic loading of bone which overwhelms the reparative ability of the skeletal system. Mechanically, three events may lead to stress fractures. First, the applied load can be increased. Secondly, the number of applied stresses can increase. Finally, the surface area over which the load is applied can be decreased.

Diagnosis requires thorough clinical evaluation with a high index of suspicion for stress fractures. History must focus on examining the athletes training regimen, especially any changes in distance, running surface and type of shoe. Physical examination varies depending on the location of the stress fracture. Ultrasound is a possible adjunct to the physical examination.

Initial plain radiological evaluation may be normal, especially early in the course of a stress fracture. Further radiological evaluation may be necessary to make a definitive diagnosis. Repeating plain radiographs, bone scintigraphy, magnetic resonance imaging and computerised tomography are all possible options.

Treatment options begin with rest and cessation of the precipitating activity. This should be ‘active rest’ in which the athlete continues to exercise depending on the site of the fracture. The athlete should be evaluated from a biomechanical point of view and any abnormalities dealt with prior to rehabilitation. Possible adjuncts to treatment include pneumatic braces and electromagnetic field therapy.

There are specific stress fractures that must be considered at-risk for complications of healing. The treatment of these fractures begins with immobilisation and may require surgery pending response to therapy.

Stress fractures occur more frequently in female athletes in relation to their male counterparts. There is a demonstrated relationship to eating disorders, amenorrhea and osteoporosis, or the female athlete triad. Thus, stress fractures in the female athlete requires additional investigation into those areas.

The diagnosis and treatment of stress fractures is a challenge for the physician caring for the athlete. It requires a high index of suspicion combined with a strong knowledge of the at-risk stress fractures and their complications. Accurate and timely diagnosis is required to prevent possible costly and disabling complications.

Keywords

Adis International Limited Stress Fracture Eating Disorder Female Athlete Ballet Dancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matheson GO, Clement DB, McKenzie DC, et al. Stress fractures in athletes: a study of 320 cases. Am J Sports Med 1987; 15 (1): (46–58)PubMedCrossRefGoogle Scholar
  2. 2.
    McBryd. AM. Stress fractures in athletes. J Sports Med 1975; 3 212–7CrossRefGoogle Scholar
  3. 3.
    Devas MB. Stress fracture of the tibia in athletes or ‘shin soreness’. J Bone Joint Surg Am 1958; 40B: (227–36)Google Scholar
  4. 4.
    Sullivan D, Warren RF, Pavlov H, et al. Stress fractures in 51 runners. Clin Orthop 1984 Jul/Aug; 187: 188–92PubMedGoogle Scholar
  5. 5.
    Zelko RR, DePalma BF. Stress fractures in athletes: diagnosis and treatment. Postgrad Adv Sports Med 1986; 1–20Google Scholar
  6. 6.
    Daffner RH, Martinez S, Gehweiler JA. Stress fractures in runners. JAMA 1982 Feb; 247(7): 1039–41PubMedCrossRefGoogle Scholar
  7. 7.
    Uhmans H, Pavlov H. Stress fractures of the lower extremity. Semin Roentgenol 1994 Apr; XXIX(2): 176–93CrossRefGoogle Scholar
  8. 8.
    Kottmeier SA, Hanks GA, Kalenak A. Fibular stress fracture associated with distal tibiofibular synostosis in an athlete. Clin Orthop 1992; 281: (195–8)PubMedGoogle Scholar
  9. 9.
    Reider B, Falconiero R, Yurkofsky J. Nonunion of a medial malleolus stress fracture. Am J Sports Med 1993; 21 (3): (478–81)PubMedCrossRefGoogle Scholar
  10. 10.
    Kadel NJ, Teitz CC, Kronmal RA. Stress fractures in ballet dancers. Am J Sports Med 1992; 20 (4): (445–9)PubMedCrossRefGoogle Scholar
  11. 11.
    Leinberry CF, McShane RB, Stewart WG, et al. A displaced subtrochanteric stress fracture in a young amenorrheic athlete. Am J Sports Med 1992; 20 (4): (485–7)PubMedCrossRefGoogle Scholar
  12. 12.
    Orava S, Karpakka J, Taimela S, et al. Stress fracture of the medial malleolus. J Bone Joint Surg Am 1995 Mar; 77-A (3): 362–5Google Scholar
  13. 13.
    Strudwick WJ, Goodman SB. Proximal fibular stress fracture in an aerobic dancer: a case report. Am J Sports Med 1992; 20 (4): (481–2)PubMedCrossRefGoogle Scholar
  14. 14.
    Tanabe S, Nakahira J, Bando E, et al. Fatigue fracture of the ulna occurring in pitchers of fast-pitch softball. Am J Sports Med 1991; 19 (3): (317–21)PubMedCrossRefGoogle Scholar
  15. 15.
    Loosli AR, Leslie M. Stress fracture of the distal radius: a case report. Am J Sports Med 1991; 19 (5): (523–4)PubMedCrossRefGoogle Scholar
  16. 16.
    Nuber GW, Diment MT. Olecranon stress fractures in throwers. Clin Orthop 1992 May; 278: 58–61PubMedGoogle Scholar
  17. 17.
    Holden DL, Jackson DW. Stress fracture of the ribs in female rowers. Am J Sports Med 1985; 13 (5): (342–7)PubMedCrossRefGoogle Scholar
  18. 18.
    Alfred RH, Belhobek G, Bergfeld JA. Stress fractures of the tarsal navicular: a case report. Am J Sports Med 1992; 20 (6): (766–8)PubMedCrossRefGoogle Scholar
  19. 19.
    Schils J, Hauzeur J. Stress fracture of the sacrum. Am J Sports Med 1992; 20 (6): (769–70)PubMedCrossRefGoogle Scholar
  20. 20.
    Yasuda T, Miyazaki K, Tada K, et al. Stress fracture of the right distal femur following bilateral fractures of the proximal fibulas: a case report. Am J Sports Med 1992; 20 (6): (771–4)PubMedCrossRefGoogle Scholar
  21. 21.
    Black KP, Ehlart KJ. A stress fracture of the lateral process of the talus in a runner: a case report. J Bone Joint Surg Am 1994; 76-A(3):441–3Google Scholar
  22. 22.
    Atwell EA, Jackson DW. Stress fractures of the sacrum in runners. Am J Sports Med 1991; 19 (5): (531–3)PubMedCrossRefGoogle Scholar
  23. 23.
    Teitz CC, Harrington RM. Patellar stress fracture. Am J Sports Med 1992; 20 (6): (761–5)PubMedCrossRefGoogle Scholar
  24. 24.
    Ward WG, Bergfeld JA, Carson WG. Stress fracture of the base of the acromial process. Am J Sports Med 1994; 22 (1): (146–7)PubMedCrossRefGoogle Scholar
  25. 25.
    Bollen SR, Robinson DG, Crichton KJ, et al. Stress fractures of the ulna in tennis players using a double-handed backhand stroke. Am J Sports Med 1993; 21 (5): (751–2)PubMedCrossRefGoogle Scholar
  26. 26.
    Rettig AC, Beltz HF. Stress fracture in the humérus in an adolescent tennis tournament player. Am J Sports Med 1985; 13 (1): (55–8)PubMedCrossRefGoogle Scholar
  27. 27.
    Khan KM, Fuller PJ, Brukner PB, et al. Outcome of conservative and surgical management of navicular stress fracture in athletes. Am J Sports Med 1992; 20 (6): (657–66)PubMedCrossRefGoogle Scholar
  28. 28.
    Bennell KL, Malcolm SA, Thomas SA, et al. The incidence and distribution of stress fractures in competitive track and field athletes. A twelve-month prospective study. Am J Sports Med 1996; 24 (2): (211–7)Google Scholar
  29. 29.
    Brukner P, Bradshaw C, Khan KM, et al. Stress fractures: a review of 180 cases. Clin J Sports Med 1996; 6 (2): (85–9)CrossRefGoogle Scholar
  30. 30.
    Greaney RB, Gerber FH, Laughlin RL, et al. Distribution and natural history of stress fractures in US Marine recruits. Radiology 1983; 146: (339–46)PubMedGoogle Scholar
  31. 31.
    Frederichson M, Bergman AG, Hoffman KL, et al. Tibial stress reaction in runners: correlation of clinical symptoms and scintography with a new MRI grading system. Am J Sports Med 1995; 23 (4): (472–81)CrossRefGoogle Scholar
  32. 32.
    Stanitski CL, McMaster JH, Scranton PE. On the nature of stress fractures. Am J Sports Med 1978; 6 (6): (391–6)PubMedCrossRefGoogle Scholar
  33. 33.
    Pester S, Smith PC. Stress fractures in the lower extremities of soldiers in basic training. Orthop Rev 1992 Mar; 21(3): 297–303PubMedGoogle Scholar
  34. 34.
    Hulkko A, Orava S. Stress fractures in athletes. Int J Sports Med 1987; 8 (3): (221–6)PubMedCrossRefGoogle Scholar
  35. 35.
    Plasschaert VF, Johansson CG, Micheli LJ. Anterior tibial stress fracture treated with intramedullary nailing: a case report. Clin J Sport Med 1995; 5 (1): (58–62)PubMedCrossRefGoogle Scholar
  36. 36.
    Mendez AA, Eyster RL. Displaced nonunion stress fracture of the femoral neck treated with internal fixation and bone graft - a case report and review of the literature. Am J Sports Med 1992; 20 (2): (230–3)PubMedCrossRefGoogle Scholar
  37. 37.
    Scully TJ, Besterman G. Stress fracture: a preventable training injury. Mil Med 1982 Apr; 147: 285–7PubMedGoogle Scholar
  38. 38.
    Sallis RE, Jones K. Stress fractures in athletes. Postgrad Med 1991 May; 89(6): 185–92PubMedGoogle Scholar
  39. 39.
    Park JB. Biomaterials science and engineering. New York: Plenum Press, 1984CrossRefGoogle Scholar
  40. 40.
    Rockwood CA, Green DP. Fractures in adults. Philadelphia: J.B. Lippincott Co., 1991: 1–8Google Scholar
  41. 41.
    Giladi M, Milgrom C, Simkin A, et al. Stress fractures - identifiable risk factors. Am J Sports Med 1991; 19 (6): (647–52)PubMedCrossRefGoogle Scholar
  42. 42.
    Junqueira LC, Carneiro J, Kelley RO. Basic histology. Norwalk (CT): Appleton & Lange, 1992Google Scholar
  43. 43.
    Johnson LC. Morphologic analysis in pathology in bone bio-dynamics. In: Frost HM, editor. Bone dynamics. Boston: Little, Brown & Co., 1963:535–49Google Scholar
  44. 44.
    McBryde AM. Stress fractures in runners. In: D’Ambrosia R, Drez Jr D, editors. Prevention and treatment of running injuries. Thorofare (NJ): Charles B. Slack Inc., 1982: 21–42Google Scholar
  45. 45.
    Johnson AW, Weiss CB, Wheeler DL. Stress fractures of the femoral shaft in athletes - more common than expected: a new clinical test. Am J Sports Med 1994; 22 (2): (248–56)PubMedCrossRefGoogle Scholar
  46. 46.
    Devas M. Ultrasonic assessment of stress fractures. BMJ 1983 May; 286(5): 1479–80Google Scholar
  47. 47.
    Savoca CJ. Stress fractures: a classification of the earliest radio-graphic signs. Radiology 1971; 100: (519–24)PubMedGoogle Scholar
  48. 48.
    Bradshaw C, Khan KM, Brukner P. Stress fracture of the body of the talus in athletes demonstrated with computer tomography. Clin J Sports Med 1996; 6(1): (48–51)CrossRefGoogle Scholar
  49. 49.
    Wilcox Jr JR, Moniot AL, Green JP. Bone scanning in the evaluation of exercise related stress injuries. Radiology 1977; 123: (699–703)PubMedGoogle Scholar
  50. 50.
    Prather JL, Nusynitz ML, Snowdy HA, et al. Scintographic findings in stress fractures. J Bone Joint Surg 1977; 59: (869–74)PubMedGoogle Scholar
  51. 51.
    Taunton JE, Clement DB, Webber D. Lower extremity stress fractures in athletes. Physician Sports Med 1981 Jan; 9(1): 77–86Google Scholar
  52. 52.
    Zwas ST, Elkanovitch R, Frank G. Interpretation and classification of bone scintigraphic findings in stress fractures. J Nucl Med 1987 Apr; 28(4): 452–7PubMedGoogle Scholar
  53. 53.
    Steinbronn DJ, Bennett GL, Kay DB. The use of magnetic resonance imaging in the diagnosis of stress fractures of the foot and ankle: four case reports. Foot Ankle 1994; 15: (80–3)PubMedGoogle Scholar
  54. 54.
    Burton EM, Amaker BH. Stress fracture of the great toe sesa-moid in a ballerina: MRI appearance. Pediatr Radiol 1994; 24: (37–8)PubMedCrossRefGoogle Scholar
  55. 55.
    Saifuddin A, Chalmers AG, Butt WP. Longitudinal stress fractures of the tibia: MRI features in two cases. Clin Radiol 1994; 49: (490–5)PubMedCrossRefGoogle Scholar
  56. 56.
    Schils JP, Andrish JT, Piraino DW, et al. Medial malleolar stress fractures in seven patients: review of the clinical and imaging features. Radiology 1992; 185: (219–21)PubMedGoogle Scholar
  57. 57.
    Laroche M, Rousseau H, Jacquemier JM, et al. Unusual stress fracture on the roof of the acetabulum: magnetic resonance imaging. J Rheumatol 1991; 18: (115–6)PubMedGoogle Scholar
  58. 58.
    Lee JK, Yao L. Stress fractures: MR imaging. Radiology 1988; 169: (217–20)PubMedGoogle Scholar
  59. 59.
    Stafford SA, Rosenthal D, Gebhardt MC, et al. MRI in stress fracture. Am J Radiol 1986; 147: (553–6)Google Scholar
  60. 60.
    Yao L, Lee JL. Occult intraosseus fracture: assessment with MR imaging. Radiology 1987; 164: (763–6)Google Scholar
  61. 61.
    Orava S, Karpakka J, Hulkko A, et al. Diagnosis and treatment of stress fractures located at the mid-tibial shaft in athletes. Int J Sports Med 1991; 12 (4): (419–22)PubMedCrossRefGoogle Scholar
  62. 62.
    Dale PA, Brook JT, Kelly PJ. Fracture healing with elevated venous pressure. 35th Annual Meeting ORS; 1989 Feb 6–9; Las VegasGoogle Scholar
  63. 63.
    Whitelaw GP, Wetzler MJ, Levy AS, et al. A pneumatic leg brace for the treatment of tibial stress fractures. Clin Orthop 1991 Sep; 270: 301–5PubMedGoogle Scholar
  64. 64.
    Dickson TB, Kichline PD. Functional management of stress fractures in female athletes using a pneumatic leg brace. Am J Sports Med 1987; 15 (1): (86–9)PubMedCrossRefGoogle Scholar
  65. 65.
    Bergfeld JA, Khoury M. Stress fractures in sports. Sports Medicine Symposium: 1994 Sep 14–16; Burlington (VT). Vermont: University of Vermont, 1994: 144–65Google Scholar
  66. 66.
    Bassett CAL, Mitchell SN, Gaston SR, et al. Treatment of un-united tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Joint Surg Am 1981; 63A: (511–23)Google Scholar
  67. 67.
    Bassett CAL, Mitchell SN, Gaston SR. Pulsing electromagnetic field treatment in ununited fractures and failed arthrodeses. JAMA 1982; 247: (623–8)PubMedCrossRefGoogle Scholar
  68. 68.
    Rettig AC, Shelbourne KD, McCarroll JR, et al. The natural history and treatment of delayed union stress fractures of the anterior cortex of the tibia. Am J Sports Med 1988; 16 (3): (250–5)PubMedCrossRefGoogle Scholar
  69. 69.
    Brahms MA, Fumich RM, Ippolito VD. Atypical stress fractures of the tibia in a professional athlete. Am J Sports Med 1980; 8: (131–2)PubMedCrossRefGoogle Scholar
  70. 70.
    Green NE, Rogers RA, Lipscomb AB. Nonunions of stress fractures of the tibia. Am J Sports Med 1985; 13 (3): (171–6)PubMedCrossRefGoogle Scholar
  71. 71.
    Pribis AB, Reeder MT, Dick BD. Anterior tibial stress fracture progressing to complete fracture: a case report [abstract no. 30]. Med Sci Sports Exerc 1996; 28 Suppl.: S5Google Scholar
  72. 72.
    Barrick EP, Jackson CB. Prophylactic intramedullary fixation of the tibia for stress fractures in a professional athlete. J Orthop Trauma 1992; 6 (2): (241–4)PubMedCrossRefGoogle Scholar
  73. 73.
    Hershman EB, Lombardo J, Bergfeld JA. Femoral shaft stress fractures in athletes. Clin Sports Med 1990; 9 (1): (111–9)PubMedGoogle Scholar
  74. 74.
    Johansson C, Ekenman I, Tornkvist H, et al. Stress fractures of the femoral neck in athletes. Am J Sports Med 1990; 18 (5): (524–8)PubMedCrossRefGoogle Scholar
  75. 75.
    Bellah RD, Summerville DA, Treves ST, et al. Low-back pain in adolescent athletes: detection of stress injury to the pars interarticularis with SPECT. Radiology 1991: 180: 509–12PubMedGoogle Scholar
  76. 76.
    Micheli LJ. Low back pain in the adolescent: differential diagnosis. Am J Sports Med 1979; 7 (6): (362–4)PubMedCrossRefGoogle Scholar
  77. 77.
    Letts M, Smallman T, Afanasiev R, et al. Fracture of the pars interarticularis in adolescent athletes: a clinical biomechani-cal analysis. J Pediatr Orthop 1986; 6: (40–6)PubMedCrossRefGoogle Scholar
  78. 78.
    Drinkwater BL, Nilson K, Chesnut CH, et al. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med 1984; 311: (277–80)PubMedCrossRefGoogle Scholar
  79. 79.
    Skolnick AA. ‘Female athlete triad’ risk for women. JAMA 1993; 270: (921–3)PubMedCrossRefGoogle Scholar
  80. 80.
    Nativ A, Agostini R, Drinkwater B, et al. The female athlete triad: the inter-relatedness of disordered eating, amenorrhea, and osteoporosis. Clin J Sport Med 1994; 13 (2): (405–18)Google Scholar
  81. 81.
    Dummer GM, Rosen LW, Heusner WW. Pathogenic weight-control behavior of young competitive swimmers. Physician Sports Med 1987; 15: (75–86)Google Scholar
  82. 82.
    Rosen LW, Hough DO. Pathogenic weight control behaviors of female college gymnasts. Physician Sports Med 1988; 16: (141–6)Google Scholar
  83. 83.
    Rosen LW, McKeag DB, Hough DO, et al. Pathogenic weight control behaviors of female college athletes. Physician Sports Med 1986; 14: (79–86)Google Scholar
  84. 84.
    Squire DL. Female athletes. Pediatr Rev 1987; 9 (6): (183–90)PubMedCrossRefGoogle Scholar
  85. 85.
    Walberg JL, Johnson CS. Menstrual function and eating behavior in female elite athletes. Med Sci Sports Exerc 1991; 23: (30–6)PubMedGoogle Scholar
  86. 86.
    Johnson MD. Disordered eating in active and athletic women. Clin J Sport Med 1994; 13 (2): (355–69)Google Scholar
  87. 87.
    Malina RM, Spirduso W, Tate C, et al. Age at menarche and selected menstrual characteristics in athletes at different competitive levels and in different sports. Med Sci Sports 1978; 10 (3): (218–22)PubMedGoogle Scholar
  88. 88.
    Warren MP. The effects of exercise on pubertal progression and reproductive function in girls. J Clin Endocrinol Metab 1980; 51 (5): (1150–7)PubMedCrossRefGoogle Scholar
  89. 89.
    Erdelyi GJ. Effects of exercise on the menstrual cycle. Physician Sports Med 1976; 4: (79–84)Google Scholar
  90. 90.
    Speroff L, Redwine DB. Exercise and menstrual function. Physician Sports Med 1980; 8: (42–9)Google Scholar
  91. 91.
    Baker ER, Mather RS, Kirk RF, et al. Female runners and secondary amenorrhea: correlation with age, parity, mileage, and plasma hormonal and sex-hormone-binding globulin concentrations. Fertil Steril 1981; 36 (2): (183–7)PubMedGoogle Scholar
  92. 92.
    Feicht CB, Johnson TS, Martin BJ, et al. Secondary amenorrhea in athletes. Lancet 1978; II (8100): (1145)-6CrossRefGoogle Scholar
  93. 93.
    Barrow GW, Saha S. Menstrual irregularity and stress fractures in collegiate female distance runners. Am J Sports Med 1988; 16: (209–16)PubMedCrossRefGoogle Scholar
  94. 94.
    Loucks AB, Horvath SM. Athletic amenorrhea: a review. Med Sci Sports Exerc 1985; 17 (1): (56–72)PubMedGoogle Scholar
  95. 95.
    Otis CL. Exercise associated amenorrhea. Clin Sports Med 1992; 11 (2): (351–62)PubMedGoogle Scholar
  96. 96.
    Shangold M, Rebar RW, Wentz AC, et al. Evaluation and management of menstrual dysfunction in athletes. JAMA 1990; 263(12): (1665–9)PubMedCrossRefGoogle Scholar
  97. 97.
    Sundgot-Borgen J. Prevalence of eating disorders in elite female athletes. Int J Sport Nutr 1993; 3: (29–40)PubMedGoogle Scholar
  98. 98.
    Cann CE, Martin MC, Genaut HK, et al. Decreased spinal mineral content in amenorrheic women. JAMA 1984; 251 (5): (626–9)PubMedCrossRefGoogle Scholar
  99. 99.
    Drinkwater BL, Bruemmer B, Chestnut III CH. Menstrual history as a determinant of current bone density in young athletes. JAMA 1990; 263 (4): (545–8)PubMedCrossRefGoogle Scholar
  100. 100.
    Lloyd T, Trientafyllou SJ, Baker ER, et al. Women athletes with menstrual irregularity have increased musculoskeletal injuries. Med Sci Sports Exerc 1986; 18 (4): (374–9)PubMedGoogle Scholar
  101. 101.
    Warren MP, Brooks-Gunn J, Hamilton WG. Scoliosis and fractures in young ballet dancers: relation to delayed menarche and secondary amenorrhea. N Engl J Med 1986; 314: 1348–53PubMedCrossRefGoogle Scholar
  102. 102.
    Brownell KD, Rodin J, Wilmore JH. Weight regulation practices in athletes: analysis of metabolic and health effects. Med Sci Sports Exerc 1987; 19: (546–56)PubMedGoogle Scholar
  103. 103.
    Drinkwater BL, Nilson K, Ott S, et al. Bone mineral density after resumption of menses in amenorrheic athletes. JAMA 1986; 256: (380–2)PubMedCrossRefGoogle Scholar
  104. 104.
    Emans SJ, Grace E, Hoffer FA, et al. Estrogen deficiency in adolescents and young adults: impact on bone mineral content and effects of estrogen replacement therapy. Obstet Gynecol 1990; 76: (585–92)PubMedGoogle Scholar
  105. 105.
    Prior JC, Vigna YM, Schecter MT, et al. Spinal bone loss and ovulatory disturbances. N Engl J Med 1990; 323: (1221–7)PubMedCrossRefGoogle Scholar
  106. 106.
    Myburgh KH, Hutchins J, Fataar AB, et al. Low bone density is an etiologic factor for stress fractures in athletes. Ann Intern Med 1990; 113: (754–9)PubMedGoogle Scholar
  107. 107.
    Marcus R, Cann C, Madvig P, et al. Menstrual function and bone mass in elite women distance runners: endocrine metabolic features. Ann Intern Med 1985; 102: (158–63)PubMedGoogle Scholar
  108. 108.
    Robinson T, Snow-Harter C, Gillis D, et al. Bone mineral density and menstrual cycle status in competitive female runners and gymnasts. Med Sci Sports Exerc 1993; 25 Suppl. 5: S49Google Scholar
  109. 109.
    Cann CE, Cavanaugh DJ, Schnurpfiel, et al. Menstrual history is the primary determinant of trabecular bone density in women runners. Med Sci Sports Exerc 1988; 20 Suppl. 2: S59Google Scholar

Copyright information

© Adis International Limited 1996

Authors and Affiliations

  • Michael T. Reeder
    • 1
    • 2
  • Bruce H. Dick
    • 1
  • Julia K. Atkins
    • 1
  • Anneke B. Pribis
    • 1
  • John M. Martinez
    • 1
  1. 1.The Department of Family PracticeAlbany Medical CollegeAlbanyUSA
  2. 2.Western Orthopaedics and Sports MedicineGrand JunctionUSA

Personalised recommendations