Drugs

, Volume 69, Issue 11, pp 1417–1431 | Cite as

The Role of Insulin-Sensitizing Agents in the Treatment of Polycystic Ovary Syndrome

  • Niki Katsiki
  • Eleni Georgiadou
  • Apostolos I. Hatzitolios
Review Article

Abstract

Polycystic ovary syndrome (PCOS) represents a heterogeneous spectrum of disorders, mainly characterized by chronic oligoanovulation and hyperandrogenism. Although not included in the diagnostic criteria, insulin resistance is recognized as a fundamental pathogenetic factor of the syndrome. Thus, the use of insulin-sensitizing drugs, such as metformin and thiazolidinediones, has been proposed for PCOS treatment. These agents are unique because they exert both metabolic and endocrine/ovarian beneficial effects.

In this review the results of up-to-date clinical studies and meta-analyses on the possible gynaecological actions of insulin sensitizers are discussed. It has been shown that, as well as favourable metabolic influences, such as improvement in glucose, lipid and proinflammatory profiles, these agents also exert beneficial endocrine and ovarian effects, including amelioration of reproductive abnormalities, restoration of ovulation and menstrual cycles, increase in pregnancy rates and reduction of androgen production. Therefore, current data support the use of insulin sensitizers, along with lifestyle measures and/or other agents, in women with PCOS, especially in the presence of insulin- or clomifene-resistance.

References

  1. 1.
    Knochenhauer ES, Key TJ, Kahsar-Miller M, et al. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J Clin Endocrinol Metab 1998; 83: 3078–82PubMedCrossRefGoogle Scholar
  2. 2.
    Goudas VT, Dumesic DA. Polycystic ovary syndrome. Endocrinol Metab Clin North Am 1997; 26(4): 893–912PubMedCrossRefGoogle Scholar
  3. 3.
    Sheehan MT. Polycystic ovary syndrome: diagnosis and management. Clin Med Res 2004; 2(1): 13–27PubMedCrossRefGoogle Scholar
  4. 4.
    Harwood K, Vuguin P, DiMartino-Nardi J. Current approaches to the diagnosis and treatment of polycystic ovarian syndrome in youth. Horm Res 2007; 68(5): 209–17PubMedCrossRefGoogle Scholar
  5. 5.
    Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 2004; 81(1): 774–800Google Scholar
  6. 6.
    Pasquali R, Gambineri A. Insulin-sensitizing agents in polycystic ovary syndrome. Eur J Endocrinol 2006; 154(6): 763–75PubMedCrossRefGoogle Scholar
  7. 7.
    Dhindsa G, Bhatia R, Dhindsa M, et al. Insulin resistance, insulin sensitization and inflammation in polycystic ovarian syndrome. J Postgrad Med 2004; 50(2): 140–4PubMedGoogle Scholar
  8. 8.
    Meyer C, McGrath BP, Teede HJ. The effects of medical therapy on insulin resistance and the cardiovascular system ion polycystic ovary syndrome. Diabetes Care 2007; 30(3): 471–8PubMedCrossRefGoogle Scholar
  9. 9.
    Lord JM, Flight IH, Norman RJ. Insulin-sensitizing drugs (metformin, troglitazone, rosiglitazone, pioglitazone, D-chiro-inositol) for polycystic ovary syndrome. Cochrane Database Syst Rev 2003; (3): CD003053Google Scholar
  10. 10.
    Park HR, Choi Y, Lee HJ, et al. Phenotypic characteristics according to insulin sensitivity in non-obese Korean women with polycystic ovary syndrome. Diabetes Res Clin Pract 2007; 77 Suppl. 1: S233–7PubMedCrossRefGoogle Scholar
  11. 11.
    Matalliotakis I, Kourtis A, Koukoura O, et al. Polycystic ovary syndrome: etiology and pathogenesis. Arch Gynecol Obstet 2006; 274(4): 187–97PubMedCrossRefGoogle Scholar
  12. 12.
    Vignesh JP, Mohan V. Polycystic ovary syndrome: a component of metabolic syndrome? J Postgrad Med 2007; 53(2): 128–34PubMedCrossRefGoogle Scholar
  13. 13.
    Eagleson CA, Gingrich MB, Pastor CL, et al. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab 2000; 85(11): 4047–52PubMedCrossRefGoogle Scholar
  14. 14.
    Turgeon JL, Waring DW. Androgen modulation of luteinizing hormone secretion by female rat gonadotropes. Endocrinology 1999; 140(4): 1767–74PubMedCrossRefGoogle Scholar
  15. 15.
    Buggs C, Rosenfield RL. Polycystic ovary syndrome in adolescence. Endocrinol Metab Clin N Am 2005; 34(3): 677–705CrossRefGoogle Scholar
  16. 16.
    Ehrmann DA, Barnes RB, Rosenfield RL. Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocr Rev 1995; 16(3): 322–53PubMedGoogle Scholar
  17. 17.
    Balen AH, Conway GS, Kaltsas G, et al. Polycystic ovary syndrome: the spectrum of the disorder in 1741 patients. Hum Reprod 1995; 10(8): 2107–11PubMedGoogle Scholar
  18. 18.
    Chang WY, Knochenhauer ES, Bartolucci AA, et al. Phenotypic spectrum of polycystic ovary syndrome: clinical and biochemical characterization of the three major clinical subgroups. Fertil Steril 2005; 83(6): 1717–23PubMedCrossRefGoogle Scholar
  19. 19.
    Kumar A, Woods KS, Bartolucci AA, et al. Prevalence of adrenal androgen excess in patients with the polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf) 2005; 62(6): 644–9CrossRefGoogle Scholar
  20. 20.
    Edmunds SE, Stubbs AP, Santos AA, et al. Estrogen and androgen regulation of sex hormone binding globulin secretion by a human liver cell line. J Steroid Biochem Mol Biol 1990; 37(5): 733–9PubMedCrossRefGoogle Scholar
  21. 21.
    Gilling-Smith C, Willis DS, Beard RW, et al. Hypersecretion of androstenedione by isolated theca cells from polycystic ovaries. J Clin Endocrinol Metab 1994; 79(4): 1158–65PubMedCrossRefGoogle Scholar
  22. 22.
    Webber LJ, Stubbs S, Stark J, et al. Formation and early development of follicles in the polycystic ovary. Lancet 2003; 362(9389): 1017–21PubMedCrossRefGoogle Scholar
  23. 23.
    Pache TD, de Jong FH, Hop WC, et al. Association between ovarian changes assessed by transvaginal sonography and clinical and endocrine signs of the polycystic ovary syndrome. Fertil Steril 1993; 59(3): 544–9PubMedGoogle Scholar
  24. 24.
    Jonard S, Robert Y, Cortet-Rudelli C, et al. Ultrasound examination of polycystic ovaries: is it worth counting the follicles? Hum Reprod 2003; 18(3): 589–603CrossRefGoogle Scholar
  25. 25.
    Diamanti-Kandarakis E, Papavassiliou AG. Molecular mechanisms of insulin resistance in polycystic ovary syndrome. Trends Mol Med 2006; 12(7): 324–32PubMedCrossRefGoogle Scholar
  26. 26.
    Diamanti-Kandarakis E. Insulin resistance in PCOS. Endocrine 2006; 30(1): 13–7PubMedCrossRefGoogle Scholar
  27. 27.
    Nestler J, Powers LP, Matt DW, et al. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab 1991; 72(1): 83–9PubMedCrossRefGoogle Scholar
  28. 28.
    Loukovaara M, Carson M, Adlercreutz H. Regulation of production and secretion of sex hormone-binding globulin in HepG2 cell cultures by hormones and growth factors. J Clin Endocrinol Metab 1995; 80(1): 160–4PubMedCrossRefGoogle Scholar
  29. 29.
    Nestler JE, Jakubowicz DJ, de Vargas AF, et al. Insulin stimulates testosterone biosynthesis by human theca cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab 1998; 83(6): 2001–5PubMedCrossRefGoogle Scholar
  30. 30.
    Escobar-Morreale HF, Luque-Ramirez M, San Millan JL. The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome. Endocr Rev 2005; 26: 251–82PubMedCrossRefGoogle Scholar
  31. 31.
    Simoni M, Tempfer CB, Destenaves B, et al. Functional genetic polymorphisms and female reproductive disorders, part I: polycystic ovary syndrome and ovarian response. Hum Reprod Update 2008; 14: 459–84PubMedCrossRefGoogle Scholar
  32. 32.
    Hoeger KM. Obesity and lifestyle management in polycystic ovary syndrome. Clin Obstre Gynecol 2007; 50(1): 277–94CrossRefGoogle Scholar
  33. 33.
    Bhathena RK. Therapeutic options in the polycystic ovary syndrome. J Obstet Gynaecol 2007; 27(2): 123–9PubMedCrossRefGoogle Scholar
  34. 34.
    Costello MF, Chapman M, Conway U. A systematic review and meta-analysis of randomized controlled trials on metformin co-administration during gonadotropin ovulation induction or IVF in women with polycystic ovary syndrome. Hum Reprod 2006; 21(6): 1387–99PubMedCrossRefGoogle Scholar
  35. 35.
    Stankiewicz M, Norman R. Diagnosis and management of polycystic ovary syndrome: a practical guide. Drugs 2006; 66(7): 903–12PubMedCrossRefGoogle Scholar
  36. 36.
    Legro RS, Barnhart HX, Schlaff WD, et al. Clomiphene, metformin or both for infertility in the polycystic ovary syndrome. N Engl J Med 2007; 356(6): 551–66PubMedCrossRefGoogle Scholar
  37. 37.
    Moll E, Bossuyt PM, Korevaar JC, et al. Effect of clomiphene citrate plus metformin and clomiphene citrate plus placebo on induction of ovulation in women with newly diagnosed polycystic ovary syndrome: randomized double blind clinical trial. BMJ 2006; 332(7556): 1485–90PubMedCrossRefGoogle Scholar
  38. 38.
    Dunaif A. Drug insight: insulin-sensitizing drugs in the treatment of polycystic ovary syndrome-a reappraisal. Nat Clin Pract Endocrinol Metab 2008; 4(5): 272–83PubMedCrossRefGoogle Scholar
  39. 39.
    Elkind-Hirsch KE. Thiazolidinediones for the therapeutic management of polycystic ovary syndrome: impact on metabolic and reproductive abnormalities. Treat Endocrinol 2006; 5(3): 171–87PubMedCrossRefGoogle Scholar
  40. 40.
    Attia GR, Rainey WE, Carr BR. Metformin directly inhibits androgen production in human thecal cells. Fertil Steril 2001; 76(3): 517–24PubMedCrossRefGoogle Scholar
  41. 41.
    Seto-Young D, Paliou M, Schlosser J, et al. Direct thiazolidinediones action in the human ovary: insulin-independent and insulin-sensitizing effects on steroidogenesis and insulin-like growth factor binding protein-1 production. J Clin Endocrinol Metab 2005; 90(11): 6099–105PubMedCrossRefGoogle Scholar
  42. 42.
    Teede HJ, Hutchison SK, Zoungas S. The management of insulin resistance in polycystic ovary syndrome. Trends Endocrinol Metab 2007; 18(7): 273–9PubMedCrossRefGoogle Scholar
  43. 43.
    Hundal RS, Inzucchi SE. Metformin: new understanding, new uses. Drugs 2003; 63(18): 1879–94PubMedCrossRefGoogle Scholar
  44. 44.
    Harborne L, Fleming R, Lyall H, et al. Descriptive review of the evidence for the use of metformin in polycystic ovary syndrome. Lancet 2003; 361(9372): 1894–901PubMedCrossRefGoogle Scholar
  45. 45.
    Glueck CJ, Wang P, Kobayashi S, et al. Metformin therapy throughout pregnancy reduces the development of gestational diabetes in women with polycystic ovary syndrome. Fertil Steril 2002; 77(3): 520–5PubMedCrossRefGoogle Scholar
  46. 46.
    Kelly CJ, Gordon D. The effect of metformin on hirsutism in polycystic ovary syndrome. Eur J Endocrinol 2002; 147(2): 217–21PubMedCrossRefGoogle Scholar
  47. 47.
    Harborne L, Fleming R, Lyall H, et al. Metformin or antiandrogen in the treatment of hirsutism in polycystic ovary syndrome. J Clin Endocrinol Metab 2003; 88(9): 4116–23PubMedCrossRefGoogle Scholar
  48. 48.
    Kolodziejczyk B, Duleba AJ, Spaczynski RZ, et al. Metformin therapy decrease hyperandrogenism and hyperinsulinemia in women with polycystic ovary syndrome. Fertil Steril 2000; 73(6): 1149–54PubMedCrossRefGoogle Scholar
  49. 49.
    Lord JM, Flight IH, Norman RJ. Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ 2003; 327(7421): 951–3PubMedCrossRefGoogle Scholar
  50. 50.
    Ibanez L, Valls C, Potau N, et al. Sensitization to insulin in adolescent girls to normalize hirsutism, hyperandrogenism, oligomenorrhea, dyslipidemia and hyperinsulinism after precocious pubarche. J Clin Endocrinol Metab 2000; 85(10): 3526–30PubMedCrossRefGoogle Scholar
  51. 51.
    Franks S. Assessment and management of anovulatory infertility in polycystic ovary syndrome. Endocrinol Metab Clin North Am 2003; 32(3): 639–51PubMedCrossRefGoogle Scholar
  52. 52.
    De Leo V, la Marca A, Petraglia F. Insulin-lowering agents in the management of polycystic ovary syndrome. Endocr Rev 2003; 24(5): 633–67PubMedCrossRefGoogle Scholar
  53. 53.
    Lam PM, Cheung LP, Haines C. Revisit of metformin treatment in polycystic ovary syndrome. Gynecol Endocrinol 2004; 19(1): 33–9PubMedCrossRefGoogle Scholar
  54. 54.
    Dronavalli S, Ehrmann DA. Pharmacologic therapy of polycystic ovary syndrome. Clin Obstet Gynecol 2007; 50(1): 244–54PubMedCrossRefGoogle Scholar
  55. 55.
    Morin-Papunen LC, Vauhkonen I, Koivunen RM, et al. Endocrine and metabolic effects of metformin versus ethinyl estradiol-cyproterone acetate in obese women with polycystic ovary syndrome: a randomized study. J Clin Endocrinol Metab 2000; 85(9): 3161–8PubMedCrossRefGoogle Scholar
  56. 56.
    Fleming R, Hopkinson ZE, Wallace AM, et al. Ovarian function and metabolic factors in women with oligomenorrhea treated with metformin in a randomized double blind placebo-controlled trial. J Clin Endocrinol Metab 2002; 87(2): 569–74PubMedCrossRefGoogle Scholar
  57. 57.
    Moghetti P, Castello R, Negri C, et al. Metformin effects on clinical features, endocrine and metabolic profiles, and insulin sensitivity in polycystic ovary syndrome: a randomized, double blind, placebo-controlled 6-month trial, followed by open, long-term clinical evaluation. J Clin Endocrinol Metab 2000; 85(1): 139–46PubMedCrossRefGoogle Scholar
  58. 58.
    Iuorno MJ, Nestler JE. Insulin-lowering drugs in polycystic ovary syndrome. Obstet Gynecol Clin North Am 2001; 28(1): 153–64PubMedCrossRefGoogle Scholar
  59. 59.
    Kashyap S, Wells GA, Rosenwaks Z. Insulin-sensitizing agents as primary therapy for patients with polycystic ovary syndrome. Hum Reprod 2004; 19(11): 2474–83PubMedCrossRefGoogle Scholar
  60. 60.
    Costello MF, Eden JA. A systematic review of the reproductive system effects of metformin in patients with polycystic ovary syndrome. Fertil Steril 2003; 79(1): 1–13PubMedCrossRefGoogle Scholar
  61. 61.
    Jakubowicz DJ, Seppala M, Jakubowicz S, et al. Insulin reduction with metformin increases luteal phase serum glycodelin and insulin-like growth factor-binding protein 1 concentrations and enhances uterine vascularity and blood flow in the polycystic ovary syndrome. J Clin Endocrinol Metab 2001; 86(3): 1126–33PubMedCrossRefGoogle Scholar
  62. 62.
    Jakubowicz DJ, Iuorno MJ, Jakubowicz S, et al. Effects of metformin on early pregnancy loss in the polycystic ovary syndrome. J Clin Endocrinol Metab 2002; 87(2): 524–9PubMedCrossRefGoogle Scholar
  63. 63.
    Krysiak R, Okopien B, Gdula-Dymek A, et al. Update on the management of polycystic ovary syndrome. Pharmacol Rep 2006; 58(5): 614–25PubMedGoogle Scholar
  64. 64.
    Palomba S, Orio Jr F, Falbo A, et al. Prospective parallel randomized, double-blind, double-dummy controlled clinical trial comparing clomiphene citrate and metformin as the first-line treatment for ovulation induction in nonobese anovulatory women with polycystic ovary syndrome. J Clin Endocrinol Metab 2005; 90(7): 4068–74PubMedCrossRefGoogle Scholar
  65. 65.
    Neveu N, Granger L, St-Michel P, et al. Comparison of clomiphene citrate, metformin or the combination of both for first-line ovulation induction and achievement of pregnancy in 154 women with polycystic ovary syndrome. Fertil Steril 2007; 87(1): 113–20PubMedCrossRefGoogle Scholar
  66. 66.
    Seli E, Duleba AJ. Treatment of PCOS with metformin and other insulin-sensitizing agents. Curr Diab Rep 2004; 4(1): 69–75PubMedCrossRefGoogle Scholar
  67. 67.
    Cheang KI, Nestler JE. Should insulin-sensitizing drugs be used in the treatment of polycystic ovary syndrome? Reprod Biomed Online 2004; 8(4): 440–7PubMedCrossRefGoogle Scholar
  68. 68.
    Creanga AA, Bradley HM, McCormick C, et al. Use of metformin in polycystic ovary syndrome: a meta-analysis. Obstet Gynecol 2008; 111(4): 959–68PubMedCrossRefGoogle Scholar
  69. 69.
    Thessaloniki ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Consensus on infertility treatment related to polycystic ovary syndrome. Hum Reprod 2008; 23(3): 462–77CrossRefGoogle Scholar
  70. 70.
    Amin M, Abdel-Kareem O, Takekida S, et al. Up-date management of non responder to clomiphene citrate in polycystic ovary syndrome. Kobe J Med Sci 2003; 49(3–4): 59–73PubMedGoogle Scholar
  71. 71.
    Gilbert C, Valois M, Koren G. Pregnancy outcome after first-trimester exposure to metformin: a meta-analysis. Fertil Steril 2006; 86(3): 658–63PubMedCrossRefGoogle Scholar
  72. 72.
    Legro RS. Pregnancy considerations in women with polycystic ovary syndrome. Clin Obstet Gynecol 2007; 50(1): 295–304PubMedCrossRefGoogle Scholar
  73. 73.
    Glueck CJ, Phillips H, Cameron D, et al. Continuing metformin throughout pregnancy in women with polycystic ovary syndrome appears to safely reduce first-trimester spontaneous abortion: a pilot study. Fertil Steril 2001; 75(1): 46–52PubMedCrossRefGoogle Scholar
  74. 74.
    Hellmuth E, Damm P, Molsted-Pedersen L. Oral hypoglycaemic agents in 118 diabetic pregnancies. Diabet Med 2000; 17(7): 507–11PubMedCrossRefGoogle Scholar
  75. 75.
    McCarthy EA, Walker SP, McLachlan K, et al. Metformin in obstetric and gynaecologic practice: a review. Obstet Gynecol Surv 2004; 59(2): 118–27PubMedCrossRefGoogle Scholar
  76. 76.
    De Leo V, la Marca A, Ditto A, et al. Effects of metformin on gonadotropin-induced ovulation in women with polycystic ovary syndrome. Fertil Steril 1999; 72(2): 282–5PubMedCrossRefGoogle Scholar
  77. 77.
    Yarali H, Yildiz BO, Demirol A, et al. Coadministration of metformin during rFSH treatment in patients with clomiphene citrate-resistant polycystic ovarian syndrome: a prospective randomized trial. Hum Reprod 2002; 17(2): 289–94PubMedCrossRefGoogle Scholar
  78. 78.
    Van Santbrink EJ, Hohmann FP, Eijkemans MJ, et al. Does metformin modify ovarian responsiveness during exogenous FSH ovulation induction in normogonadotrophic anovulation? A placebo-controlled double-blind assessment. Eur J Endocrinol 2005; 152(4): 611–7PubMedCrossRefGoogle Scholar
  79. 79.
    Palomba S, Falbo A, Orio Jr F, et al. A randomized controlled trial evaluating metformin pre-treatment and co-administration in non-obese insulin-resistant women with polycystic ovary syndrome treated with controlled ovarian stimulation plus timed intercourse or intrauterine insemination. Hum Reprod 2005; 20(10): 2879–86PubMedCrossRefGoogle Scholar
  80. 80.
    Stadtmauer LA, Toma SK, Riehl RM, et al. Metformin treatment of patients with polycystic ovary syndrome undergoing in vitro fertilization improves outcomes and is associated with modulation of the insulin-like growth factors. Fertil Steril 2001; 75(3): 505–9PubMedCrossRefGoogle Scholar
  81. 81.
    Fedorcsak P, Dale PO, Storeng R, et al. The effect of metformin on ovarian stimulation and in vitro fertilization in insulin-resistant women with polycystic ovary syndrome: an open-label randomized cross-over trial. Gynecol Endocrinol 2003; 17(3): 207–14PubMedGoogle Scholar
  82. 82.
    Vandermolen DT, Ratts VS, Evans WS, et al. Metformin increases the ovulatory rate and pregnancy rate from clomiphene citrate in patients with polycystic ovary syndrome who are resistant to clomiphene citrate alone. Fertil Steril 2001; 75(2): 310–5PubMedCrossRefGoogle Scholar
  83. 83.
    Siebert TI, Kruger TF, Steyn DW, et al. Is the addition of metformin efficacious in the treatment of clomiphene citrate-resistant patients with polycystic ovary sundrome? A structured literature review. Fertil Steril 2006; 86(5): 1432–7PubMedCrossRefGoogle Scholar
  84. 84.
    Ng EH, Wat NM, Ho PC. Effects of metformin on ovulation rate, hormonal and metabolic profiles in women with clomiphene-resistant polycystic ovaries: a randomized double-blind placebo-controlled trial. Hum Reprod 2001; 16(8): 1625–31PubMedCrossRefGoogle Scholar
  85. 85.
    Palomba S, Orio Jr F, Nardo LG, et al. Metformin administration versus laparoscopic ovarian diathermy in clomiphene citrate-resistant women with polycystic ovary syndrome:a prospective parallel randomized double-blind placebo-controlled trial. J Clin Endocrinol Metab 2004; 89(10): 4801–9PubMedCrossRefGoogle Scholar
  86. 86.
    Chiarelli F, Di Marzio D. Peroxisome proliferators-activated receptor-γ agonists and diabetes: current evidence and future perspectives. Vasc Health Risk Manag 2008; 4(2): 297–304PubMedGoogle Scholar
  87. 87.
    Perry CG, Petrie JR. Insulin-sensitising agents: beyond thiazolidinediones. Expert Opin Emerg Drugs 2002; 7(1): 165–74PubMedCrossRefGoogle Scholar
  88. 88.
    Essah PA, Nestler JE. The metabolic syndrome in polycystic ovary syndrome. J Endocrinol Invest 2006; 29(3): 270–80PubMedGoogle Scholar
  89. 89.
    Quinn CE, Hamilton PK, Lockhart CJ, et al. Thiazolidinediones: effects on insulin resistance and the cardiovascular system. Br J Pharmacol 2008; 153(4): 636–45PubMedCrossRefGoogle Scholar
  90. 90.
    Oakes ND, Thalen PG, Jacinto SM, et al. Thiazolidinediones increase plasma-adipose tissue FFA exchange capacity and enhance insulin-mediated control of systemic FFA availability. Diabetes 2001; 50(5): 1158–65PubMedCrossRefGoogle Scholar
  91. 91.
    Vasudevan AR, Balasubramanyam A. Thiazolidinediones: a review of their mechanisms of insulin sensitization, therapeutic potential, clinical efficacy and tolerability. Diabetes Technol Ther 2004; 6(6): 850–63PubMedCrossRefGoogle Scholar
  92. 92.
    Okuno A, Tamemoto H, Tobe K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101(6): 1354–61PubMedCrossRefGoogle Scholar
  93. 93.
    Parulkar AA, Pendergrass ML, Granda-Ayala R, et al. Nonhypoglycemic effects of thiazolidinediones. Ann Intern Med 2001; 134(1): 61–71PubMedGoogle Scholar
  94. 94.
    Azziz R, Ehrmann D, Legro RS, et al. Troglitazone improves ovulation and hirsutism in the polycystic ovary syndrome: a multicenter, double blind, placebo-controlled trial. J Clin Endocrinol Metab 2001; 86(4): 1626–32PubMedCrossRefGoogle Scholar
  95. 95.
    Ehrmann DA, Schneider DJ, Sobel BE, et al. Troglitazone improves defects in insulin action, insulin secretion, ovarian steroidogenesis and fibrinolysis in women with polycystic ovary syndrome. J Clin Endocrinol Metab 1997; 82(7): 2108–16PubMedCrossRefGoogle Scholar
  96. 96.
    Paradisi G, Steinberg HO, Shepard MK, et al. Troglitazone therapy improves endothelial function to near normal levels in women with polycystic ovary. J Clin Endocrinol Metab 2003; 88(2): 576–80PubMedCrossRefGoogle Scholar
  97. 97.
    Federal Drug Administration. Concept paper: premarketing evaluation of drug-induced liver injury, draft. 2007 Jan [online]. Available from URL: http://www.fda.gov/downloads/Drugs/ScienceResearch/ResearchAreas/ucm073046.pdf [Accessed 2009 Jun 17]
  98. 98.
    Dereli D, Dereli T, Bayraktar F, et al. Endocrine and metabolic effects of rosiglitazone in non obese women with polycystic ovary disease. Endocrine J 2005; 52(3): 299–308CrossRefGoogle Scholar
  99. 99.
    Baillargeon JP, Jakubowicz DJ, Iuorno MJ, et al. Effects of metformin and rosiglitazone, alone and in combination, in non-obese women with polycystic ovary syndrome and normal indices of insulin sensitivity. Fertil Steril 2004; 82(4): 893–902PubMedCrossRefGoogle Scholar
  100. 100.
    Rautio K, Tapanainen JS, Ruokonen A, et al. Endocrine and metabolic effects of rosiglitazone in overweight women with PCOS: a randomized placebo-controlled study. Hum Reprod 2006; 21(6): 1400–7PubMedCrossRefGoogle Scholar
  101. 101.
    Cataldo NA, Abbasi F, McLaughlin TL, et al. Metabolic and ovarian effects of rosiglitazone treatment for 12 weeks in insulin-resistant women with polycystic ovary syndrome. Hum Reprod 2006; 21(1): 109–20PubMedCrossRefGoogle Scholar
  102. 102.
    Tarkun I, Cetinarslan B, Türemen E, et al. Effect of rosiglitazone on insulin resistance, C-reactive protein and endothelial function in non-obese young women with polycystic ovary syndrome. Eur J Endocrinol 2005; 153(1): 115–21PubMedCrossRefGoogle Scholar
  103. 103.
    Kilicdag EB, Bagis T, Zeyneloglu HB, et al. Homocysteine levels in women with polycystic ovary syndrome treated with metformin versus rosiglitazone: a randomized study. Hum Reprod 2005; 20(4): 894–9PubMedCrossRefGoogle Scholar
  104. 104.
    Yilmaz M, Bukan N, Ayvaz G, et al. The effects of rosiglitazone and metformin on oxidative stress and homocysteine levels in lean patients with polycystic ovary syndrome. Hum Reprod 2005; 20(12): 3333–40PubMedCrossRefGoogle Scholar
  105. 105.
    Aroda VR, Ciaraldi TP, Burke P, et al. Metabolic and hormonal changes induced by pioglitazone in polycystic ovary syndrome: a randomized, placebo-controlled clinical trial. J Clin Endocrinol Metab 2009; 94(2): 469–76PubMedCrossRefGoogle Scholar
  106. 106.
    Romualdi D, Guido M, Ciampelli M, et al. Selective effects of pioglitazone on insulin and androgen abnormalities in normo- and hyperinsulinemic obese paitents with polycystic ovary syndrome. Hum Reprod 2003; 18(6): 1210–8PubMedCrossRefGoogle Scholar
  107. 107.
    Garmes HM, Tambascia MA, Zantut-Wittmann DE. Endocrine-metabolic effects of the treatment with pioglitazone in obese patients with polycystic ovary syndrome. Gynecol Endocrinol 2005; 21(6): 317–23PubMedCrossRefGoogle Scholar
  108. 108.
    Brettenthaler N, De Geyter C, Huber PR, et al. Effect of the insulin sensitizer pioglitazone on insulin resistance, hyperandrogenism and ovulatory dysfunction in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004; 89(8): 3835–40PubMedCrossRefGoogle Scholar
  109. 109.
    Ortega-Gonzalez C, Luna S, Hernandez L, et al. Responses of serum androgen and insulin resistance to metformin pioglitazone in obese, insulin-resistant women with polycystic ovary syndrome. J Clin Endocrinol Metab 2005; 90(3): 1360–5PubMedCrossRefGoogle Scholar
  110. 110.
    Yilmaz M, Karakoc A, Toruner FB, et al. The effects of rosiglitazone and metformin on menstrual cyclicity and hirsutism in polycystic ovary syndrome. Gynecol Endocrinol 2005; 21(3): 154–60PubMedCrossRefGoogle Scholar
  111. 111.
    Ghazeeri G, Kutteh WH, Bryer-Ash M, et al. Effect of rosiglitazone on spontaneous and clomiphene citrate-induced ovulation in women with polycystic ovary syndrome. Fertil Steril 2003; 79(3): 562–6PubMedCrossRefGoogle Scholar
  112. 112.
    Ota H, Goto T, Yoshioka T, et al. Successful pregnancies treated with pioglitazone in infertile patients with polycystic ovary syndrome. Fertil Steril 2008; 90(3): 709–13PubMedCrossRefGoogle Scholar
  113. 113.
    Satoh N, Ogawa Y, Usui T, et al. Antiatherogenic effect of pioglitazone in type 2 diabetic patients irrespective of the responsiveness to its antidiabetic effect. Diabetes Care 2003; 26(9): 2493–9PubMedCrossRefGoogle Scholar
  114. 114.
    Pillai A, Bang H, Green C. Metformin and glitazones: do they really help PCOS patients? J Fam Pract 2007; 56(6): 444–53PubMedGoogle Scholar
  115. 115.
    Stout DL, Fugate SE. Thiazolidinediones for treatment of polycystiv ovary syndrome. Pharmacotherapy 2005; 25(2): 244–52PubMedCrossRefGoogle Scholar
  116. 116.
    Legro RS, Zaino RJ, Demers LM, et al. The effects of metformin and rosiglitazone, alone and in combination, on the ovary and endometrium in polycystic ovary syndrome. Am J Obstet Gynecol 2007; 196(4): 402.e1-11PubMedCrossRefGoogle Scholar
  117. 117.
    Glueck CJ, Moreira A, Goldenberg N, et al. Pioglitazone and metformin in obese women with polycystic ovary syndrome not optimally responsive to metformin. Hum Reprod 2003; 18(8): 1618–25PubMedCrossRefGoogle Scholar
  118. 118.
    Lincoff AM, Wolski K, Nicholls SJ, et al. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 2007; 298(10): 1180–8PubMedCrossRefGoogle Scholar
  119. 119.
    Shobokshi A, Shaarawy M. Correction of insulin resistance and hyperandrogenism in polycystic ovary syndrome by combined rosiglitazone and clomiphene citrate therapy. J Soc Gynecol Investig 2003; 10(2): 99–104PubMedCrossRefGoogle Scholar
  120. 120.
    Rouzi AA, Ardawi MS. A randomized controlled trial of the efficacy of rosiglitazone and clomiphene citrate versus metformin and clomiphene citrate in women with clomiphene citrate-resistant polycystic ovary syndrome. Fertil Steril 2006; 85(2): 428–35PubMedCrossRefGoogle Scholar
  121. 121.
    Sepilian V, Nagamani M. Effects of rosiglitazone in obese women with polycystic ovary syndrome and severe insulin resistance. J Clin Endocrinol Metab 2004; 90(1): 60–5PubMedCrossRefGoogle Scholar
  122. 122.
    Hanefeld M, Belcher G. Safety profile of pioglitazone. Int J Clin Pract 2001; 121: 27–31Google Scholar
  123. 123.
    Lebovitz HE. Differentiating members of the thiazolidinedione class: a focus on safety. Diabetes Metab Res Rev 2002; 18 Suppl. 2: S23–9PubMedCrossRefGoogle Scholar
  124. 124.
    Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA 2007; 298(10): 1189–95PubMedCrossRefGoogle Scholar
  125. 125.
    Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007; 356(24): 2457–71PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2009

Authors and Affiliations

  • Niki Katsiki
    • 1
  • Eleni Georgiadou
    • 1
  • Apostolos I. Hatzitolios
    • 1
  1. 1.1st Propedeutic Department of Internal Medicine, AHEPA University HospitalAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations