Advertisement

Sports Medicine

, Volume 20, Issue 5, pp 302–320 | Cite as

Flow Cytometry

Principles and Applications in Exercise Immunology
  • Holger Gabriel
  • Wilfried Kindermann
Leading Article

Keywords

Natural Killer Cell Adis International Limited Oxidative Burst Endurance Exercise Lymphocyte Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hofman-Goetz L, Pedersen BK. Exercise and the immune system: a model of stress response? Immunol Today 1994; 15: 382–7CrossRefGoogle Scholar
  2. 2.
    Shephard RJ, Rhind S, Shek PN. Exercise and the immune system. Sports Med 1994; 18: 340–69PubMedCrossRefGoogle Scholar
  3. 3.
    Moldovan A. Photo-electric technique for the counting of microscopical cells. Science 1934; 80: 188–9CrossRefGoogle Scholar
  4. 4.
    Coulter WH. U.S. Patent No. 2,656,508, Means for counting particles suspended in a fluid. Filed 27 Aug, 1949. Issued 20 Oct, 1953Google Scholar
  5. 5.
    Coulter WH. U.S. Patent No. 3,502,974, Signal modulated apparatus for generating and detecting resistive and reactive changes in a modulated current path for particle classification and analysis. Filed 23 May, 1966. Issued 24 March, 1970Google Scholar
  6. 6.
    Kamentsky LA, Melamed MR, Derman H. Spectrophotometer: new instrument for ultrarapid cell analysis. Science 1965; 150: 630–1PubMedCrossRefGoogle Scholar
  7. 7.
    Kamentsky LA, Melamed MR. Instrumentation for automated examination of cellular specimens. IEEE Trans Biomed Eng 1969; 57: 2007–16Google Scholar
  8. 8.
    Dittrich W, Göhde W. British Patent No. 1,300,585, Automatic measuring and counting device for particles in a dispersion. Filed Germany, 18 Dec, 1968. Issued 20 Dec, 1972Google Scholar
  9. 9.
    Dittrich W, Göhde W. Impulsfluorometrie bei Einzelzellen in Suspensionen. Z Naturforsch 1969; 24b: 360–1Google Scholar
  10. 10.
    Göhde W, Dittrich W. Simultane Impulsfluorometrie des DANS und Proteingehaltes von Tumorzellen. Z Anal Chem 1970; 252: 328–30CrossRefGoogle Scholar
  11. 11.
    Göhde W, Dittrich W. Impulsfluorometrie — ein neuartiges Durchflussverfahren zur ultraschnellen Mengenbestimmung von Zellinhaltsstoffen. Acta Histochem 1971 (10 Suppl.): 42–51Google Scholar
  12. 12.
    Fulwyler MJ. Electronic separation of biological cells by volume. Science 1965; 150: 910–1PubMedCrossRefGoogle Scholar
  13. 13.
    Fulwyler MJ, Glascock RB, Hiebert RD, et al. Device which separates minute particles according to electronically sensed volume. Rev Sci Instr 1969; 40: 42–8CrossRefGoogle Scholar
  14. 14.
    Hulett HR, Bonner WA, Sweet SG, et al. Development and application of a rapid cell sorter. Clin Chem 1973; 19: 813–6PubMedGoogle Scholar
  15. 15.
    Melamed MR, Mullaney PF, Shapiro HM, et al, editors. Flow cytometry and sorting. New York: Wiley-Liss, 1990Google Scholar
  16. 16.
    Raffael A, Nebe CT, Valet G. Grundlagen der Durchflußzytometrie. In: Schmitz G, Rothe G, editors. Stuttgart: Schattauer, 1994: 3–49Google Scholar
  17. 17.
    Melamed MR, Lindmo T, Mendelsohn ML. An historical review of the development of flow cytometers and sorters. Flow cytometry and sorting. New York: Wiley-Liss, 1990Google Scholar
  18. 18.
    Schmitz G, Rothe G. Durchflußzytometrie in der klinischen Zelldiagnostik. Stuttgart/New York: Schattauer, 1994Google Scholar
  19. 19.
    Russack V, Image cytometry: current applications and future trends. Clin Lab Sci 1994; 31: 1–34CrossRefGoogle Scholar
  20. 20.
    Parks DR, Herzenberg LA. Fluorescence-activated cell sorting: theory, experimental optimization, and applications in lymphoid cell biology. Methods Enzymol 1984; 108; 197–241PubMedCrossRefGoogle Scholar
  21. 21.
    Valet G, Tschöpe D, Gabriel H, et al. Standardized, self learning flow cytometric list mode data classification for thrombocyte and lymphocyte immune phenotyping. Ann N Y Acad Sci 1993; 677: 233–51PubMedCrossRefGoogle Scholar
  22. 22.
    Valet G, Gabriel H. Acute and chronic exercise: cross classification of lymphocyte phenotypes by automated list mode data classification [abstract]. Anal Cell Pathol 1994; 6: 412Google Scholar
  23. 23.
    Gabriel H, Valet G, Urhausen A, et al. Self learning classification of flow cytometric list mode data from immune phenotyped lymphocytes following acute physical work. Dtsch Z Sportmed 1993; 44(1 Suppl.): 461S–5SGoogle Scholar
  24. 24.
    Roitt M, Brostoff IM, Male DK. Immunology. London: Gower Medical Publishing, 1993Google Scholar
  25. 25.
    Brown E, Atkinson JP, Fearson DT. Innate Immunity. Curr Opin Immunol 1994; 6: 73–145PubMedCrossRefGoogle Scholar
  26. 26.
    Michie CA, McLean A, Alcock C, et al. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 360: 264–5, 1992PubMedCrossRefGoogle Scholar
  27. 27.
    Torimoto Y, Dang NH, Streuli M, et al. Morimoto. Activation of T cells through a T cell-specific epitope of CD45. Cell Immunol 145: 111–29, 1992PubMedCrossRefGoogle Scholar
  28. 28.
    Akbar AN, Salmon M, Janossy G. The synergy between naive and memory T cells during activation. Immunol Today 12: 184–8, 1991PubMedCrossRefGoogle Scholar
  29. 29.
    Barclay AN, Birkeland ML, Brown MH, et al. The leucocyte antigen facts book. London, San Diego, New York, Boston, Sidney, Tokyo, Toronto: Academic Press, 1993Google Scholar
  30. 30.
    Schlossman SF, Boumsell L, Gilks W, et al. CD antigens 1993. Immunol Today 1994; 15: 98–9PubMedCrossRefGoogle Scholar
  31. 31.
    Gabriel H, Kindermann W. Infections and sports: frequency, causes and preventive aspects. Dtsch Z Sportmed 1995; 46: 73–85Google Scholar
  32. 32.
    Clevers H, Alarcom B, Wileman T, Terhorst C. The T cell receptor/CD3 complex: a dynamic protein ensemble. Annu Rev Immunol 1988; 6: 629–62PubMedCrossRefGoogle Scholar
  33. 33.
    Janeway CA. The T cell receptor as a multicomponent signaling machine: CD4/CD8 coreceptors and CD45 in T-cell activation. Annu Rev Immunol 1992; 10: 645–74PubMedCrossRefGoogle Scholar
  34. 34.
    Ziegler-Heitbrock HWL, Ulevitch RJ. CD14: Cell surface receptor and differentiation marker. Immunol Today 1993; 14: 121–5PubMedCrossRefGoogle Scholar
  35. 35.
    Winkel van de JGJ, Capel PJA. Human IgG receptor hereogeneity: molecular aspects and clinical implications. Immunol Today 1993; 14: 215–21PubMedCrossRefGoogle Scholar
  36. 36.
    Möller G. The B cell antigen receptor complex. Immunol Rev 1993; 132: 1–206Google Scholar
  37. 37.
    Lanier LL, Le AM, Civin CI, et al. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 1986; 136: 4480–6PubMedGoogle Scholar
  38. 38.
    Minami Y, Kono T, Miyazi T, et al. The IL-2 receptor complex: its structure, function, and target genes. Annu Rev Immunol 1993; 11: 245–67PubMedCrossRefGoogle Scholar
  39. 39.
    Testi R, D’Ambrosio D, DeMaria R, et al. The CD69 receptor: a multipurpose cell-surface trigger for hematopoetic cells. Immunol Today 1994; 15: 479–89PubMedCrossRefGoogle Scholar
  40. 40.
    Germain RN: MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 1994; 76: 287–99PubMedCrossRefGoogle Scholar
  41. 41.
    Stoolman LM: Adhesion molecules involved in leukocyte recruitment and lymphocyte recirculation. Chest 103: 79S–86S, 1993PubMedGoogle Scholar
  42. 42.
    Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 1994; 84: 2068–101PubMedGoogle Scholar
  43. 43.
    Fry RW, Morton AR, Crawford GPM, et al. Cell numbers and in vitro responses of leucocytes and lymphocyte sub-populations following maximal exercise and interval training sessions of different intensities. Eur J Appl Physiol 1992; 64: 218–27CrossRefGoogle Scholar
  44. 44.
    Gabriel H, Bom P, Schwarz L, et al. Differential mobilization of leucocyte and lymphocyte subpopulations into circulation during exercise. Eur J Appl Physiol 1992; 65: 529–34CrossRefGoogle Scholar
  45. 45.
    Gabriel H, Schwarz L, Urhausen A, et al. Leucocytes and lymphocyte subpopulations in peripheral blood of female and male athletes under resting conditions. Dtsch Z Sportmed 1992; 43: 196–210Google Scholar
  46. 46.
    Gabriel H, Urhausen A, Kindermann W. Mobilization of circulating leucocyte and lymphocyte subpopulations during and after a short, anaerobic exercise. Eur J Appl Physiol 1992; 65: 164–70CrossRefGoogle Scholar
  47. 47.
    Gabriel H, Kullmer T, Schwarz L, et al. Circulating leucocyte subpopulations in sedentary subjects following graded maximal exercise with hypoxia. Eur J Appl Physiol 1993; 67: 348–53CrossRefGoogle Scholar
  48. 48.
    Gabriel H, Schwarz L, Steffens G, et al. Immunoregulatory hormones, circulating leucocyte and lymphocyte subpopulations before and after endurance exercise of different intensities. Int J Sports Med 1993; 13: 359–66CrossRefGoogle Scholar
  49. 49.
    Gabriel H, Schmitt B, Urhausen A, et al. Increased intermediate CD45RA+CD45RO+ lymphocytes indicate activated T cells after endurance exercise. Med Sci Sports Exerc 1993; 25: 1352–57PubMedGoogle Scholar
  50. 50.
    Gabriel H, Schmitt B, Kindermann W. Age-related increase of CD45RO+ lymphocytes in physically active adults. Eur J Immunol 1993; 23: 2704–6PubMedCrossRefGoogle Scholar
  51. 51.
    Gray AB, Smart YC, Telford RD, et al. Anaerobic exercise causes transient changes in leukocyte subsets and IL-2R expression. Med Sci Sports Exerc 1992; 24: 1332–8PubMedGoogle Scholar
  52. 52.
    Verde TJ, Thomas S, Moore RW, et al. Immune responses and increased training of the elite athlete. J Appl Physiol 1992; 73: 1494–9PubMedGoogle Scholar
  53. 53.
    Ferry A, Rieu P, Le Page C, et al. Effect of physical exhaustion and glucocorticoids (dexamethasone) on T-cells of trained rats. Eur J Appl Physiol 1993; 66: 455–60CrossRefGoogle Scholar
  54. 54.
    Gray AB, Telford RD, Collins M, et al. The response of leukocyte subsets and plasma hormones to interval exercise. Med Sci Sports Exerc 1993; 25: 1252–8PubMedGoogle Scholar
  55. 55.
    Tvede N, Kappel M, Halkjaer-Kristensen J, et al. The effect of light, moderate and severe bicycle exercise on lymphocyte subsets, natural and lymphokine activated killer cells, lymphocyte proliferative response and interleukin 2 production. Int J Sports Med 1993; 14: 275–82PubMedCrossRefGoogle Scholar
  56. 56.
    Tvede N, Kappel M, Klarlund K, et al. Evidence that the effect of bicycle exercise on blood mononuclear cell proliferative responses and subsets is mediated by epinephrine. Int J Sports Med 1994; 15: 100–4PubMedCrossRefGoogle Scholar
  57. 57.
    Gabriel H, Schmitt B, Urhausen A, et al. Adhesion molecule LFA-1 on cell surfaces of lymphocyte subpopulations during and after acute physical exercise. Dtsch Z Sportmed 1993; 44(1 Suppl): 436S–40SGoogle Scholar
  58. 58.
    Gabriel H, Brechtel L, Urhausen A, et al. Recruitment and recirculation of leucocytes after an ultramarathon run: preferential homing of cells expressing high levels of the adhesion molecule LFA-1. Int J Sports Med 1994; 15(3 Suppl.): 148S–53SCrossRefGoogle Scholar
  59. 59.
    Gabriel H, Urhausen A, Brechtel L, et al. Alterations of regular and mature monocytes are distinct, and dependent of intensity and duration of exercise. Eur J Appl Physiol 1994; 69: 179–81CrossRefGoogle Scholar
  60. 60.
    Bouix O, ElMezouini M, Orsetti A. Effects of naloxone opiate blockade on the immunomodulation induced by exercise in rats. Int J Sports Med 1995, 16: 29–33PubMedCrossRefGoogle Scholar
  61. 61.
    Frisina JP, Gaudieri S, Cable T, et al. Effects of acute exercise on lymphocyte subsets and metabolic activity. Int J Sports Med 1994; 15: 36–41PubMedCrossRefGoogle Scholar
  62. 62.
    Rhind SG, Shek PN, Shinkai S, et al. Differential expression of interleukin-2 receptor alpha and beta chains in relation to natural cell subsets and aerobic fitness. Int J Sports Med 1994; 15: 911–8CrossRefGoogle Scholar
  63. 63.
    La Perriere A, Antoni MH, Ironson G, et al. Effects of aerobic exercise training on lymphocyte subpopulations. Int J Sports Med 1994; 15(3 Suppl.): 127S–30SCrossRefGoogle Scholar
  64. 64.
    Nieman DC, Henson DA, Johnson R, et al. Effects of brief, heavy exertion on circulating lymphocyte subpopulations and proliferative response. Med Sci Sports Exerc 1992; 24: 1339–45PubMedGoogle Scholar
  65. 65.
    Nieman DC, Miller R, Henson DA, et al. Effect of high- versus moderate-intensity exercise on natural killer cell activity. Med Sci Sports Exerc 1993; 25: 1126–34PubMedGoogle Scholar
  66. 66.
    Nieman DC, Henson DA, Gusewitch G, et al. Physical activity and immune function in elderly women. Med Sci Sports Exerc 1993; 25: 823–31PubMedCrossRefGoogle Scholar
  67. 67.
    Nieman DC, Miller R, Henson DA, et al. Effect of high- versus moderate-intensity exercise on lymphocyte subpopulations and proliferative response. Int J Sports Med 1994; 15: 199–206PubMedCrossRefGoogle Scholar
  68. 68.
    Weiss C, Kinscherf R, Roth S, et al. Lymphocyte sub-populations and concentrations of soluble CD8 and CD4 antigen after anaerobic training. Int J Sports Med 1995; 16: 117–21PubMedCrossRefGoogle Scholar
  69. 69.
    Shinkai S, Shore S, Shek RN, et al. Acute exercise and immune function: relationship between lymphocyte acitivity and changes in subsets counts. Int J Sports Med 1992; 13: 452–61PubMedCrossRefGoogle Scholar
  70. 70.
    Gray AB, Telford RD, Collins M, et al. Granulocyte activation induced by intense interval running. J Leukoc Biol 1993; 53: 591–7PubMedGoogle Scholar
  71. 71.
    Gabriel H, Urhausen A, Valet G, et al. Diagnostic approach towards recognizing overtraining by lymphocyte immunophenotyping in endurance trained athletes [abstract]. Int J Sports Med 1994; 15: 358CrossRefGoogle Scholar
  72. 72.
    Baum M, Liesen H, Enneper J. Leucocytes, lymphocytes, activation parameters and cell adhesion molecules in middle distance runners under different training conditions. Int J Sports Med 1994; 15(3 Suppl.): 122S–6SCrossRefGoogle Scholar
  73. 73.
    Gabriel H, Müller HJ, Urhausen A, et al. Suppressed PMA-in-duced oxidative burst and unimpaired phagocytosis of circulating granulocytes one week after a long endurance exercise. Int J Sports Med 1994; 15: 444–8CrossRefGoogle Scholar
  74. 74.
    Möckel M, Störk T, Röcker L, et al. Activation and plasmatic coagulation during maximal cycle exercise in healthy triathletes [abstract]. Eur J Appl Physiol 1994; 69(1 Suppl.): S18Google Scholar
  75. 75.
    Müns G. Effect of long-distance running on polymorphonuclear neutrophil phagocytic function of the upper airways. Int J Sports Med 1993; 15: 96–9CrossRefGoogle Scholar
  76. 76.
    Pyne DB, Baker MS, Pricker PA, et al. Effects of an intensive 12-wk training program by elite swimmers on neutrophil oxidative activity. Med Sci Sports Exerc 1995; 27: 536–42PubMedGoogle Scholar
  77. 77.
    Akbar AN, Terry L, Timms A, et al. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol 1988; 140: 2171–8PubMedGoogle Scholar
  78. 78.
    Gabriel H, Müller HJ, Kettler K, et al. Increased phagocytic capacity of the blood, but decreased phagocytic activity per individual circulating neutrophil after an ultradistance run. Eur J Appl Physiol. In pressGoogle Scholar
  79. 79.
    Smith JA, Weidemann. Further characterization of the neutrophil oxidative burst by flow cytometry. J Immunol Methods 1993; 162: 261–8PubMedCrossRefGoogle Scholar
  80. 80.
    Brenner IKM, Shek PN, Shephard RJ. Infection in athletes. Sports Med 1994; 17: 86–107PubMedCrossRefGoogle Scholar
  81. 81.
    Seckinger D, Sugarbaker E, Frankfurt W. DNA content in human cancer. Application in pathology and clinical medicine. Arch Pathol Clin Lab Med 1989; 113: 619–26Google Scholar
  82. 82.
    Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801–9PubMedCrossRefGoogle Scholar
  83. 83.
    National committee for clinical laboratory standards leukocyte differential counting; approved standard. Villanova (PA): NCCLS Publication H20-A, 1991Google Scholar
  84. 84.
    National committee for clinical laboratory standards clinical applications of flow cytometry: quality assurance and immunophenotyping of peripheral blood lymphocytes. Villanova (PA): NCCLS publication H42-T, 1992Google Scholar
  85. 85.
    Othmer M, Zepp F. Flow cytometric immunophenotyping: principles and pitfalls. Eur J Pediatr 1992; 398–406Google Scholar
  86. 86.
    Horan PK, Melnicoff MJ, Jensen BD, et al. Fluorescent cell labeling for in vivo and vitro cell tracking. Methods Cell Biol 1990; 33: 469–90PubMedCrossRefGoogle Scholar
  87. 87.
    Renzi P, Ginns LC. Analysis of T cell subsets in normal adults — comparison of whole blood analysis technique to Ficoll-Hypaque separation of flow cytometry. J Immunol Methods 1987; 98: 53–6PubMedCrossRefGoogle Scholar
  88. 88.
    Robinson JP, Dressier L, Darzynkiewicz Z, et al. Handbook of flow cytometry methods. Cytometry 1992; (6 Suppl.): 1–245Google Scholar
  89. 89.
    Edwards BS, Altobelli KK, Nolla HA, et al. Comprehensive quality assessment approach for flow cytometric immunophenotyping of human lymphocytes. Cytometry 1989; 10: 433–41PubMedCrossRefGoogle Scholar
  90. 90.
    Zola H, Neoh SH, Menatioris BX, et al. Detection by immunofluorescence of surface molecules present in low copy numbers. J Immunol Methods 1990; 135: 247–55PubMedCrossRefGoogle Scholar
  91. 91.
    Aubry JP, Shields JG, Jansen KU, et al. A multiparameter flow cytometric method to study surface molecules involved in interactions between subpopulations of cells. J Immunol Methods 1993; 159: 161–71PubMedCrossRefGoogle Scholar
  92. 92.
    Pacheo SE, Shearer WT. Laboratory aspects of immunology. Clin Immunopathol 1994; 41: 623–55Google Scholar
  93. 93.
    Benshop RJ, De Smet MBM, Bloem AC, et al. Adhesion of subsets of human blood mononuclear cells to endothelial cells in vitro, as quantified by flow cytometry. Scand J Immunol 1992; 36: 793–800CrossRefGoogle Scholar
  94. 94.
    Sklar LA, Finney DA. Analysis of ligand-receptor interactions with the fluorescent activated cell sorter. Cytometry 1982; 161–5Google Scholar
  95. 95.
    Sklar LA, Finney DA, Oades ZG, et al. The dynamics of ligand-receptor interactions. Real-time analyses of association, dissociation, and internalization of an N-formyl peptide and its receptors on the human neutrophil. J Biol Chem 1984; 259: 5661–9PubMedGoogle Scholar
  96. 96.
    Rothe G, Gabriel H, Kovacs E, et al. Blood mononuclear phagocyte subpopulations as cellular markers in hypercholesteremia. Blood. In pressGoogle Scholar
  97. 97.
    Vogt RF, Cross GD, Henderson LO, et al. Model system evaluating fluorescein-labeled microbeads as internal standards to calibrate fluorescene intensity on flow cytometers. Cytometry 1989; 10: 294–302PubMedCrossRefGoogle Scholar
  98. 98.
    Ault KA. Flow cytometric measurement of platelet function and reticulated platelets. Ann N Y Acad Sci 1993; 677: 393–408Google Scholar
  99. 99.
    Holmsen H. Significance of testing platelet functions in vitro. Eur J Clin Invest 1994; 24: 3–8PubMedGoogle Scholar
  100. 100.
    Kienast J, Schmitz G. Flow cytometric analysis of thiazole orange uptake by platelets: a diagnostic aid in the evaluation of thrombopenic disorders. Blood 1990; 75: 116–21PubMedGoogle Scholar
  101. 101.
    Jung T, Schauer U, Heusser C, et al. Detection of intracellular cytokines by flow cytometry. J Immunol Methods 1993; 159: 197–207PubMedCrossRefGoogle Scholar
  102. 102.
    Rothe G, Kellermann W, Valet G. Flow cytometric parameters of neutrophil functions as early indicators of sepsis- or trauma-related pulmonary or cardiovascular organ failure. J Lab Clin Med 1990; 115: 52–61PubMedGoogle Scholar
  103. 103.
    Rothe G, Valet G. Flow cytometric assays of oxidative burst activity in phagocytes. Methods Enzymol 1994; 223: 539–48Google Scholar
  104. 104.
    Baggliolini M, Boulay F, Badwey JA, Curnette JT. Activation of neutrophil leukocytes: chemoattractant and respiratory burst. FASEB J 1993; 7: 1004–10Google Scholar
  105. 105.
    Rothe G, Assfalg-Machleidt I, Machleidt W, et al. Flow cytometric analysis of protease activities in vital cells. Biol Chem Hoppe Seyler 1992: 547–54Google Scholar
  106. 106.
    Eisner J, Roesler J, Emmendörffer A, et al. Defect in the signal transduction in neutrophils of patients with severe congenital neutropenia: relation of impaired mobilization of cytosolic free calcium to altered Chemotaxis, superoxide anion production and F-actin content. Exp Hematol 1993; 21: 38–45Google Scholar
  107. 107.
    Chang L, Gusewitch GA, Chritton DB, et al. Rapid flow cytometric assay for the assessment of natural killer cell activity. J Immunol Methods, 1993; 166: 45–54PubMedCrossRefGoogle Scholar
  108. 108.
    Telford WG, King LE, Fraker PJ. Rapid quantification of apoptosis and heterogeneous cell populations using flow cytometry. J Immunol Methods 1994; 172: 1–16PubMedCrossRefGoogle Scholar
  109. 109.
    Petit JM Denis-Gray M, Ratinaud MH. Assessment of fluorochromes for cellular structure and function studies by flow cytometry. Biol Cell 1993; 78: 1–13PubMedCrossRefGoogle Scholar
  110. 110.
    Roederer M. Staal FJT, Anderson M, et al. Disregulation of leukocyte glutathione in AIDS. Ann N Y Acad Sci 1993; 677: 113–25PubMedCrossRefGoogle Scholar
  111. 111.
    Davis BH, Bigelow NC. Flow cytometric reticulocyte analysis and the reticulocyte maturity index. Ann N Y Acad Sci 1993; 677: 281–92PubMedCrossRefGoogle Scholar
  112. 112.
    Jayat C, Ratinaud MH. Cell cycle analysis by flow cytometry: principles and applications. Biol Cell 1993; 78: 15–25PubMedCrossRefGoogle Scholar
  113. 113.
    Larsen JK. Cell proliferation: analysis by flow cytometry. Nouv Rev Fr Hematol 1992; 34: 317–35PubMedGoogle Scholar
  114. 114.
    Maftah A, Huet O, Gallet PF, Ratinaud MH. Flow cytometrys contribution to the measurement of cell functions. Cell Biol Rev 1993; 78: 85–93CrossRefGoogle Scholar
  115. 115.
    Rabinovitch PS, June CH, Kavanagh TJ. Introduction to functional cell assays. Ann N Y Acad Sci 1993; 677: 252–64PubMedCrossRefGoogle Scholar
  116. 116.
    Shapiro HM. Trends and developments in flow cytometry. Ann NY Acad Sci 1993; 677: 155–66PubMedCrossRefGoogle Scholar
  117. 117.
    Spanò M, Evenson DP. Flow cytometric analysis for reproductive biology. Biol Cell 1993; 78: 53–62PubMedCrossRefGoogle Scholar
  118. 118.
    Wilson GD, McNally NJ. Measurement of cell proliferation using bromodeoxyuridine. In: Hall P, Levison D, Annan D, et al. editors. Assessment of cell proliferation in clinical practice. Heidelberg: Springer-Werling, 1991: 113–8Google Scholar
  119. 119.
    Grunwald D. Flow cytometry and RNA studies. Biol Cell 1993; 78: 27–30PubMedCrossRefGoogle Scholar
  120. 120.
    Fry RW, Morton AR, Garcia-Webb P, et al. Biological responses to overload training in endurance sports. Eur J Appl Physiol 1992, 64: 335–44CrossRefGoogle Scholar

Copyright information

© Adis International Limited 1995

Authors and Affiliations

  • Holger Gabriel
    • 1
  • Wilfried Kindermann
    • 1
  1. 1.Institute of Sports and Preventive MedicineUniversity of SaarlandSaarbrückenGermany

Personalised recommendations