Sports Medicine

, Volume 21, Issue 2, pp 73–79 | Cite as

The Use of Heart Rate to Monitor the Intensity of Endurance Training

  • Muriel B. Gilman
Leading Article


Blood Lactate Endurance Training Anaerobic Threshold Heart Rate Reserve Maximal Lactate Steady State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raven PB, editor. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults. Med Sci Sport Exerc 1990; 22(2): 265–74Google Scholar
  2. 2.
    Are heart rate monitors worth the bother? Gatorade Sports Science Exchange Roundtable 1994; 5(2)Google Scholar
  3. 3.
    Leger L, Thivierge M. Heart rate monitors: validity, stability, and functionality. Phys Sportsmed 1988; 16(5): 143–51Google Scholar
  4. 4.
    Macfarlane DJ, Fogarty BA, Hopkins WG. The accuracy and variability of commercially available heart rate monitors. NZ J Sports Med 1989; 17(4): 51–3Google Scholar
  5. 5.
    Gilman MB, Wells CL. The use of heart rates to monitor exercise intensity in relation to metabolic variables. Int J Sports Med 1993; 14(6): 339–44PubMedCrossRefGoogle Scholar
  6. 6.
    Hopkins WG, Hawley JA. Monitoring training and racing of an elite cyclist. NZ J Sports Med 1989; 17(1): 2–4Google Scholar
  7. 7.
    Robinson DM, Robinson SM, Hume PA, et al. Training intensity of elite male distance runners. Med Sci Sports Exerc 1991; 23(9): 1078–82PubMedGoogle Scholar
  8. 8.
    UNIQ training analysis program for IBM PC/XT/AT and compatibles [computer program]. Version 2.0. Kempele, Finland: Polar Electro Oy, 1987Google Scholar
  9. 9.
    Kindermann W, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol 1979; 42: 25–34CrossRefGoogle Scholar
  10. 10.
    Skinner JS, McLellan THAN. The transition from aerobic to anaerobic metabolism. Res Q Exerc Sport 1980; 51(1): 234–48PubMedGoogle Scholar
  11. 11.
    Oyono-Enguelle S, Heitz A, Marbach J, et al. Blood lactate during constant-load exercise at aerobic and anaerobic thresholds. Eur J Appl Physiol 1990; 60: 321–30CrossRefGoogle Scholar
  12. 12.
    Rusko H, Luhtanen P, Rahkila P, et al. Muscle metabolism, blood lactate and oxygen uptake in steady state exercise at aerobic and anaerobic thresholds. Eur J Appl Physiol 1986; 55: 181–6CrossRefGoogle Scholar
  13. 13.
    Yamamoto Y, Miyashita M, Hughson RL, et al. The ventilatory threshold gives maximal lactate steady state. Eur J Appl Physiol 1991; 63: 55–9CrossRefGoogle Scholar
  14. 14.
    Mognoni P, Sirtori MD, Lorenzelli F, et al. Physiological responses during prolonged exercise at the power output corresponding to the blood lactate threshold. Eur J Appl Physiol 1990; 60: 239–43CrossRefGoogle Scholar
  15. 15.
    Fay L, Londeree BR, LaFontaine TP, et al. Physiological parameters related to distance running performance in female athletes. Med Sci Sports Exerc 1989; 21(3): 319–24PubMedGoogle Scholar
  16. 16.
    Daniels J. Training distance runners: a primer. Gatorade Sports Science Exchange 1989; 1(11)Google Scholar
  17. 17.
    Galanes J, Stray-Gundersen J. United States ski team cross country training guide. Park City (UT): USSA Publication, 1991Google Scholar
  18. 18.
    Sleamaker, R. Serious training for serious athletes. Champaign (IL): Leisure Press, 1989: 180–2Google Scholar
  19. 19.
    Hopkins WG. Quantification of training in competitive sports, methods and application. Sports Med 1991; 12(3): 161–83PubMedCrossRefGoogle Scholar
  20. 20.
    Farrell PA, Wilmore JH, Coyle EF, et al. Plasma lactate accumulation and distance running performance. Med Sci Sports 1979; 11(4): 338–44PubMedCrossRefGoogle Scholar
  21. 21.
    Bannister EW, Calvert TW. Planning future performance: implications for long term training. Can J Appl Sport Sci 1980; 5(3): 170–6Google Scholar
  22. 22.
    Morton RH, Fitz-Clarke JR, Bannister EW. Modeling human performance in running. J Appl Physiol 1990; 69(3): 1171–7PubMedGoogle Scholar
  23. 23.
    Anikin A, Gaskill S. Planning training based on your health. Team Birkie Newsletter 1992; 3(3): 8–9Google Scholar
  24. 24.
    Scheen A, Juchmes J, Cession-Fossion A. Critical analysis of the ‘anaerobic threshold’ during exercise at constant workloads. Eur J Appl Physiol 1981; 46: 367–77CrossRefGoogle Scholar
  25. 25.
    Claremont AD, Nagel F, Reddan WD, et al. Comparison of metabolic, temperature, heart rate and ventilatory responses to exercise at extreme ambient temperature (0° and 35°C.) Med Sci Sports 1975; 7(2): 150–4PubMedCrossRefGoogle Scholar
  26. 26.
    Gisolfi C, Cohen J. Relationships among training, heat acclimation, and heat tolerance in men and women: the controversy revisited. Med Sci Sports 1979; 11(1): 56–9PubMedGoogle Scholar
  27. 27.
    Sawka MN, Knowlton RG, Critz JB. Thermal and circulatory responses to repeated bouts of prolonged running. Med Sci Sports 1979; 11(2): 177–80PubMedGoogle Scholar
  28. 28.
    Swain DP, Abernathy KS, Smith CS, et al. Target heart rates for the development of cardiorespiratory fitness. Med Sci Sport Exerc 1994; 26(1): 112–6Google Scholar
  29. 29.
    Weltman A, Weltman J, Rutt R, et al. Percentages of maximal heart rate, heart rate reserve, and VO2peakfor determining endurance training intensity in sedentary women. Int J Sports Med 1989; 10(3): 212–6PubMedCrossRefGoogle Scholar
  30. 30.
    Dwyer J, Bybee R. Heart rate indices of the anaerobic threshold. Med Sci Sport Exerc 1983; 15(1): 72–6Google Scholar
  31. 31.
    Katch V, Weltman A, Sady S, et al. Validity of the relative percent concept for equating training intensity. Eur J Appl Physiol 1978; 39: 219–27CrossRefGoogle Scholar
  32. 32.
    Wenger HA, Bell GJ. The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med 1986; 3: 346–56PubMedCrossRefGoogle Scholar
  33. 33.
    Bell GJ, Syrotuik DG, Attwood K, et al. Maintenance of strength gains while performing endurance training in oarswomen. Can J Appl Phys 1993; 18(1): 104–15CrossRefGoogle Scholar
  34. 34.
    Keith SP, Jacobs I, McLellan TM. Adaptations to training at the individual anaerobic threshold. Eur J Appl Physiol 1992; 65: 316–23CrossRefGoogle Scholar
  35. 35.
    Sjodin B, Jacobs I, Svedenhag J. Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training OBLA. Eur J Appl Phys 1982; 49: 45–57CrossRefGoogle Scholar
  36. 36.
    Yoshida T, Suda Y, Takeuchi N. Endurance training regimen based upon arterial blood lactate: effects on anaerobic threshold. Eur J Appl Physiol 1982; 49: 223–30CrossRefGoogle Scholar
  37. 37.
    Kuipers H, Keizer HA. Overtraining in elite athletes, review and directions for the future. Sports Med 1988; 6: 79–92PubMedCrossRefGoogle Scholar
  38. 38.
    Noakes T. Lore of running. Cape Town: Oxford University Press, 1986,221–36Google Scholar
  39. 39.
    Kajiura JS, MacDougall JD, Ernst PB, et al. Immune response to changes in training intensity and volume in runners. Med Sci Sports Exerc 1995; 27(8): 1111–7PubMedGoogle Scholar
  40. 40.
    Barron JL, Noakes TD, Levy W, et al. Hypothalamic dysfunction in overtrained athletes. J Clin Endocrinol Metab 1985; 60: 803–6PubMedCrossRefGoogle Scholar
  41. 41.
    Costill DL, Flynn MG, Kirwan JP, et al. Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med Sci Sports Exerc 1988; 20(3): 249–54PubMedCrossRefGoogle Scholar
  42. 42.
    Verma SK, Mahindroo SR, Kansal DK. Effect of four weeks of hard physical training on certain physiological and morphological parameters of basket-ball players. J Sports Med 1978; 18: 379–384Google Scholar

Copyright information

© Adis International Limited 1996

Authors and Affiliations

  • Muriel B. Gilman
    • 1
  1. 1.Bemidji State UniversityBemidjiUSA

Personalised recommendations