Sports Medicine

, Volume 18, Issue 6, pp 419–437 | Cite as

Kidney Function During Exercise in Healthy and Diseased Humans

An Update
  • Jacques R. Poortmans
  • Jacques Vanderstraeten
Review Article


Exercise induces profound changes in renal haemodynamics and protein excretion. The rate of ultrafiltration across the glomerular capillary is determined by the imbalance between the transcapillary hydraulic and colloid osmotic pressure gradients. Despite a major reduction in the renal plasma flow, the filtration fraction can double with maximal exercise, preserving the transfer of metabolites or substances through the glomerulus.

Tubular processes and excretion rates are modified by exercise. Despite large increases in plasma lactate during strenuous exercise, renal excretion plays a limited role in lactate metabolism. Apparently, the mechanism of transcellular transport of lactate is saturated during severe exercise. Urea reabsorption is enhanced during prolonged exercise, and this process may act to limit the dehydration of an individual. As uric acid transport is also carrier-mediated, it appears that there is no saturation of the carrier system during prolonged exercise.

Postexercise proteinuria is directly related to the intensity of exercise rather than to its duration. This excretion of excess proteins is a transient state with a half-time decay of about 1 hour. The increased clearance of plasma proteins suggests an increased glomerular permeability and a partial inhibition of tubular reabsorption. Studies suggest that exercise decreases the glomerular electrostatic barrier and facilitates transfer of macromolecules. Postexercise proteinuria appears to be age-dependent.

Nephropathy is a common observation in the diabetic patient. In young and adult diabetic patients, exhaustive physical exercise does not provoke an enhanced dysfunction of the kidney to what is already found in healthy individuals. Heart and kidney transplant patients have a lesser postexercise proteinuria as compared with healthy individuals.


Proteinuria Adis International Limited Strenuous Exercise Prolonged Exercise Albumin Excretion Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poortmans JR. Exercise and renal function. Sports Med 1984; 1: 125–53PubMedCrossRefGoogle Scholar
  2. 2.
    Poortmans JR. Postexercise proteinuria in normal and diseased humans. Jap J Constit Med 1990; 54: 8–18Google Scholar
  3. 3.
    Zambraski EJ. Renal regulation of fluid homeostasis during exercise. In: Gisolfi CV, Lamb DR, editors. Perspectives in exercise science and sports medicine, vol. 3: fluid homeostasis during exercise. Carmel, Ind.: Benchmark, 1990: 247–80Google Scholar
  4. 4.
    Painter PL. Exercise in end-stage renal disease. Exerc Sport Sci Rev 1988; 16: 305–39PubMedCrossRefGoogle Scholar
  5. 5.
    Groth S, Assted M, Vestergaard B. Screening of kidney function by plasma creatinine and single-sample 51Cr-EDTA clearance determination — a comparison. Scand J Clin Lab Invest 1989; 49: 707–10PubMedCrossRefGoogle Scholar
  6. 6.
    Pastemack A, Kuhlbäck B. Diurnal variations of serum and urine creatine and creatinine. Scand J Lab Clin Invest 1971; 27: 1–7CrossRefGoogle Scholar
  7. 7.
    Schuster VL, Seldin DW. Renal clearance. In: Seldin DW, Giebisch G, editors. The kidney, vol. I: physiology and pathophysiology. New York: Raven, 1985: 365–95Google Scholar
  8. 8.
    Brenner BM, Dworkin LD, Ichikawa I. Glomerular ultrafiltration. In: Brenner BM, Rector PC, editors. The kidney, vol. I. Philadelphia: WB Saunders, 1986: 124–44Google Scholar
  9. 9.
    Mohan BD, Sellens MH, McVicar AJ. Effects of moderate exercise on renal function in man [abstract]. J Physiol (London) 1993; 467: 64Google Scholar
  10. 10.
    Liljestrand SH, Wilson DW. The excretion of lactic acid in the urine after muscular exercise. J Biol Chem 1925; 65: 773–82Google Scholar
  11. 11.
    Johnson RE, Edwards HT. Lactate and pyruvate in blood and urine after exercise. J Biol Chem 1937; 118: 427–32Google Scholar
  12. 12.
    McKelvie RS, Lindinger MI, Heigenhauser GJF, et al. Renal responses to exercise-induced lactic acidosis. Am J Physiol 1989; 257: R102–R108PubMedGoogle Scholar
  13. 13.
    Poortmans JR, Labilloy D. The influence of work intensity on postexercise proteinuria. Eur J Appl Physiol 1988; 57: 260–3CrossRefGoogle Scholar
  14. 14.
    Murer H, Barac-Nieto M, Ullrich KJ, et al. Renal transport of lactate. In: Greger R, Lang F, Silbernagl S, editors. Renal transport of organic substances. Berlin: Springer-Verlag, 1981: 210–23CrossRefGoogle Scholar
  15. 15.
    Gillin AG, Sands JM. Urea transport in the kidney. Semin Nephrology 1993; 13: 146–54Google Scholar
  16. 16.
    Poortmans JR, editor. Protein metabolism. In: Poortmans JR, editor. Principles of exercise biochemistry. Basel: S. Karger, 1993: 186–229Google Scholar
  17. 17.
    Roch-Ramel F, Peters G. Renal transport of urea. In: Greger R, Lang F, Silbernagl S, editors. Renal transport of organic substances. Berlin: Springer-Verlag, 1981: 134–53CrossRefGoogle Scholar
  18. 18.
    Harkness RA, Simmonds RJ, Coade SB. Purine transport and metabolism in man: the effect of exercise on concentrations of purine bases, nucleosides and nucleotides in plasma, urine, leucocytes and erythrocytes. Clin Sci 1983; 64: 333–40PubMedGoogle Scholar
  19. 19.
    Ketai LH, Simon RH, Kreit JW, et al. Plasma hypoxanthine and exercise. Am Rev Respir Dis 1987; 136: 98–101PubMedCrossRefGoogle Scholar
  20. 20.
    Sutton JR, Toews CJ, Ward GR, et al. The purine metabolism during strenuous muscular exercise in man. Metabolism 1980; 29: 254–60PubMedCrossRefGoogle Scholar
  21. 21.
    Lang F. Renal handling of urate. In: Greger R, Lang F, Silbernagl S, editors. Renal transport of organic substances. Berlin: Springer-Verlag, 1981: 234–61CrossRefGoogle Scholar
  22. 22.
    Clerico A, Giammattei C, Cecchini L, et al. Exercise-induced proteinuria in well-trained athletes. Clin Chem 1990; 36: 562–4PubMedGoogle Scholar
  23. 23.
    Kallmeyer JC, Miller NM. Urinary changes in ultra longdistance marathon runners. Nephron 1993; 64: 119–21PubMedCrossRefGoogle Scholar
  24. 24.
    Kramer KB, Kernz M, Ress KM. Influence of strenuous exercise on albumin excretion. Clin Chem 1988; 34: 2516–8PubMedGoogle Scholar
  25. 25.
    Sobiech KA, Katnik I, Slowinska M. Haptoglobin levels in blood and urine of marathon runners. Biol Sport 1992; 9: 11–5Google Scholar
  26. 26.
    von Krull F, Foellmer HG, Liebau H, et al. Renale adaptationsmechanismen bei köperlicher belastung. Dtsch Z Sportmed 1984; 35: 24–9Google Scholar
  27. 27.
    Barrault D, Poortmans JR, Leclercq R. Comparaison de la fonction rénale chez des judokas lors d’un exercice maximal sur ergocycle et lors d’entraînement de judo. Sci Sports 1987; 2: 119–25CrossRefGoogle Scholar
  28. 28.
    Poortmans JR, Henrist A. The influence of air-cushion shoes on postexercise proteinuria. J Sports Med Phys Fitness 1989; 29: 213–7PubMedGoogle Scholar
  29. 29.
    Poortmans JR, Jourdain M, Heyters C, et al. Postexercise proteinuria in rowers. Can J Sport Sci 1990; 15: 126–30PubMedGoogle Scholar
  30. 30.
    Poortmans JR, Engels MF, Sellier M, et al. Urine protein excretion and swimming events. Med Sci Sports Exerc 1991; 23: 831–5PubMedGoogle Scholar
  31. 31.
    Poortmans JR. Renal responses in triathletes [abstract]. Med Sci Sports Exerc 1992; 24 (Suppl.): S43Google Scholar
  32. 32.
    Coye RD, Rosandich RR. Proteinuria during the 24-hour period following exercise. J Appl Physiol 1960; 15: 592–4PubMedGoogle Scholar
  33. 33.
    Poortmans JR, Rampaer L, Wolfs JC. Renal protein excretion after exercise in man. Eur J Appl Physiol 1989; 58: 476–80CrossRefGoogle Scholar
  34. 34.
    Mogensen CE, Solling K. Studies on renal tubular reabsorption: partial and near complete inhibition by certain amino acids. Scand J Clin Lab Invest 1977; 37: 477–86PubMedCrossRefGoogle Scholar
  35. 35.
    Poortmans JR, Brauman H, Staroukine M, et al. Indirect evidence of glomerular/tubular mixed-type postexercise proteinuria in healthy humans. Am J Physiol 1988; 254: F277–F283PubMedGoogle Scholar
  36. 36.
    Ala-Houhala I. Effects of exercise on glomerular passage of macromolecules in patients with diabetic nephropathy and in healthy subjects. Scand J Clin Lab Invest 1990; 50: 27–33PubMedCrossRefGoogle Scholar
  37. 37.
    Deen WD, Bridges CR, Brenner BM. Biophysical basis of glomerular permselectivity. J Membr Biol 1983; 71: 1–10PubMedCrossRefGoogle Scholar
  38. 38.
    Hart D, Lifschitz MD. Renal physiology of the prostaglandins and the effects of nonsteroidal anti-inflammatory agents on the kidney. Am J Nephrol 1987; 7: 408–18PubMedCrossRefGoogle Scholar
  39. 39.
    Yoshioka T, Mitarai T, Kon V, et al. Role for angiotensin II in an overt functional proteinuria. Kidney Int 1986; 30: 538–45PubMedCrossRefGoogle Scholar
  40. 40.
    Scharschmidt L, Simonson M, Dunn MJ. Glomerular prostaglandins, angiotensin II, and nonsteroidal anti-inflammatory drugs. Am J Med 1986; 81Suppl. 2B: 30–8PubMedCrossRefGoogle Scholar
  41. 41.
    Glassock RJ. Focus on proteinuria. Am J Nephrol 1990; 10(Suppl. I): 88–93PubMedCrossRefGoogle Scholar
  42. 42.
    Radin MJ, Wilke WL, Fettman MJ. Dose effect of captapril on renal hemodynamics and proteinuria in conscious, partially nephrectomized rats (42863). Proc Soc Exp Biol Med 1989; 190: 294–300PubMedGoogle Scholar
  43. 43.
    Reddi AS, Ramamurthi R, Miller M, et al. Enalapril improves albuminuria by preventing glomerular loss of heparan sulfate in diabetic rats. Biochem Med Metab Biol 1991; 45: 119–31PubMedCrossRefGoogle Scholar
  44. 44.
    Remuzzi A, Puntorieri S, Battaglia C, et al. Angiotensin converting enzyme inhibition ameliorates glomerular filtration of macromolecules and water and lessens glomerular injury in the rat. J Clin Invest 1990; 85: 541–9PubMedCrossRefGoogle Scholar
  45. 45.
    Poortmans JR, Hergibot N, De Plaen P, et al. Prostaglandin production is not involved in postexercise proteinuria in humans [abstract]. Can J Sport Sci 1988; 13: 28PGoogle Scholar
  46. 46.
    Poortmans JR, Depelchin P, Vanderstraeten J, et al. Hormonal modulation of postexercise proteinuria in healthy humans. Med Sci Sport Exerc 1990; 22 (Suppl.): S26Google Scholar
  47. 47.
    Mittleman KD, Zambraski EJ. Exercise-induced proteinuria is attenuated by indomethacin. Med Sci Sports Exerc 1992; 24: 1069–74PubMedGoogle Scholar
  48. 48.
    Esnault VLM, Potiron-Josse M, Testa A, et al. Captopril but not acebutolol, prazosin or indomethacin decreases postexercise proteinuria. Nephron 1991; 58: 437–42PubMedCrossRefGoogle Scholar
  49. 49.
    O’Hagan KP, Hora DP, Zambraski J. Indomethacin attenuates exercise-induced proteinuria in hyperetensive miniature swine. Am J Physiol 1992; 263: R954–R961PubMedGoogle Scholar
  50. 50.
    Kriz W, Elger M, Lemley KV, Sakai T. Mesangial cell-glomerular basement membrane connections counteract glomerular capillary and mesangium expansion. Am J Nephrol 1990; 10Suppl.I: 4–13PubMedCrossRefGoogle Scholar
  51. 51.
    Kon V. Neural control of renal circulation. Miner. Electrolyte Metab 1989; 15: 33–43Google Scholar
  52. 52.
    O’Hagan KP, Bell LB, Mittelstadt SW, et al. Effect of dynamic exercise on renal sympathetic nerve activity in conscious rabbits. J Appl Physiol 1993; 74: 2099–104PubMedGoogle Scholar
  53. 53.
    Timpl R. Structure and biological activity of basement membrane. Eur J Biochem 1989; 180: 487–502PubMedCrossRefGoogle Scholar
  54. 54.
    Zambraski EJ, Bober MC, Godstein JE, et al. Changes in renal cortical sialic acids and colloidal iron staining associated with exercise. Med Sci Sports Exerc 1981; 13: 229–32PubMedCrossRefGoogle Scholar
  55. 55.
    Anderson S, Garcia DL, Brenner BM. Renal and systematic manifestations of glomerular disease. In: Brenner BM, Rector PC, editors. The kidney, vol. II. Philadelphia: WB Saunders, 1991: 1831–70Google Scholar
  56. 56.
    Kitano Y, Yoshikawa N, Nakamura H. Glomerular anionic sites in minimal change nephrotic syndrome and focal segmental glomerulosclerosis. Clin Nephrol 1993; 40: 199–204PubMedGoogle Scholar
  57. 57.
    Poortmans JR. Détermination de certains substrats d’origine tissulaire dans l’urine humaine, au repos et à l’effort. Soc Méd Belge Ed Phys Sports 1967; 20: 153–6Google Scholar
  58. 58.
    Fox JG, Quin JD, O’Reilly D, et al. Assessment of glomerular charge selectivity in man by differential clearance of isoamylases. Clin Sci 1993; 84: 449–54PubMedGoogle Scholar
  59. 59.
    Daniels BS, Hauser EB. Glycation of albumin, not glomerular basement membrane, alters permeability in an in vitro model. Diabetes 1992; 41: 1415–21PubMedCrossRefGoogle Scholar
  60. 60.
    Johnsson E, Haraldsson B. Addition of purified orosomucoid preserves the glomerular permeability for albumin in isolated perfused rat kidneys. Acta Physiol Scand 1993; 147: 1–8PubMedCrossRefGoogle Scholar
  61. 61.
    Shah SV. Oxidant mechanisms in glomerular injury. News Physiol Sci 1988; 3: 254–7Google Scholar
  62. 62.
    Shah SV. Evidence suggesting a role for hydroxyl radical in passive Heymann nephritis in rats. Am J Physiol 1988; 254: F337–F344PubMedGoogle Scholar
  63. 63.
    Jenkins RR. Free radical chemistry: relationship to exercise. Sports Med 1988; 5: 156–70PubMedCrossRefGoogle Scholar
  64. 64.
    Pfeilschifter J, Kunz D, Mühl H. Nitric oxide: an inflammatory mediator of glomerular mesangial cells. Nephron 1993; 64: 518–25PubMedCrossRefGoogle Scholar
  65. 65.
    Guignard JP. Le rein immature. Médecine/Sciences 1993; 9: 289–96Google Scholar
  66. 66.
    Light AB, Warren CR. Urea clearance and proteinuria during exercise. Am J Physiol 1936; 117: 658–61Google Scholar
  67. 67.
    Poortmans JR, Jeanloz RW. Urinary excretion of high-molecular weight substances during physical exercise. In: Medicine ACoS, editor. Physiological aspects of sports and physical fitness. USA: The Athletic Institute, 1968: 83–6Google Scholar
  68. 68.
    Rowe DS, Soothill JF. The proteins of postural and exercise proteinuria. Clin Sci 1961; 21: 87–91PubMedGoogle Scholar
  69. 69.
    Huttunen NP, Käär ML, Pietiläinen M, et al. Exercise-induced proteinuria in children and adolescents. Scand J Clin Lab Invest 1981; 41: 583–7PubMedCrossRefGoogle Scholar
  70. 70.
    Poortmans JR, Geudvert C, Schorochoff K, et al. Postexercise proteinuria in childhood and adolescence. Med Sci Sports Exerc 1993; 25 (Suppl.): S19Google Scholar
  71. 71.
    Epstein M. Effects of aging on the kidney. Fed Proc 1979; 38: 168–72PubMedGoogle Scholar
  72. 72.
    Lichtig C, Levy J, Gershon D, et al. Effect of aging and exercise on the kidney. Gerontology 1987; 33: 40–8PubMedCrossRefGoogle Scholar
  73. 73.
    Schrier RW, Henderson HS, Tischer CC, et al. Nephropathy associated with heat and exercise. Ann Intern Med 1967; 67: 356–76PubMedGoogle Scholar
  74. 74.
    Knochel JP, Carter NW. The role of muscle cell injury in the pathogenesis of acute renal failure after exercise. Kidney Int 1976; 10: S58–S64Google Scholar
  75. 75.
    Knochel JP. Castrastrophic medical events with exhaustive exercise: white collar rabdomyolysis. Kidney Int 1990; 38: 709–19PubMedCrossRefGoogle Scholar
  76. 76.
    Clarkson PM. Worst case scenarios: exertional rhabdomyolysis and acute renal failure. Sports Sci Exchange (Gatorade) 1993;4(42): 1–6Google Scholar
  77. 77.
    Feinfeld DA, Cheng JT, Beysolow TD, et al. A prospective study of urine and serum myoglobin levels in patients with acute rabdomyolysis. Clin Nephrol 1992; 38: 193–5PubMedGoogle Scholar
  78. 78.
    Gardner KDJ. Exercise and the kidney. In: Appenzeller O, editor. Sports medicine. 3rd ed. Baltimore: Urban and Schwarzenberg, 1988: 189–95Google Scholar
  79. 79.
    Mogensen CE, Vittinghus E, Solling K. Urinary albumin excretion during exercise in juvenile diabetes: a provocative test for early abnormalities. Scand J Clin Lab Invest 1975; 35: 295–300PubMedCrossRefGoogle Scholar
  80. 80.
    Jefferson IG, Greene SA, Smith MA, et al. Urine albumin to creatinine ratio-response to exercise in diabetes. Arch Dis Child 1985; 60: 305–10PubMedCrossRefGoogle Scholar
  81. 81.
    Poortmans JR, Dorchy H, Toussaint D. Urinary excretion of total protein, albumin and β2-microglobulin during rest and exercise in diabetic adolescents with and without retinopathy. Diabetes Care 1982; 5: 617–23PubMedCrossRefGoogle Scholar
  82. 82.
    Johansson B-L, Berg U, Bohlin A-B, et al. Exercise-induced changes in renal function and their relation to plasma noradrenaline in insulin-dependent diabetic children and adolescents. Clin Sci 1987; 72: 611–20PubMedGoogle Scholar
  83. 83.
    Bertoluci MC, Friedman G, Schaan BD, et al. Intensity-related exercise albuminuria in insulin dependent diabetic patients. Diabetes Res Clin Pract 1993; 19: 217–25PubMedCrossRefGoogle Scholar
  84. 84.
    Groop L, Stenman S, Groop PH, et al. The effect of exercise on urinary excretion of different size proteins in patients with insulin-dependent diabetes mellitus. Scand J Clin Lab Invest 1990; 50: 525–32PubMedCrossRefGoogle Scholar
  85. 85.
    Hoogenberg K, Dullaart RPF. Abnormal plasma noradrenaline response and exercise induced albuminuria in type 1 (insulin-dependent) diabetes mellitus. Scand J Clin Lab Invest 1992; 52: 803–11PubMedCrossRefGoogle Scholar
  86. 86.
    Poortmans JR, Waterlot B, Dorchy H. Training effect on postexercise microproteinuria in typel diabetic adolescents. Pediatr Adolesc Endocr 1988; 17: 166–72Google Scholar
  87. 87.
    Niset G, Poortmans JR, Leclercq R, et al. Metabolic implications during a 20-km run after heart transplantation. Int J Sports Med 1985; 6: 340–3PubMedCrossRefGoogle Scholar
  88. 88.
    Gazdar AF, Dammin GJ. Neural degeneration and regeneration in human renal transplants. N Engl J Med 1970; 283: 222–4PubMedCrossRefGoogle Scholar
  89. 89.
    DiBona GF. Renal innervation and denervation: lessons from renal transplantation reconsidered. Artif Organs 1987; 11: 457–62PubMedGoogle Scholar
  90. 90.
    Tavemer D, Craig K, Mackay I, et al. Effects of exercise on renal function in patients with moderate impairment of renal function compared to normal men. Nephron 1991; 57: 288–92CrossRefGoogle Scholar
  91. 91.
    Heifets M, Davis TA, Tegtmeyer E, et al. Exercise training ameliorates progressive renal disease in rats with subtotal nephrectomy. Kidney Int 1987; 32: 815–20PubMedCrossRefGoogle Scholar
  92. 92.
    Yamaji T, Fukuhara T, Kinoshita M. Increased capillary permeability to albumin in diabetic rat myocardium. Circ Res 1993; 72: 947–57PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 1994

Authors and Affiliations

  • Jacques R. Poortmans
    • 1
  • Jacques Vanderstraeten
    • 1
  1. 1.Chimie Physiologique, Institut Supérieur d’Education Physique et de KinésithérapieUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations