Drugs

, Volume 69, Issue 6, pp 693–716

Community-Associated Meticillin-Resistant Staphylococcus aureus Infections

Epidemiology, Recognition and Management
Review Article
  • 166 Downloads

Abstract

Meticillin-resistant Staphylococcus aureus (MRSA) is an important cause of infection, particularly in hospitalized patients and those with significant healthcare exposure. In recent years, epidemic community-associated MRSA (CA-MRSA) infections occurring in patients without healthcare risk factors have become more frequent. The most common manifestation of CA-MRSA infection is skin and soft tissue infection, although necrotizing pneumonia, sepsis and osteoarticular infections can occur. CA-MRSA strains have become endemic in many communities and are genetically distinct from previously identified MRSA strains. CA-MRSA may be more capable colonizers of humans and more virulent than other S. aureus strains. Specific mechanisms of pathogenicity have not been elucidated, but several factors have been proposed as responsible for the virulence of CA-MRSA, including the Panton-Valentine leukocidin, phenol-soluble modulins and type I arginine catabolic mobile element. The movement of CA-MRSA strains into the nosocomial setting limits the utility of using clinical risk factors alone to designate community- or healthcare-associated status. Identification of unique genetic characteristics and genotyping are valuable tools for MRSA epidemiological studies. Although the optimum pharmacological therapy for CA-MRSA infections has not been determined, many CA-MRSA strains remain broadly susceptible to several non-β-lactam antibacterial agents. Empirical antibacterial therapy should include an MRSA-active agent, particularly in areas where CA-MRSA is endemic.

References

  1. 1.
    National Nosocomial Infections Surveillance (NNIS) System Report data summary from January 1992 through June 2004 issued October 2004. Am J Infect Control 2004; 32: 470–85Google Scholar
  2. 2.
    Noskin GA, Rubin RJ, Schentag JJ, et al. National trends in Staphylococcus aureus infection rates: impact on economic burden and mortality over a 6-year period (1998–2003). Clin Infect Dis 2007; 45: 1132–40PubMedCrossRefGoogle Scholar
  3. 3.
    Klevens RM, Morrison MA, Nadle J, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007; 298: 1763–71PubMedCrossRefGoogle Scholar
  4. 4.
    Jevons MP, Coe AW, Parker MT. Methicillin resistance in staphylococci. Lancet 1963; I: 904–7CrossRefGoogle Scholar
  5. 5.
    Naimi TS, LeDell KH, Como-Sabetti K, et al. Comparison of community and health care-associated methicillinresistant Staphylococcus aureus infection. JAMA 2003; 290: 2976–84PubMedCrossRefGoogle Scholar
  6. 6.
    Levine DP, Cushing RD, Jui J, et al. Community-acquired methicillin-resistant Staphylococcus aureus endocarditis in the Detroit Medical Center. Ann Intern Med 1982; 97: 330–8PubMedGoogle Scholar
  7. 7.
    Cafferkey MT, Hone R, Falkiner FR, et al. Gentamicin and methicillin-resistant Staphylococcus aureus in Dublin hospitals: clinical and laboratory studies. J Med Microbiol 1983; 16: 117–27PubMedCrossRefGoogle Scholar
  8. 8.
    Udo EE, Pearman JW, Grubb WB. Genetic analysis of community isolates of methicillin-resistant Staphylococcus aureus in Western Australia. J Hosp Infect 1993; 25: 97–108PubMedCrossRefGoogle Scholar
  9. 9.
    Herold BC, Immergluck LC, Maranan MC, et al. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 1998; 279: 593–8PubMedCrossRefGoogle Scholar
  10. 10.
    Centers for Disease Control and Prevention. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus — Minnesota and North Dakota, 1997–1999. MMWR Morb Mortal Wkly Rep 1999; 48: 707–10Google Scholar
  11. 11.
    Centers for Disease Control and Prevention. Methicillinresistant Staphylococcus aureus skin or soft tissue infections in a state prison — Mississippi, 2000. MMWR Morb Mortal Wkly Rep 2001; 50: 919–22Google Scholar
  12. 12.
    Centers for Disease Control and Prevention. Outbreaks of community-acquired methicillin-resistant Staphylococcus aureus skin infections — Los Angeles County, California, 2002–2003 [letter]. MMWR Morb Mortal Wkly Rep 2003; 52: 88Google Scholar
  13. 13.
    Centers for Disease Control and Prevention. Methicillinresistant Staphylococcus aureus infections in correctional facilities — Georgia, California, and Texas, 2001–2003. MMWR Morb Mortal Wkly Rep 2003; 52: 992–6Google Scholar
  14. 14.
    Baggett HC, Hennessy TW, Leman RL, et al. Outbreak of community-onset methicillin-resistant Staphylococcus aureus skin infections in southwestern Alaska. Infect Control Hosp Epidemiol 2003; 24: 397–402PubMedCrossRefGoogle Scholar
  15. 15.
    Centers for Disease Control and Prevention. Methicillinresistant Staphylococcus aureus infections among competitive sports participants — Colorado, Indiana, Pennsylvania, and Los Angeles County, 2000–2003. MMWR Morb Mortal Wkly Rep 2003; 52: 793–5Google Scholar
  16. 16.
    Begier EM, Frenette K, Barrett NL, et al. A high-morbidity outbreak of methicillin-resistant Staphylococcus aureus among players on a college football team, facilitated by cosmetic body shaving and turf burns. Clin Infect Dis 2004; 39: 1446–53PubMedCrossRefGoogle Scholar
  17. 17.
    Kazakova SV, Hageman JC, Matava M, et al. A clone of methicillin-resistant Staphylococcus aureus among professional football players. N Engl J Med 2005; 352: 468–75PubMedCrossRefGoogle Scholar
  18. 18.
    Campbell KM, Vaughn AF, Russell KL, et al. Risk factors for community-acquired methicillin-resistant Staphylococcus aureus infections in an outbreak of disease among military trainees in San Diego, California, in 2002. J Clin Microbiol 2004; 42: 4050–3PubMedCrossRefGoogle Scholar
  19. 19.
    Nimmo GR, Schooneveldt J, O’Kane G, et al. Community acquisition of gentamicin-sensitive methicillin-resistant Staphylococcus aureus in southeast Queensland, Australia. J Clin Microbiol 2000; 38: 3926–31PubMedGoogle Scholar
  20. 20.
    Aires de Sousa M, Bartzavali C, Spiliopoulou I, et al. Two international methicillin-resistant Staphylococcus aureus clones endemic in a university hospital in Patras, Greece. J Clin Microbiol 2003; 41: 2027–32CrossRefGoogle Scholar
  21. 21.
    Vandenesch F, Naimi T, Enright MC, et al. Communityacquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. 2003; 9: 978–84Google Scholar
  22. 22.
    Liassine N, Auckenthaler R, Descombes MC, et al. Community-acquired methicillin-resistant Staphylococcus aureus isolated in Switzerland contains the Panton-Valentine leukocidin or exfoliative toxin genes. J Clin Microbiol 2004; 42: 825–8PubMedCrossRefGoogle Scholar
  23. 23.
    Velazquez-Meza ME, Aires de Sousa M, Echaniz-Aviles G, et al. Surveillance of methicillin-resistant Staphylococcus aureus in a pediatric hospital in Mexico City during a 7-year period (1997–2003): clonal evolution and impact of infection control. J Clin Microbiol 2004; 42: 3877–80PubMedCrossRefGoogle Scholar
  24. 24.
    Ribeiro A, Dias C, Silva-Carvalho MC, et al. First report of community-acquired methicillin-resistant Staphylococcus aureus in South America. J Clin Microbiol 2005; 43: 1985–8PubMedCrossRefGoogle Scholar
  25. 25.
    Fridkin SK, Hageman JC, Morrison M, et al. Methicillinresistant Staphylococcus aureus disease in three communities. N Engl JMed 2005; 352: 1436–44CrossRefGoogle Scholar
  26. 26.
    Vourli S, Perimeni D, Makri A, et al. Community acquired MRSA infections in a paediatric population in Greece. Euro Surveill 2005; 10: 78–9PubMedGoogle Scholar
  27. 27.
    Moran GJ, Krishnadasan A, Gorwitz RJ, et al. Methicillinresistant S. aureus infections among patients in the emergency department. N Engl J Med 2006; 355: 666–74PubMedCrossRefGoogle Scholar
  28. 28.
    Hsu LY, Koh YL, Chlebicka NL, et al. Establishment of ST30 as the predominant clonal type among communityassociated methicillin-resistant Staphylococcus aureus isolates in Singapore. J Clin Microbiol 2006; 44: 1090–3PubMedCrossRefGoogle Scholar
  29. 29.
    Huang YC, Su LH, Wu TL, et al. Changing molecular epidemiology of methicillin-resistant Staphylococcus aureus bloodstream isolates from a teaching hospital in Northern Taiwan. J Clin Microbiol 2006; 44: 2268–70PubMedCrossRefGoogle Scholar
  30. 30.
    Nimmo GR, Coombs GW, Parson JC, et al. Methicillinresistant Staphylococcus aureus in the Australian community: an evolving epidemic. Med J Aust 2006; 184: 374–5Google Scholar
  31. 31.
    Kuehnert MJ, Kruszon-Moran D, Hill HA, et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001–2002. J Infect Dis 2006; 193: 172–9PubMedCrossRefGoogle Scholar
  32. 32.
    Gorwitz RJ, Kruszon-Moran D, McAllister SK, et al. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J Infect Dis 2008; 197: 1226–34PubMedCrossRefGoogle Scholar
  33. 33.
    Eveillard M, de Lassence A, Lancien E, et al. Evaluation of a strategy of screening multiple anatomical sites for methicillin-resistant Staphylococcus aureus at admission to a teaching hospital. Infect Control Hosp Epidemiol 2006; 27: 181–4PubMedCrossRefGoogle Scholar
  34. 34.
    Mertz D, Frei R, Jaussi B, et al. Throat swabs are necessary to reliably detect carriers of Staphylococcus aureus. Clin Infect Dis 2007; 45: 475–7PubMedCrossRefGoogle Scholar
  35. 35.
    Buehlmann M, Frei R, Fenner L, et al. Highly effective regimen for decolonization of methicillin-resistant Staphylococcus aureus carriers. Infect Control Hosp Epidemiol 2008; 29: 510–6PubMedCrossRefGoogle Scholar
  36. 36.
    Roghmann MC, Siddiqui A, Plaisance K, et al. MRSA colonization and the risk of MRSA bacteraemia in hospitalized patients with chronic ulcers. J Hosp Infect 2001; 47: 98–103PubMedCrossRefGoogle Scholar
  37. 37.
    Huang SS, Platt R. Risk of methicillin-resistant Staphylococcus aureus infection after previous infection or colonization. Clin Infect Dis 2003; 36: 281–5PubMedCrossRefGoogle Scholar
  38. 38.
    Davis KA, Stewart JJ, Crouch HK, et al. Methicillinresistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Clin Infect Dis 2004; 39: 776–82PubMedCrossRefGoogle Scholar
  39. 39.
    Ellis MW, Hospenthal DR, Dooley DP, et al. Natural history of community-acquired methicillin-resistant Staphylococcus aureus colonization and infection in soldiers. Clin Infect Dis 2004; 39: 971–9PubMedCrossRefGoogle Scholar
  40. 40.
    Cohen AL, Shuler C, McAllister S, et al. Methamphetamine use and methicillin-resistant Staphylococcus aureus skin infections. Emerg Infect Dis 2007; 13: 1707–13PubMedCrossRefGoogle Scholar
  41. 41.
    Diep BA, Chambers HF, Graber CJ, et al. Emergence of multidrug-resistant, community-associated, methicillinresistant Staphylococcus aureus clone USA300 in men who have sex with men. Ann Intern Med 2008; 148: 249–57PubMedGoogle Scholar
  42. 42.
    Groom AV, Wolsey DH, Naimi TS, et al. Communityacquired methicillin-resistant Staphylococcus aureus in a rural American Indian community. JAMA 2001; 286: 1201–5PubMedCrossRefGoogle Scholar
  43. 43.
    Baggett HC, Hennessy TW, Rudolph K, et al. Communityonset methicillin-resistant Staphylococcus aureus associated with antibiotic use and the cytotoxin Panton-Valentine leukocidin during a furunculosis outbreak in rural Alaska. J Infect Dis 2004; 189: 1565–73PubMedCrossRefGoogle Scholar
  44. 44.
    McDougal LK, Steward CD, Killgore GE, et al. Pulsedfield gel electrophoresis of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 2003; 41: 5113–20PubMedCrossRefGoogle Scholar
  45. 45.
    Diep BA, Carleton HA, Chang RF, et al. Role of 34 virulence genes in the evolution of hospital- and communityassociated strains of methicillin-resistant Staphylococcus aureus. J Infect Dis 2006; 193: 1495–503PubMedCrossRefGoogle Scholar
  46. 46.
    Baba T, Takeuchi F, Kuroda M, et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 2002; 359: 1819–27PubMedCrossRefGoogle Scholar
  47. 47.
    Lina G, Piémont Y, Godail-Gamt F, et al. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 1999; 29: 1128–32PubMedCrossRefGoogle Scholar
  48. 48.
    Dufour P, Gillet Y, Bes M, et al. Community-acquired methicillin-resistant Staphylococcus aureus infections in France: emergence of a single clone that produces Panton-Valentine leukocidin. Clin Infect Dis 2002; 35: 819–24PubMedCrossRefGoogle Scholar
  49. 49.
    Diep BA, Sensabaugh GF, Somboona NS, et al. Widespread skin and soft-tissue infections due to two methicillin-resistant Staphylococcus aureus strains harboring the genes for Panton-Valentine leucocidin. J Clin Microbiol 2004; 42: 2080–4PubMedCrossRefGoogle Scholar
  50. 50.
    Voyich JM, Otto M, Mathema B, et al. Is Panton-Valentine Leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J Infect Dis 2006; 194: 1761–70PubMedCrossRefGoogle Scholar
  51. 51.
    Diep BA, Palazzolo-Balance AM, Tattevin P, et al. Contribution of Panton-Valentine leukocidin in communityassociated methicillin-resistant Staphylococcus aureus pathogenesis. PLoS One 2008; 3: e3198PubMedCrossRefGoogle Scholar
  52. 52.
    Labandeira-Rey M, Couzon F, Boisset S, et al. Staphylococcus aureus Panton Valentine leukocidin causes necrotizing pneumonia. Science 2007; 315: 1130–3PubMedCrossRefGoogle Scholar
  53. 53.
    Bubeck Wardenburg J, Bae T, Otto M, et al. Poring over the pores: α-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat Med 2007; 13: 1405–6PubMedCrossRefGoogle Scholar
  54. 54.
    Wardenburg JB, Palazzolo-Balance AM, Otto M, et al. Panton-Valentine is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease. J Infect Dis 2008; 198: 1166–70CrossRefGoogle Scholar
  55. 55.
    Wang R, Braughton KR, Kretschmer D, et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 2007; 13: 1510–4PubMedCrossRefGoogle Scholar
  56. 56.
    Diep BA, Gill SR, Chang RF, et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 2006; 367: 731–9PubMedCrossRefGoogle Scholar
  57. 57.
    Diep BA, Stone GC, Basuino L, et al. The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J Infect Dis 2008; 197: 1523–30PubMedCrossRefGoogle Scholar
  58. 58.
    Diep BA, Gill SR, Change RF, et al. Complete genome sequence of USA300, an epidemic clone of communityacquired meticillin-resistant Staphylococcus aureus. Lancet 2006; 367: 731–39PubMedCrossRefGoogle Scholar
  59. 59.
    Han LL, McDougal LK, Gorwitz RJ, et al. High frequencies of clindamycin and tetracycline resistance in methicillin-resistant Staphylococcus aureus pulsed-field type USA300 isolates collected at a Boston ambulatory health center. J Clin Microbiol 2007; 45: 1350–2PubMedCrossRefGoogle Scholar
  60. 60.
    Okuma K, Iwakawa K, Turnidge JD, et al. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol 2002; 40: 4289–94PubMedCrossRefGoogle Scholar
  61. 61.
    Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2000; 44: 1549–55PubMedCrossRefGoogle Scholar
  62. 62.
    Ito T, Katayama Y, Asada K, et al. Structural composition of three types of staphylococcal cassette chromosome mec integrated in the chromosome of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2002; 46: 1147–52PubMedCrossRefGoogle Scholar
  63. 63.
    Ma XX, Ito T, Tiensasitorn C, et al. Novel type of staphylococcal chromosome mec identified in communityacquired methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 2002; 46: 1147–52PubMedCrossRefGoogle Scholar
  64. 64.
    Daum RS, Ito T, Hiramatsu K, et al. A novel methicillinresistance cassette in community-acquired methicillinresistant Staphylococcus aureus isolates of diverse genetic backgrounds. J Infect Dis 2002; 186: 1344–7PubMedCrossRefGoogle Scholar
  65. 65.
    Ito T, Ma XX, Takeuchi F, et al. Novel type V Staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob Agents Chemother 2004; 48: 2637–51PubMedCrossRefGoogle Scholar
  66. 66.
    Shore A, Rossney AS, Keane CT, et al. Seven novel variants of the staphylococcal chromosomal cassette mec in methicillin-resistant Staphylococcus aureus isolates from Ireland. Antimicrob Agents Chemother 2005; 49: 2070–83PubMedCrossRefGoogle Scholar
  67. 67.
    King MD, Humphrey BH, Want YF, et al. Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann Intern Med 2006; 144: 309–17PubMedGoogle Scholar
  68. 68.
    Miller LG, Quan C, Shay A, et al. A prospective investigation of outcomes after hospital discharge for endemic, community-acquired methicillin-resistant and -susceptible Staphylococcus aureus skin infection. Clin Infect Dis 2007; 44: 483–92PubMedCrossRefGoogle Scholar
  69. 69.
    Graber CJ, Jacobson MA, Perdreau-Remington F, et al. Recurrence of skin and soft tissue infection caused by methicillin-resistant Staphylococcus aureus in a HIV primary care clinic. J Acquired Immune Defic Syndr 2008; 49: 231–3CrossRefGoogle Scholar
  70. 70.
    Miller LG, Perdreau-Remington F, Rieg G, et al. Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med 2005; 352: 1445–53PubMedCrossRefGoogle Scholar
  71. 71.
    Fowler A, Mackay A. Community-acquired methicillinresistant Staphylococcus aureus pyomyositis in an intravenous drug user. J Med Microbiol 2006; 55: 123–5PubMedCrossRefGoogle Scholar
  72. 72.
    Dehority W, Wang E, Vernon PS, et al. Communityassociated methicillin-resistant Staphylococcus aureus necrotizing fasciitis in a neonate. Pediatr Infect Dis J 2006; 25: 1080–1PubMedCrossRefGoogle Scholar
  73. 73.
    Pannaraj PS, Hulten KG, Gonzalez BE, et al. Infective pyomyositis and myositis in children in the era of community-acquired, methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 2006; 43: 953–60PubMedCrossRefGoogle Scholar
  74. 74.
    Sokolov KM, Kreye E, Miller LG, et al. Postpartum iliopsoas pyomyositis due to community-acquired methicillin-resistant Staphylococcus aureus. Obstet Gynel 2007; 110: 535–8CrossRefGoogle Scholar
  75. 75.
    Shedek BK, Nilles EJ. Community-associated methicillinresistant Staphylococcus aureus pyomyositis complicated by compartment syndrome in an immunocompetent young woman. Am J Emerg Med 2008; 26: 737.e3-4PubMedCrossRefGoogle Scholar
  76. 76.
    Burton MJ, Shah P, Swiatlo E. Community-acquired methicillin-resistant Staphylococcus aureus as a cause of Fournier’s gangrene. Am J Med Sci 2008; 335: 327–8PubMedCrossRefGoogle Scholar
  77. 77.
    Gillet Y, Issartel B, Vanhems P, et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotizing pneumonia in young immunocompetent patients. Lancet 2002; 359: 753–9PubMedCrossRefGoogle Scholar
  78. 78.
    Francis JS, Doherty MC, Lopatin U, et al. Severe community-onset pneumonia in healthy adults caused by methicillin-resistant Staphylococcus aureus carrying the Panton-Valentine leukocidin genes. Clin Infect Dis 2005; 40: 100–7PubMedCrossRefGoogle Scholar
  79. 79.
    Gonzalez BE, Hulten KG, Dishop MK, et al. Pulmonary manifestations in children with invasive communityacquired Staphylococcus aureus infection. Clin Infect Dis 2005; 41: 583–90PubMedCrossRefGoogle Scholar
  80. 80.
    Hageman JC, Uyeki TM, Francis JS, et al. Severe community-acquired pneumonia due to Staphylococcus aureus, 2003–04 influenza season. Emerg Infect Dis 2006; 12: 894–9PubMedCrossRefGoogle Scholar
  81. 81.
    Centers for Disease Control and Prevention. Severe methicillin-resistant Staphylococcus aureus communityacquired pneumonia associated with influenza — Louisiana and Georgia, December 2006–January 2007. MMWR Morb Mortal Wkly Rep 2007; 56: 325–9Google Scholar
  82. 82.
    Martínez-Aguilar G, Hammerman WA, Mason EO, et al. Clindamycin treatment of invasive infections caused by community-acquired methicillin-resistant and methicillinsusceptible Staphylococcus aureus in children. Pediatr Infect Dis J 2003; 22: 593–8PubMedGoogle Scholar
  83. 83.
    Arnold SR, Elias D, Buckingham SC, et al. Changing patterns of acute hematogenous osteomyelitis and septic arthritis. J Pediatr Orthop 2006; 26: 703–8PubMedCrossRefGoogle Scholar
  84. 84.
    Gonzalez BE, Teruya J, Mahoney DH, et al. Venous thrombosis associated with staphylococcal osteomyelitis in children. Pediatrics 2006; 117: 1673–9PubMedCrossRefGoogle Scholar
  85. 85.
    Gillet Y, Dohin B, Dumitrescu O, et al. Osteoarticular infections with Staphylococcus aureus secreting Panton-Valentine leucocidin. Arch Pediatr 2007; 14: S102–7PubMedCrossRefGoogle Scholar
  86. 86.
    Crum NF. The emergence of severe, community-acquired methicillin-resistant Staphylococcus aureus infections. Scand J Infect Dis 2005; 37: 651–6PubMedCrossRefGoogle Scholar
  87. 87.
    Seybold U, Talati NJ, Shah M, et al. Hematogenous osteomyelitis mimicking osteosarcoma due to community-associated methicillin-resistant Staphylococcus aureus. Infection 2007; 35: 190–3PubMedCrossRefGoogle Scholar
  88. 88.
    Nourse C, Starr M, Munckhof W. Community-acquired methicillin-resistant Staphylococcus aureus causes severe disseminated infection and deep venous thrombosis in children: literature review and recommendations for management. J Paediatr Child Health 2007; 43: 656–61PubMedCrossRefGoogle Scholar
  89. 89.
    Bahrain M, Vasiliades M, Wolff M, et al. Five cases of bacterial endocarditis after furunculosis and the ongoing saga of community-acquired methicillin-resistant Staphylococcus aureus infections. Scand J Infect Dis 2006; 38: 702–7PubMedCrossRefGoogle Scholar
  90. 90.
    Haque NZ, Davis SL, Manierski CL, et al. Infective endocarditis caused by USA300 methicillin-resistant Staphylococcus aureus (MRSA). Int J Antimicrob Agents 2007; 30: 72–7PubMedCrossRefGoogle Scholar
  91. 91.
    Gonzalez BE, Martinez-Aguilar G, Hulten KG, et al. Severe staphylococcal sepsis in adolescents in the era of community-acquired methicillin-resistant Staphylococcus aureus. Pediatrics 2005; 115: 642–8PubMedCrossRefGoogle Scholar
  92. 92.
    Kravitz GR, Dries DJ, Peterson ML, et al. Purpura fulminans due to Staphylococcus aureus. Clin Infect Dis 2005; 40: 941–7PubMedCrossRefGoogle Scholar
  93. 93.
    Adem PV, Montgomery CP, Husain AN, et al. Staphylococcus aureus sepsis and the Waterhouse-Friderichsen syndrome in children. N Engl J Med 2005; 353: 1245–51PubMedCrossRefGoogle Scholar
  94. 94.
    Valentine P, Parisi G, Monaco M, et al. An uncommon presentation for a severe invasive infection due to methicillinresistant Staphylococcus aureus clone USA300 in Italy: a case report. Ann Clin Microbiol Antimicrob 2008; 7: 11CrossRefGoogle Scholar
  95. 95.
    Munckhof WJ, Krishnan A, Kruger P, et al. Cavernous sinus thrombosis and meningitis from communityacquired methicillin-resistant Staphylococcus aureus infection. Intern Med J 2008; 38: 283–7PubMedCrossRefGoogle Scholar
  96. 96.
    Saiman L, O’Keefe M, Graham PL, et al. Hospital transmission of community-acquired methicillin-resistant Staphylococcus aureus among postpartum women. Clin Infect Dis 2003; 37: 1313–9PubMedCrossRefGoogle Scholar
  97. 97.
    Stafford I, Hernandez J, Laibl V, et al. Communityacquired methicillin-resistant Staphylococcus aureus among patients with puerperal mastitis requiring hospitalization. Obstet Gynecol 2008; 112: 533–7PubMedCrossRefGoogle Scholar
  98. 98.
    Rutar T, Chamber HF, Crawford JB, et al. Ophthalmic manifestations of infections caused by the USA300 clone of community-associated methicillin-resistant Staphylococcus aureus. Ophthalmology 2006; 113: 1455–62PubMedCrossRefGoogle Scholar
  99. 99.
    Healy CM, Hulten KG, Palazzi DL, et al. Emergence of new strains of methicillin-resistant Staphylococcus aureus in a neonatal intensive care unit. Clin Infect Dis 2004; 39: 1460–6PubMedCrossRefGoogle Scholar
  100. 100.
    De A Trindade P, Pacheco RL, Costa SF, et al. Prevalence of SCCmec Type IV in nosocomial bloodstream isolates of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2005; 43: 3435–7CrossRefGoogle Scholar
  101. 101.
    Regev-Yochay G, Rubinstein E, Barzilai A, et al. Methicillin-resistant Staphylococcus aureus in neonatal intensive care unit. Emerg Infect Dis 2005; 11: 453–56PubMedCrossRefGoogle Scholar
  102. 102.
    Seybold U, Kourbatova EV, Johnson JG, et al. Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health-care-associated blood stream infections. Clin Infect Dis 2006; 42: 647–56PubMedCrossRefGoogle Scholar
  103. 103.
    Davis SL, Rybak MJ, Amjad M, et al. Characteristics of patients with healthcare-associated infection due to SCCmec type IV methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol 2006; 27: 1025–31PubMedCrossRefGoogle Scholar
  104. 104.
    Laplante KL, Rybak MJ, Amjad M, et al. Antimicrobial susceptibility and staphylococcal chromosomal cassette mec type in community- and hospital-associated methicillin-resistant Staphylococcus aureus. Pharmacotherapy 2007; 27: 3–10PubMedCrossRefGoogle Scholar
  105. 105.
    Benoit SR, Estivariz C, Mogdasy C, et al. Community strains of methicillin-resistant Staphylococcus aureus as potential cause of healthcare-associated infections, Uruguay, 2002–2004. Emerg Infect Dis 2008: 14: 1216–23PubMedCrossRefGoogle Scholar
  106. 106.
    Kourbatova EV, Halvosa JS, King MD, et al. Emergence of community-associated methicillin-resistant Staphylococcus aureus USA 300 clone as a cause of health careassociated infections among patients with prosthetic joint infections. Am J Infect Control 2005; 33: 385–91PubMedCrossRefGoogle Scholar
  107. 107.
    Patel M, Kumar RA, Stamm A, et al. USA300 genotype community-associated methicillin-resistant Staphylococcus aureus as a cause of surgical-site infections. J Clin Microbiol 2007; 45: 3431–3PubMedCrossRefGoogle Scholar
  108. 108.
    Popovich KJ, Weinstein RA, Hota B. Are communityassociated methicillin-resistant Staphylococcus aureus (MRSA) strains replacing traditional nosocomial MRSA strains? Clin Infect Dis 2008; 46: 787–94PubMedCrossRefGoogle Scholar
  109. 109.
    Patel M, Waites KB, Hoesley CJ, et al. Emergence of USA300 MRSA in a tertiary medical centre: implications for epidemiologic studies. J Hosp Infect 2008; 68: 208–13PubMedCrossRefGoogle Scholar
  110. 110.
    Liu C, Graber CJ, Karr M, et al. A population-based study of the incidence and molecular epidemiology of methicillin-resistant Staphylococcus aureus disease in San Francisco, 2004–2005. Clin Infect Dis 2008; 46: 1637–46PubMedCrossRefGoogle Scholar
  111. 111.
    Noel GJ, Bush K, Bagchi P, et al. A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin Infect Dis 2008; 46: 647–55PubMedCrossRefGoogle Scholar
  112. 112.
    Cleocin (clindamycin) for injection [package insert]. Bedford (OH): Ben Venue Laboratories, 2004Google Scholar
  113. 113.
    Cubicin (daptomycin) for injection [package insert]. Lexington (MA): Cubist Pharmaceuticals, 2007Google Scholar
  114. 114.
    Vibramycin (doxycycline) [package insert]. New York: Pfizer Pharmaceuticals, 2007Google Scholar
  115. 115.
    Zyvox (linezolid) [package insert]. New York: Pharmacia & Upjohn, Division of Pfizer, 2007Google Scholar
  116. 116.
    Synercid (quinupristin and dalfopristin) for injection [package insert]. Bristol (TN): Monarch Pharmaceuticals, 2003Google Scholar
  117. 117.
    Tygacil (tigecycline) for injection [package insert]. Philadelphia (PA): Wyeth Pharmaceuticals, 2006Google Scholar
  118. 118.
    Bactrim (sulfamethoxazole and trimethoprim tablets) [package insert]. Nutley (NJ): Roche Pharmaceuticals, 2002Google Scholar
  119. 119.
    Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health-Syst Pharm 2009; 66: 82–98PubMedCrossRefGoogle Scholar
  120. 120.
    Ruhe JJ, Monson T, Bradsher RW, et al. Use of long-acting tetracyclines for methicillin-resistant Staphylococcus aureus infections: case series and review of the literature. Clin Infect Dis 2005; 40: 1429–34PubMedCrossRefGoogle Scholar
  121. 121.
    Clinical and Laboratory Standards Institute/NCCLS. Methods for antimicrobial susceptibility testing for bacteria that grow aerobically. CLSI/NCCLS M100-S 14. Wayne (PA): National Committee for Clinical Laboratory Standards, 2004Google Scholar
  122. 122.
    Chavez-Bueno S, Bozdogan B, Katz K, et al. Inducible clindamycin resistance and molecular epidemiologic trends of pediatric community-associated methicillinresistant Staphylococcus aureus in Dallas, Texas. Antimicrob Agents Chemother 2005; 49: 2283–88PubMedCrossRefGoogle Scholar
  123. 123.
    McGehee RF, Barrett FF, Finland M. Resistance of Staphylococcus aureus to lincomycin, clindamycin, and erythromycin. Antimicrob Agents Chemother 1968; 8: 392–7Google Scholar
  124. 124.
    Rao GG. Should clindamycin be used in treatment of patients with infections caused by erythromycin-resistant staphylococci? [letter]. J Antimicrob Chemother 2000; 45: 715PubMedCrossRefGoogle Scholar
  125. 125.
    Drinkovic D, Fuller ER, Shore KP, et al. Clindamycin treatment of Staphylococcus aureus expressing inducible clindamycin resistance. J Antimicrob Chemother 2001; 48: 315–6PubMedCrossRefGoogle Scholar
  126. 126.
    Frank AL, Marcinak JF, Mahgat PD, et al. Clindamycin treatment of methicillin-resistant Staphylococcus aureus infections in children. Pediatr Infect Dis J 2002; 21: 530–34PubMedCrossRefGoogle Scholar
  127. 127.
    Levin TP, Suh B, Axelrod P, et al. Potential clindamycin resistance in clindamycin-susceptible, erythromycinresistant Staphylococcus aureus: report of a clinical failure. Antimicrob Agents Chemother 2005; 49: 1222–4PubMedCrossRefGoogle Scholar
  128. 128.
    Siberry GK, Tekle T, Carroll K, et al. Failure of clindamycin treatment of methicillin-resistant Staphylococcus aureus expressing inducible clindamycin resistance in vitro. Clin Infect Dis 2003; 37: 1257–60PubMedCrossRefGoogle Scholar
  129. 129.
    LaPlante KL, Leonard SN, Andes DR, et al. Activities of clindamycin, daptomycin, doxycycline, linezolid, trimethoprim-sulfamethoxazole, and vancomycin against community-associated methicillin-resistant Staphylococcus aureus with inducible clindamycin resistance in murine thigh infection and in vitro pharmocodynamic models. Antimicrob Agents Chemother 2008; 52: 2156–62PubMedCrossRefGoogle Scholar
  130. 130.
    Markowitz N, Quinn EL, Saravolatz LD. Trimethoprimsulfamethoxazole compared with vancomycin for the treatment of Staphylococcus aureus infection. Ann Intern Med 1992; 117: 390–8PubMedGoogle Scholar
  131. 131.
    Kaka AS, Rueda AM, Shelburn 3rd SA, et al. Bactericidal activity of oral agents against methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 2006; 58: 680–3PubMedCrossRefGoogle Scholar
  132. 132.
    Berg T, Firth N, Apisiridej S, et al. Complete nucleotide sequence of pSK41: evolution of staphylococcal conjugative plasmids. J Bacteriol 1998; 180: 4350–9PubMedGoogle Scholar
  133. 133.
    Stokes A, Lacey RW. Effect of thymidine on activity of trimethoprim and sulphamethoxazole. J Clin Pathol 1978; 31: 165–71PubMedCrossRefGoogle Scholar
  134. 134.
    Hamilton-Miller JM. Reversal of activity of trimethoprim against Gram-positive cocci by thymidine, thymine, and ‘folates‘. J Antimicrob Chemother 1988; 22: 35–9PubMedCrossRefGoogle Scholar
  135. 135.
    Mendes RE, Sader HS, Deshpande L, et al. Antimicrobial activity of tigecycline against community-acquired methicillin-resistant Staphylococcus aureus isolates recovered from North American medical centers. Diagn Microbiol Infect Dis 2008; 60: 433–6PubMedCrossRefGoogle Scholar
  136. 136.
    Szumowski JD, Cohen DE, Kanaya F, et al. Treatment and outcomes of infections by methicillin-resistant Staphylococcus aureus at an ambulatory clinic. Antimicrob Agents Chemother 2007; 51: 423–28PubMedCrossRefGoogle Scholar
  137. 137.
    Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. CLSI approved standard M100-S 16. Wayne (PA): Clinical and Laboratory Standards Institute, 2006Google Scholar
  138. 138.
    Jones RN. Microbiologic features of vancomycin in the 21st century: minimum inhibitory concentration creep, bactericidal/static activity, and applied breakpoints to predict clinical outcomes or detect resistant strains. Clin Infect Dis 2006; 42 Suppl. 1: S13–24PubMedCrossRefGoogle Scholar
  139. 139.
    Wang G, Hindler JF, Ward KW, et al. Increased vancomycin MICs for Staphylococcus aureus clinical isolates from a university hospital during a 5-year period. J Clin Microbiol 2006; 44: 3883–6PubMedCrossRefGoogle Scholar
  140. 140.
    Steinkraus G, White R, Friedrich L. Vancomycin MIC creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001–2005. J Antimicrob Chemother 2007; 60: 788–94PubMedCrossRefGoogle Scholar
  141. 141.
    Rybak MJ, Leonard SN, Rossi KL, et al. Characterization of vancomycin-heteroresistant Staphylococcus aureus from the metropolitan area of Detroit, Michigan, over a 22-year period (1986–2007). J Clin Microbiol 2008; 46: 2950–4PubMedCrossRefGoogle Scholar
  142. 142.
    Moise-Broder PA, Sakoulas G, Eliopoulas J, et al. Accessory gene regulator group II polymorphism in methicillinresistant Staphylococcus aureus is predictive of failure of vancomycin therapy. Clin Infect Dis 2004; 38: 1700–5PubMedCrossRefGoogle Scholar
  143. 143.
    Sakoulas G, Moise-Broder PA, Schentag J, et al. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol 2004; 42: 2398–402PubMedCrossRefGoogle Scholar
  144. 144.
    Soriano A, Marco F, Martinez JA, et al. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 2008; 46: 193–200PubMedCrossRefGoogle Scholar
  145. 145.
    Lodise TP, Graves J, Evans A, et al. Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob Agents Chemother 2008; 52: 3315–20PubMedCrossRefGoogle Scholar
  146. 146.
    Graber CJ, Wong MK, Carleton HA, et al. Intermediate vancomycin susceptibility in a community-associated MRSA clone. Emerg Infect Dis 2007; 13: 491–3PubMedCrossRefGoogle Scholar
  147. 147.
    Chua T, Moore CL, Perri MB, et al. Molecular epidemiology of methicillin-resistant Staphylococcus aureus bloodstream isolates in urban Detroit. J Clin Microbiol 2008; 2345–52Google Scholar
  148. 148.
    Hidayat LK, Hsu DI, Quist R, et al. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections. Arch Intern Med 2006; 166: 2138–44PubMedCrossRefGoogle Scholar
  149. 149.
    Silverman JA, Perlmutter NG, Shapiro HM. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 2003; 47: 2538–44PubMedCrossRefGoogle Scholar
  150. 150.
    Richter SS, Kealey DE, Murray CT, et al. The in vitro activity of daptomycin against Staphylococcus aureus and Enterococcus species. J Antimicrob Chemother 2003; 52: 123–7PubMedCrossRefGoogle Scholar
  151. 151.
    Critchley IA, Draghi DC, Sahm DF, et al. Activity of daptomycin against susceptible and multidrug-resistant gram-positive pathogens collected in the SECURE study (Europe) during 2000–2001. J Antimicrob Chemother 2003; 51: 639–49PubMedCrossRefGoogle Scholar
  152. 152.
    Mangali A, Bica I, Snydman R, et al. Daptomycin-resistant methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 2005; 40: 1058–60CrossRefGoogle Scholar
  153. 153.
    Marty FM, Yeh WW, Wennersten CB, et al. Emergence of a clinical daptomycin-resistant Staphylococcus aureus isolate during treatment of methicillin-resistant Staphylococcus aureus bacteremia and osteomyelitis. J Clin Microbiol 2006; 44: 595–7PubMedCrossRefGoogle Scholar
  154. 154.
    Pillai SK, Gold HS, Sakoulas G, et al. Daptomycin nonsusceptibility in Staphylococcus aureus with reduced vancomycin susceptibility is independent of alterations in MprF. Antimicrob Agents Chemother 2007; 51: 2223–5PubMedCrossRefGoogle Scholar
  155. 155.
    Huang Y, Hsiao C, Liao C, et al. Bacteremia and infective endocarditis caused by a non-daptomycin-susceptible, vancomycin-intermediate, and methicillin-resistant Staphylococcus aureus strain in Taiwan. J Clin Microbiol 2008; 46: 1132–6PubMedCrossRefGoogle Scholar
  156. 156.
    Sakoulas G, Rose W, Rybak MJ, et al. Evaluation of endocarditis caused by methicillin-susceptible Staphylococcus aureus developing nonsusceptibility to daptomycin. J Clin Microbiol 2008; 46: 220–4PubMedCrossRefGoogle Scholar
  157. 157.
    Murthy MH, Olson ME, Wickert RW, et al. Daptomycin non-susceptible methicillin-resistant Staphylococcus aureus USA 300 isolate. J Med Microbiol 2008; 57: 1036–8PubMedCrossRefGoogle Scholar
  158. 158.
    Arbeit RD, Maki D, Tally FP, et al. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 2004; 38: 1673–81PubMedCrossRefGoogle Scholar
  159. 159.
    Fowler Jr VG, Boucher HW, Corey GR, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 2006; 355: 653–65PubMedCrossRefGoogle Scholar
  160. 160.
    Lamp KC, Friedrick LV. Clinical experience with daptomycin for the treatment of osteomyelitis in patients with post-therapy follow-up. 46th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2006 Sep 27–30; San Francisco (CA), L-1557Google Scholar
  161. 161.
    Finney MS, Crank CW, Segreti J. Use of daptomycin to treat drug-resistant gram-positive bone and joint infections. Curr Med Res Opin 2005; 21: 1923–26PubMedCrossRefGoogle Scholar
  162. 162.
    Forrest G, Donovan B, Lamp K, et al. Daptomycin use in patients with septic arthritis: post-marketing experience from CORE 2005. 46th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2006 Sep 27–30; San Francisco (CA), A-1556Google Scholar
  163. 163.
    Rao N, Regalla DM. Uncertain efficacy of daptomycin for prosthetic joint infections: a prospective case series. Clin Orthop Relat Res 2006; 451: 34–7PubMedCrossRefGoogle Scholar
  164. 164.
    Silverman JA, Mortin LI, Vanpraagh AD, et al. Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J Infect Dis 2005; 191: 2149–52PubMedCrossRefGoogle Scholar
  165. 165.
    Wunderink RG, Rello J, Cammarata SK, et al. Linezolid vs vancomycin: analysis of two double-blind studies of patients with methicillin-resistant Staphylococcus aureus nosocomial pneumonia. Chest 2003; 124: 1789–97PubMedCrossRefGoogle Scholar
  166. 166.
    Cruciani M, Gattie G, Lazzarini L, et al. Penetration of vancomycin into human lung tissue. J Antimicrob Chemother 1996; 38: 865–9PubMedCrossRefGoogle Scholar
  167. 167.
    Honeybourne D, Tobin C, Jevons G, et al. Intrapulmonary penetration of linezolid. J Antimicrob Chemother 2003; 51: 1431–4PubMedCrossRefGoogle Scholar
  168. 168.
    Boselli E, Breilh D, Rimmelé T, et al. Pharmacokinetics and intrapulmonary concentrations of linezolid administered to critically ill patients with ventilator-associated pneumonia. Crit Care Med 2005; 33: 1529–33PubMedCrossRefGoogle Scholar
  169. 169.
    Wunderink RG, Mendelson MH, Somero MS, et al. Early microbiological response to linezolid versus vancomycin in ventilator-associated pneumonia due to methicillinresistant Staphylococcus aureus. Chest 2008; 134: 1200–7PubMedCrossRefGoogle Scholar
  170. 170.
    Stevens DL, Ma Y, Salmi DB, et al. Impact of antibiotics on expression of virulence-associated exotoxins genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus. J Infect Dis 2007; 195: 202–11PubMedCrossRefGoogle Scholar
  171. 171.
    Shorr AF, Kunkel MJ, Kollef M. Linezolid versus vancomycin for Staphylococcus aureus bacteraemia: pooled analysis of randomized studies. J Antimicrob Chemother 2005; 56: 923–9PubMedCrossRefGoogle Scholar
  172. 172.
    Wilcox MH, Tack KJ, Bouza E, et al. Complicated skin and skin-structure infections and catheter-related bloodstream infections: noninferiority of linezolid in a phase 3 study. Clin Infect Dis 2009; 48: 203–12PubMedCrossRefGoogle Scholar
  173. 173.
    Wu VC, Wang YT, Wang CY, et al. High frequency of linezolid-associated thrombocytopenia and anemia among patients with end-stage renal disease. Clin Infect Dis 2006; 42: 66–72PubMedCrossRefGoogle Scholar
  174. 174.
    Lawrence KR, Adra M, Gillman PK. Serotonin toxicity associated with the use of linezolid: a review of postmarketing data. Clin Infect Dis 2006; 42: 1578–83PubMedCrossRefGoogle Scholar
  175. 175.
    Taylor JJ, Wilson JW, Estes LL. Linezolid and serotonergic drug interactions: a retrospective survey. Clin Infect Dis 2006; 43: 180–7PubMedCrossRefGoogle Scholar
  176. 176.
    Lee E, Burger S, Shah J, et al. Linezolid-associated toxic optic neuropathy: a report of 2 cases. Clin Infect Dis 2003; 37: 1389–91PubMedCrossRefGoogle Scholar
  177. 177.
    Frippiat F, Bergiers C, Michel C, et al. Severe bilateral optic neuritis associated with prolonged linezolid therapy. J Antimicrob Chemother 2004; 53: 1114–5PubMedCrossRefGoogle Scholar
  178. 178.
    Palenzuela L, Hahn NM, Nelson Jr RP, et al. Does linezolid cause lactic acidosis by inhibiting mitochondrial protein synthesis? Clin Infect Dis 2005; 40: e113–6PubMedCrossRefGoogle Scholar
  179. 179.
    Leclerq R, Courvalin P. Bacterial resistance to macrolides, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 1991; 35: 1267–72CrossRefGoogle Scholar
  180. 180.
    Drew RH, Perfect JR, Srinath L, et al. Treatment of methicillin-resistant Staphylococcus aureus infections with quinupristin-dalfopristin in patients intolerant of or failing prior therapy. J Antimicrob Chemother 2000; 46: 775–84PubMedCrossRefGoogle Scholar
  181. 181.
    Olsen KM, Rebuck JA, Rupp ME. Arthralgias and myalgias related to quinupristin-dalfopristin administration. Clin Infect Dis 2001; 32: e83–6PubMedCrossRefGoogle Scholar
  182. 182.
    Projan SJ. Preclinical pharmacology of GAR-936, a novel glycylcycline antibacterial agent. Pharmacotherapy 2000; 20: 219S–23SPubMedCrossRefGoogle Scholar
  183. 183.
    Noskin GA. Tigecycline: a new glycylcycline for treatment of serious infections. Clin Infect Dis 2005; 41: S303–14PubMedCrossRefGoogle Scholar
  184. 184.
    Meagher AK, Ambrose PG, Grasela TH, et al. The pharmacokinetic and pharmocodynamic profile of tigecycline. Clin Infect Dis 2005; 41: S333–40PubMedCrossRefGoogle Scholar
  185. 185.
    Ellis-Grosse EJ, Babinchak T, Dartois N, et al. The efficacy and safety of tigecycline in the treatment of skin and skinstructure infections: results of 2 double-blind phase 3 comparison studies with vancomycin-aztreonem. Clin Infect Dis 2005; 41: S341–53PubMedCrossRefGoogle Scholar
  186. 186.
    McAleese F, Murphy E, Babinchak T, et al. Use of ribotyping to retrospectively identify methicillin-resistant Staphylococcus aureus isolates from phase 3 clinical trials for tigecycline that are genotypically related to community-associated isolates. Antimicrob Agents Chemother 2005; 49: 4521–9PubMedCrossRefGoogle Scholar
  187. 187.
    Bogdanovich T, Ednie LM, Shapiro S, et al. Antistaphylococcal activity of ceftobiprole, a new broadspectrum cephalosporin. Antimicrob Agents Chemother 2005; 49: 4210–9PubMedCrossRefGoogle Scholar
  188. 188.
    Leonard SN, Cheung CM, Rybak MJ. Activities of ceftobiprole, linezolid, vancomycin, and daptomycin against community-associated and hospital-associated methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2008; 52: 2974–6PubMedCrossRefGoogle Scholar
  189. 189.
    Blumberg HM, Rimland D, Carroll DJ, et al. Rapid development of ciprofloxacin resistance in methicillinsusceptible and -resistant Staphylococcus aureus. J Infect Dis 1991; 163: 1279–85PubMedCrossRefGoogle Scholar
  190. 190.
    Peterson LR, Quick JN, Jensen B, et al. Emergence of ciprofloxacin resistance in nosocomial methicillin-resistant Staphylococcus aureus isolates: resistance during ciprofloxacin plus rifampin therapy for methicillin-resistant S. aureus colonization. Arch Intern Med 1990; 150: 2151–5PubMedCrossRefGoogle Scholar
  191. 191.
    Eng RHK, Smith SM, Buccini FJ, et al. Differences in ability of cell-wall antibiotics to suppress emergence of rifampicin resistance in Staphylococcus aureus. J Antimicrob Chemother 1985; 15: 201–7PubMedCrossRefGoogle Scholar
  192. 192.
    Iyer S, Jones DH. Community-acquired methicillinresistant Staphylococcus aureus skin infection: a retrospective analysis of clinical presentation and treatment of a local outbreak. J Am Acad Dermatol 2004; 50: 854–8PubMedCrossRefGoogle Scholar
  193. 193.
    Lin G, Credito K, Ednie LM, et al. Antistaphylococcal activity of dalbavancin, and experimental glycopeptide. Antimicrob Agents Chemother 2005; 49: 770–2PubMedCrossRefGoogle Scholar
  194. 194.
    Jauregi LE, Babazadeh S, Seltzer E, et al. Randomized, double-blind comparison of once-weekly dalbavancin versus twice-daily linezolid therapy for the treatment of complicated skin and skin structure infections. Clin Infect Dis 2005; 41: 1407–15CrossRefGoogle Scholar
  195. 195.
    Raad I, Darouiche R, Vazquez J, et al. Efficacy and safety of weekly dalbavancin therapy for catheter-related bloodstream infection caused by Gram-positive pathogens. Clin Infect Dis 2005; 40: 374–80PubMedCrossRefGoogle Scholar
  196. 196.
    Kanafani ZA. Telavancin: a new lipoglycopeptide with multiple mechanisms of action. Expert Rev Anti Infect Ther 2006; 4: 743–9PubMedCrossRefGoogle Scholar
  197. 197.
    Stryjewski M, Chu VH, O’Riordan W, et al. Telavancin versus standard therapy for treatment of complicated skin and skin structure infections caused by Gram-positive bacteria: FAST 2 study. Antimicrob Agents Chemother 2006; 50: 862–7PubMedCrossRefGoogle Scholar
  198. 198.
    Fowler Jr VG, Rude TH, Nelson CL, et al. Activity of telavancin against Staphylococcus aureus isolates carrying the Panton-Valentine leukocidin gene in the ATLAS studies [abstract 847]. In: Program and abstracts of the 17th European Congress of Clinical Microbiology and Infectious Diseases (Munich). Oxford: Blackwell Publishing, 2007Google Scholar
  199. 199.
    Giamarellou H, O’Riordon W, Harris H, et al. Phase 3 trial comparing 3–7 days of oritavancin vs. 10–14 days of vancomycin/cephalexin in the treatment of patients with complicated skin and skin structure infections (cSSSI) [abstract]. In: Program and abstracts of the 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy (Chicago). Washington, DC: American Society for Microbiology, 2003Google Scholar
  200. 200.
    Wasilewski M, Dish D, McGill J, et al. Equivalence of shorter course of therapy with oritavancin vs. vancomycin/cephalexin in complicated skin and skin structure infections (cSSSI) [abstract UL-18]. In: Program and abstracts of the 41st Interscience Conference on Antimicrobial Agents and Chemotherapy (Chicago). Washington, DC: American Society for Microbiology, 2001Google Scholar
  201. 201.
    Kim SJ, Cegelski L, Stueber D, et al. Oritavancin exhibits dual mode of action to inhibit cell-wall biosynthesis in Staphylococcus aureus. J Mol Biol 2008; 14: 281–93CrossRefGoogle Scholar
  202. 202.
    Ward KE, Mersfelder TL, LaPlante KL. Oritavancin: an investigational glycopeptide antibiotic. Expert Opin Investig Drugs 2006; 15: 417–29PubMedCrossRefGoogle Scholar
  203. 203.
    Cerexa, Inc. Comparative study of seftaroline vs. vancomycin plus aztreonam in adult subjects with complicated skin infections [ClinicalTrials.gov identifier NCT 00423657]. US National Institutes of Health, Clinical Trials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2009 Apr 2]
  204. 204.
    Cerexa, Inc. Comparative study of ceftaroline vs. vancomycin plus aztreonam in adult subjects with complicated skin infections (cSSSI) [ClinicalTrials.gov identifier NCT00424190]. US National Institutes of Health, Clinical Trials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2009 Apr 2]
  205. 205.
    Cerexa, Inc. Efficacy and safety of ceftaroline versus linezolid in subjects with complicated skin and skin structure infections [ClinicalTrials.gov identifier NCT00633152]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2009 Apr 2]
  206. 206.
    Arpida AG. Study of intravenous (I.V.) iclaprim versus linezolid in complicated skin and skin structure infections [cSSSI] (ASSIST-2) [ClinicalTrials.gov identifier NCT 00303550]. US National Institutes of Health, Clinical Trials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2009 Apr 2]
  207. 207.
    Arpida AG. Phase 3 safety and efficacy study of I.V. iclaprim v linezolid in cSSSI (ASSIST-1) [ClinicalTrials.gov identifier NCT00299520]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2009 Apr 2]
  208. 208.
    Arpida AG. Clinical efficacy of intravenous iclaprim versus vancomycin in the treatment of hospital-acquired, ventilator-associated, or health-care-associated pneumonia [ClinicalTrials.gov identifier NCT00543608]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2009 Apr 2]
  209. 209.
    Lee MC, Rios AM, Aten MF, et al. Management and outcome of children with skin and soft-tissue abscesses caused by community-acquired methicillin-resistant Staphylococcus aureus. Pediatr Infect Dis J 2004; 23: 123–7PubMedCrossRefGoogle Scholar
  210. 210.
    Giordano PA, Elston D, Akinlade BK, et al. Cefdinir vs cephalexin for mild to moderate uncomplicated skin and skin structure infections in adolescents and adults. Curr Med Res Opin 2006; 22: 2419–28PubMedCrossRefGoogle Scholar
  211. 211.
    Rajendran PM, Young D, Maurer T, et al. Randomized, double-blind, placebo-controlled trial of cephalexin for treatment of uncomplicated skin abscesses in a population at risk for community-acquired methicillin-resistant Staphylococcus aureus infection. Antimicrob Agents Chemother 2007; 51: 4044–8PubMedCrossRefGoogle Scholar
  212. 212.
    Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin Infect Dis 2005; 41: 1373–406PubMedCrossRefGoogle Scholar
  213. 213.
    Chambers HF, Moellering Jr RC, Kamitsuka P. Management of skin and soft-tissue infection. N Engl J Med 2008; 359: 1063–7PubMedCrossRefGoogle Scholar
  214. 214.
    Gorwitz RJ, Jernigan DB, Powers JH, et al. and Participants in the CDC Convened Experts’ Meeting on Management of MRSA in the Community. Strategies for clinical management of MRSA in the community: summary of an experts’ meeting. convened by the Centers for Disease Control and Prevention 2006 [online]. Available from URL: http://www.cdc.gov/ncidod/dhqp/pdf/ar/CAMRSA_ExpMtgStrategies.pdf [Accessed 2008 Dec 14]
  215. 215.
    Centers for Disease Control and Prevention. Outpatient management of skin and soft tissue infections in the era of community-associated MRSA [online]. Available from URL: http://www.cdc.gov/ncidod/dhqp/ar_mrsa_ca_skin.html [Accessed 2009 Feb 19]
  216. 216.
    Miller LG, Diep BA. Colonization, fomites, and virulence: rethinking the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 2008; 46: 752–60PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2009

Authors and Affiliations

  1. 1.Division of Infectious DiseasesUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Birmingham Veterans Affairs Medical CenterBirminghamUSA

Personalised recommendations