, Volume 69, Issue 4, pp 407–419 | Cite as

Pharmacological Treatment Options for Bronchiectasis

Focus on Antimicrobial and Anti-Inflammatory Agents
  • Jonathan Ilowite
  • Peter Spiegler
  • Heather Kessler
Therapy in Practice


Patients with bronchiectasis experience tenacious mucus, recurrent infectious exacerbations, and progressive worsening of symptoms and obstruction over time. Treatment is aimed at trying to break the cycle of infection and progressive airway destruction. Antibacterial treatment is targeted towards likely organisms or tailored to the results of sputum culture. Inhaled antibacterial therapy may offer the advantage of increased local concentration of medication, while minimizing systemic adverse effects; however, to date, studies have been equivocal in this disorder. Macrolides, in addition to their antibacterial properties, have unique anti-inflammatory properties, which may make them useful in this disorder. Other mucoactive and anti-inflammatory agents, such as inhaled corticosteroids, mannitol and hypertonic saline, may also prove useful in this disease, but further studies are needed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Currie DC, Pavia D, Agnew JE, et al. Impaired tracheobronchial clearance in bronchiectasis. Thorax 1987; 42: 126–30PubMedCrossRefGoogle Scholar
  2. 2.
    Evans SA, Turner SM, Bosch BJ, et al. Lung function in bronchiectasis: the influence of Pseudomonas aeruginosa. Eur Respir J 1996; 9: 1601–4PubMedCrossRefGoogle Scholar
  3. 3.
    Tsang KWT, Ho PL, Lam WK, et al. Inhaled fluticasone reduces sputum inflammatory indices in severe bronchiectasis. Am J Respir Crit Care Med 1998; 158: 723–7PubMedGoogle Scholar
  4. 4.
    Doring G. The role of neutrophil elastase in chronic inflammation. Am J Respir Crit Care Med 1994; 150: S114–7PubMedGoogle Scholar
  5. 5.
    Zheng L, Lam WK, Tipoe GL, et al. Overexpression of matrix metalloproteinase-8 and -9 in bronchiectatic airways in vivo. Eur Respir J 2002; 20: 170–6PubMedCrossRefGoogle Scholar
  6. 6.
    Angrill J, Agusti C, de Celis R, et al. Bacterial colonization in patients with bronchiectasis: microbiologic pattern and risk factors. Thorax 2002; 57: 15–9PubMedCrossRefGoogle Scholar
  7. 7.
    King PT, Holdsworth SR, Freezer NJ, et al. Microbiologic follow-up study in adult bronchiectasis. Respir Med 2007; 101: 1633–8PubMedCrossRefGoogle Scholar
  8. 8.
    Wilson CB, Jones PW, O'Leary CJ, et al. Effect of sputum bacteriology on the quality of life of patients with bronchiectasis. Eur Respir J 1997; 10: 1754–60PubMedCrossRefGoogle Scholar
  9. 9.
    Ho PL, Chan KN, Ip MS, et al. The effect of Pseudomonas aeruginosa infection on clinical parameters in steady-state bronchiectasis. Chest 1998; 114: 1594–8PubMedCrossRefGoogle Scholar
  10. 10.
    Davies G, Wells AU, Doffman S, et al. The effect of Pseudomonas aeruginosa on pulmonary function in patients with bronchiectasis. Eur Respir J 2006; 28: 974–9PubMedCrossRefGoogle Scholar
  11. 11.
    Martinez-Garcia MA, Soler-Cataluna JJ, Perpina-Tordera M, et al. Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis. Chest 2007; 132: 1565–72PubMedCrossRefGoogle Scholar
  12. 12.
    Landry RM, An D, Hupp JT, et al. Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol Microbiol 2006; 59: 142–51PubMedCrossRefGoogle Scholar
  13. 13.
    Shah PL, Mawdsley S, Nash K, et al. Determinants of chronic infection with Staphylococcus aureus in patients with bronchiectasis. Eur Respir J 1999; 14: 1340–4PubMedCrossRefGoogle Scholar
  14. 14.
    Reich JM, Johnson RE. Mycobacterium avium complex pulmonary disease presenting as an isolated lingular or middle lobe pattern: the Lady Windermere syndrome. Chest 1992; 101: 1605–9PubMedCrossRefGoogle Scholar
  15. 15.
    Fowler SJ, French J, Screaton NJ, et al. Nontuberculous mycobacteria in bronchiectasis: prevalence and patient characteristics. Eur Respir J 2006; 28: 1204–10PubMedCrossRefGoogle Scholar
  16. 16.
    Kunst H, Wickremasinghe M, Wells A, et al. Nontuberculous mycobacterial disease and Aspergillus-related lung disease in bronchiectasis. Eur Respir J 2006; 28: 352–7PubMedCrossRefGoogle Scholar
  17. 17.
    Fuchs HJ, Borowitz DS, Christiansen DH, et al. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group. N Engl J Med 1994; 331: 637–42Google Scholar
  18. 18.
    O'Donnell AE, Barker AF, Ilowite JS, et al. Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. Chest 1998; 113: 1329–34PubMedCrossRefGoogle Scholar
  19. 19.
    Vanderkooi OG, Low DE, Green K, et al. Predicting antimicrobial resistance in invasive pneumococcal infections. Clin Infect Dis 2005; 40: 1288–97PubMedCrossRefGoogle Scholar
  20. 20.
    De Lencastre H, Santos-Sanches I, Brito-Avo A, et al. Carraige and antibiotic resistance of respiratory pathogens and molecular epidemiology of Streptococcus pneumoniae colonizing children in day care centers in Lisbon: the Portuguese Day-Care Initiative. Clin Microbiol Infect 1999; 5: S55–63PubMedCrossRefGoogle Scholar
  21. 21.
    Richter SS, Heilmann KP, Dohrn CL, et al. Changing epidemiology of antimicrobial-resistant Streptococcus pneumoniae in the United States, 2004–2005. Clin Infect Dis 2009; 48: e23–33PubMedCrossRefGoogle Scholar
  22. 22.
    Qin L, Watanabe H, Yoshimine H, et al. Antimicrobial susceptibility and serotype distribution of Streptococcus pneumoniae isolated from patients with community-acquired pneumonia and molecular analysis of multidrug-resistant serotype 19F and 23F strains in Japan. Epidemiol Infect 2006; 134: 1188–94PubMedCrossRefGoogle Scholar
  23. 23.
    Hilf M, Yu VL, Sharp J, et al. Antibiotic therapy for Pseudomonas aeruginosa bacteremias: outcome correlations in a prospective study of 200 patients. Am J Med 1989; 87: 540–6PubMedCrossRefGoogle Scholar
  24. 24.
    American Thoracic Society. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005; 171: 388–416CrossRefGoogle Scholar
  25. 25.
    Bilton D, Henig N, Morrissey B, et al. Addition of inhaled tobramycin to ciprofloxacin for acute exacerbations of Pseudomonas aeruginosa infection in adult bronchiectasis. Chest 2006; 130: 1503–10PubMedCrossRefGoogle Scholar
  26. 26.
    Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007; 175: 367–416PubMedCrossRefGoogle Scholar
  27. 27.
    Griffith DE, Brown-Elliott BA, Shepherd S, et al. Ethambutol ocular toxicity in treatment regimens for Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2005; 172: 250–3PubMedCrossRefGoogle Scholar
  28. 28.
    Griffith DE, Brown BA, Girard WM, et al. Adverse events associated with high-dose rifabutin in macrolide-containing regimens for the treatment of Mycobacterium-avium complex lung-disease. Clin Infect Dis 1995; 21: 594–8PubMedCrossRefGoogle Scholar
  29. 29.
    Stevens DA, Schwartz HJ, Lee JY, et al. A randomized trial of itraconazole in allergic bronchopulmonary aspergillosis. N Engl J Med 2000; 342: 756–62PubMedCrossRefGoogle Scholar
  30. 30.
    Wark PA, Hensley MJ, Saltos N, et al. Anti-inflammatory effect of itraconazole in stable allergic bronchopulmonary aspergillosis: a randomized controlled trial. J Allergy Clin Immunol 2003; 111: 952–7PubMedCrossRefGoogle Scholar
  31. 31.
    Camuset J, Nunes H, Dombret MC, et al. Treatment of chronic pulmonary aspergillosis by voriconazole in non-immunocompromised patients. Chest 2007; 131: 1435–41PubMedCrossRefGoogle Scholar
  32. 32.
    Evans DJ, Bara AI, Greenstone M. Prolonged antibiotics for purulent bronchiectasis in children and adults. Cochrane Database Syst Rev 2007; (2): CD001392Google Scholar
  33. 33.
    Drobnic ME, Sune P, Montoro JB, et al. Inhaled tobramycin in non-cystic fibrosis patients with bronchiectasis and chronic bronchial infection with Pseudomonas aeruginosa. Ann Pharmacother 2005; 39: 39–44PubMedGoogle Scholar
  34. 34.
    Scheinberg P, Shore E. A pilot study of the safety and efficacy of tobramycin solution for inhalation in patients with severe bronchiectasis. Chest 2005; 127: 1420–6PubMedCrossRefGoogle Scholar
  35. 35.
    Steinfort DP, Steinfort C. Effect of long-term nebulized colistin on lung function and quality of life in patients with chronic bronchial sepsis. Intern Med J 2007; 37: 495–8PubMedCrossRefGoogle Scholar
  36. 36.
    FDA. FDA alert: information for healthcare professionals. Colistimethate (marketed as Coly-Mycin M and generic products) [online]. Available from URL: http://www.fda.gov/CDER/DRUG/InfoSheets/HCP/colistimethateHCP.htm [Accessed 2007 Jun 28]
  37. 37.
    Jones A, Elphick H, Pettitt E, et al. Colistin stimulates the activity of neutrophil elastase and Pseudomonas aeruginosa elastase. Eur Respir J 2002; 19: 1136–41PubMedCrossRefGoogle Scholar
  38. 38.
    Retsch-Bogart GZ, Burns JL, Otto KL, et al. A phase 2 study of aztreonam lysine for patients to treat patients with cystic fibrosis and Pseudomonas aeruginosa infection. Pediatr Pulmonol 2008; 43: 47–58PubMedCrossRefGoogle Scholar
  39. 39.
    Jain R, Danziger LH. The macrolide antibiotics: a pharmacokinetic and pharmacodynamic overview. Curr Pharm Des 2004; 10: 3045–53PubMedCrossRefGoogle Scholar
  40. 40.
    Sakito O, Kadota J, Kohno S, et al. Interleukin 1 beta, tumor necrosis factor alpha, and interleukin 8 in bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis: a potential mechanism of macrolide therapy. Respiration 1996; 63: 42–8PubMedCrossRefGoogle Scholar
  41. 41.
    Kadota J, Sakito O, Kohno S, et al. A mechanism of erythromycin treatment in patients with diffuse pan-bronchiolitis. Am Rev Respir Dis 1993; 147: 153–9PubMedCrossRefGoogle Scholar
  42. 42.
    Tamaoki J. The effects of macrolides on inflammatory cells. Chest 2004; 125: 41–51CrossRefGoogle Scholar
  43. 43.
    Rubin BK, Henke MO. Immunomodulatory activity and effectiveness of macrolides in chronic airway disease. Chest 2004; 125: 70–8SCrossRefGoogle Scholar
  44. 44.
    Amsden GW. Anti-Inflammatory effects of macrolides: an underappreciated benefit in the treatment of community acquired respiratory tract infections and chronic inflammatory pulmonary conditions? J Antimicrob Chemother 2005; 55: 10–21PubMedCrossRefGoogle Scholar
  45. 45.
    Poh SC, Wang YT, Wang WY. Diffuse panbronchiolitis: a case report. Singapore Med J 2001; 42: 271–4PubMedGoogle Scholar
  46. 46.
    Koh YY, Lee MH, Sun YH, et al. Effect of roxithromycin on airway responsiveness in children with bronchiectasis: a double-blind, placebo-controlled study. Eur Respir J 1999; 5: 994–9Google Scholar
  47. 47.
    Tsang KW, Ho PI, Chan KN. A pilot study of low-dose erythromycin in bronchiectasis. Eur Respir J 1999; 2: 361–4CrossRefGoogle Scholar
  48. 48.
    Cymbala AA, Edmonds LC, Bauer MA, et al. The disease-modifying effects of twice-weekly oral azithromycin in patients with bronchiectasis. Treat Respir Med 2005; 4: 117–22PubMedCrossRefGoogle Scholar
  49. 49.
    Yalcin E, Kiper N, Ozcelik U, et al. Effects of claritromycin on inflammatory parameters and clinical conditions in children with bronchiectasis. J Clin Pharm Ther 2006; 31: 49–55PubMedCrossRefGoogle Scholar
  50. 50.
    Anwar GA, Bourke SC, Afolabi G, et al. Effects of long-term low-dose azithromycin in patients with non-CF bronchiectasis. Respir Med 2008; 102: 1494–6PubMedCrossRefGoogle Scholar
  51. 51.
    Wills PJ, Wodehouse T, Corkery K, et al. Short-term recombinant human DNase in bronchiectasis: effec on clinical state and in vitro sputum transportability. Am J Respir Crit Care Med 1996; 154: 413–7PubMedGoogle Scholar
  52. 52.
    Elkins MR, Robinson M, Rose BR, et al. A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 2006; 354: 229–40PubMedCrossRefGoogle Scholar
  53. 53.
    Donaldson SH, Bennett WD, Zeman KL, et al. Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med 2006; 354: 241–50PubMedCrossRefGoogle Scholar
  54. 54.
    Kellett F, Redfern J, Niven RM. Evaluation of nebulised hypertonic saline (7%) as an adjunct to physiotherapy in patients with stable bronchiectasis. Respir Med 2005; 99: 27–31PubMedCrossRefGoogle Scholar
  55. 55.
    Lourenco RV, Loddenkemper R, Carton RW. Patterns of distribution and clearance of aerosols in patients with bronchiectasis. Am Rev Respir Dis 1972; 106: 857–8PubMedGoogle Scholar
  56. 56.
    Isawa T, Teshima T, Hirano T, et al. Mucociliary clearance and transport in bronchiectasis: global and regional assessment. J Nucl Med 1990; 31: 543–8PubMedGoogle Scholar
  57. 57.
    Daviskas E, Anderson SD, Eberl S, et al. Inhalation of dry powder mannitol improves clearance of mucus in patients with bronchiectasis. Am J Respir Crit Care Med 1999; 159: 1843–8PubMedGoogle Scholar
  58. 58.
    Daviskas E, Anderson SD, Eberl S, et al. The 24-h effect of mannitol on the clearance of mucus in patients with bronchiectasis. Chest 2001; 119: 414–21PubMedCrossRefGoogle Scholar
  59. 59.
    Daviskas E, Anderson SD, Gomes K, et al. Inhaled mannitol for the treatment of mucociliary dysfunction in patients with bronchiectasis: effect on lung function, health status and sputum. Respirology 2005; 10: 46–56PubMedCrossRefGoogle Scholar
  60. 60.
    Daviskas E, Turton JA, Anderson SD, et al. A placebo controlled trial with inhaled mannitol improves health related quality of life in patients with bronchiectasis [abstract]. Eur Resp J 2004; 24 Suppl. 48: 707sGoogle Scholar
  61. 61.
    Daviskas E, Anderson SD, Eberl S. Effect of increasing doses of mannitol on mucus clearance in patients with bronchiectasis. Eur Respir J 2008; 31: 765–72PubMedCrossRefGoogle Scholar
  62. 62.
    Pharmaxis. Inhaled mannitol as a mucoactive therapy for bronchiectasis [ClinicalTrials.gov identifier NCT00669331]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2009 Feb 27]
  63. 63.
    Elborn JS, Johnston B, Allen F, et al. Inhaled steroids in patients with bronchiectasis. Respir Med 1992; 86: 121–4PubMedCrossRefGoogle Scholar
  64. 64.
    Tsang KW, Tan KC, Ho PL, et al. Inhaled fluticasone in bronchiectasis: a 12 month study. Thorax 2005; 60: 239–43PubMedCrossRefGoogle Scholar
  65. 65.
    Martínez-García MA, Perpiñá-Tordera M, Román-Sánchez P, et al. Inhaled steroids improve quality of life in patients with steady-state bronchiectasis. Respir Med 2006; 100: 1623–32PubMedCrossRefGoogle Scholar
  66. 66.
    Wedzicha JA, Calverley PMA, Seemungal TA, et al. The prevention of chronic obstructive pulmonary disease exacerbations by salmeterol/fluticasone propionate or tiotropium bromide. Am J Respir Crit Care Med 2008; 177: 19–26PubMedCrossRefGoogle Scholar
  67. 67.
    Calverley PMA, Anderson JA, Celli B, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med 2007; 356: 775–89PubMedCrossRefGoogle Scholar
  68. 68.
    Murphy MB, Reen DJ, Fitzgerald MX. Atopy inhaled changes, and respiratory function in bronchiectasis. Thorax 1984; 39: 179–84PubMedCrossRefGoogle Scholar
  69. 69.
    Franco F, Sheikh A, Greenstone M. Short acting beta-2 agonists for bronchiectasis. Cochrane Database Syst Rev 2003; (3): CD003572Google Scholar
  70. 70.
    Sheikh A, Nolan D, Greenstone M. Long-acting beta-2-agonists for bronchiectasis. Cochrane Database Syst Rev 2001;(4):CD002155Google Scholar
  71. 71.
    Lasserson T, Holt K, Evans D, et al. Anticholinergic therapy for bronchiectasis. Cochrane Database Syst Rev 2001; (4): CD002163Google Scholar
  72. 72.
    Steele K, Greenstone M, Lasserson JA. Oral methyl-xanthines for bronchiectasis. Cochrane Database Syst Rev 2001; (1): CD002734Google Scholar

Copyright information

© Adis Data Information BV 2009

Authors and Affiliations

  • Jonathan Ilowite
    • 1
  • Peter Spiegler
    • 1
  • Heather Kessler
    • 1
  1. 1.Winthrop University Hospital, State University Hospital of New York at Stony BrookMineolaUSA

Personalised recommendations