Drugs

, Volume 69, Issue 2, pp 199–222 | Cite as

Management of Newly Diagnosed Epilepsy

A Practical Guide to Monotherapy
Therapy in Practice

Abstract

With the emergence of several new antiepileptic drugs (AEDs) in recent years, choosing an agent to initiate monotherapy in newly diagnosed epilepsy has become increasingly complicated. We provide a succinct guide intended for general clinicians to assist in this clinical situation. General features of AEDs, differences between first- and second-generation drugs, and characteristics specific to each medication are discussed. The emphasis is on tailoring treatment to the individual patient with epilepsy because each case has specific features that must be accounted for, including the type of seizure and epilepsy, medication-specific characteristics, co-morbid conditions, drug-drug interactions, patient drug tolerance, and special population factors, all of which must be balanced and optimized when choosing initial therapy in this setting. Finally, this information is conveniently summarized in a set of tables and illustrated by way of case scenarios.

References

  1. 1.
    Shorvon S. Handbook of epilepsy treatment. 2nd ed. Malden (MA): Blackwell, 2005CrossRefGoogle Scholar
  2. 2.
    National Institute for Clinical Excellence. Newer drugs for epilepsy in adults. Technology Appraisal 76, March 2004. London: NICE, 2004Google Scholar
  3. 3.
    Hauser WA, Rich SS, Lee JRJ, et al. Risk of recurrent seizures after two unprovoked seizures. N Engl J Med 1998 Feb 12; 338(7): 429–34PubMedCrossRefGoogle Scholar
  4. 4.
    Wolf P. International classification of the epilepsies. In: Engel Jr J, Pedley TA, editors. Epilepsy: a comprehensive textbook. Philadelphia (PA): Lippincott-Raven, 1998: 773–7Google Scholar
  5. 5.
    Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989 Jul–Aug; 30(4): 389–99CrossRefGoogle Scholar
  6. 6.
    Levy RH, Mattson RH, Meldrum BS, et al., editors. Anti-epileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2002Google Scholar
  7. 7.
    Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000 Feb 3; 342(5): 314–9PubMedCrossRefGoogle Scholar
  8. 8.
    Semah F, Picot MC, Adam C, et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 1998 Nov; 51(5): 1256–62PubMedCrossRefGoogle Scholar
  9. 9.
    Wyllie E, editor. The treatment of epilepsy: principles & practice. 4th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2006Google Scholar
  10. 10.
    Bourgeois B. Pharmacokinetic properties of current anti-epileptic drugs: what improvements are needed? Neurology 2000 Dec; 55 (11 Suppl. 3): S11–7PubMedGoogle Scholar
  11. 11.
    Berry DJ, Beran RG, Plunkeft MJ, et al. The absorption of gabapentin following high dose escalation. Seizure 2003 Jan; 12(1): 28–36PubMedCrossRefGoogle Scholar
  12. 12.
    Pryor FM, Gidal B, Ramsay RE, et al. Fosphenytoin: pharmacokinetics and tolerance of intramuscular loading doses. Epilepsia 2001 Feb; 42(2): 245–50PubMedCrossRefGoogle Scholar
  13. 13.
    Herzog AG, Drislane FW, Schomer DL. Differential effects of antiepileptic drugs on neuroactive steroids in men with epilepsy. Epilepsia 2006; 47(11): 1945–8PubMedCrossRefGoogle Scholar
  14. 14.
    Anderson GS, Pak C, Doane KW, et al. Revised winter-tozer equation for normalized phenytoin concentrations in trauma and elderly patients with hypoalbuminemia. Ann Pharmacother 1997; 31: 279–84PubMedGoogle Scholar
  15. 15.
    Evans WE, Schentag JJ, Jusko WJ, et al., editors. Applied pharmacokinetics. 3rd ed. Vancouver (WA): Applied Therapeutics, 1992Google Scholar
  16. 16.
    Arroyo S, Perucca E. Translating monotherapy trials into clinical practice: a look into the abyss. Epilepsy Behav 2003; 4: 457–63PubMedCrossRefGoogle Scholar
  17. 17.
    Anderson GD, Gidal BE, Messenheimer JA, et al. Time course of lamotrigine de-induction: impact of step-wise withdrawal of carbamazepine or phenytoin. Epilepsy Res 2002 May; 49(3): 211–7PubMedCrossRefGoogle Scholar
  18. 18.
    French JA, Kanner AM, Bautista J, et al. Efficacy and tolerability of the new antiepileptic drugs I: treatment of new onset epilepsy. Neurology 2004; 62: 1252–60PubMedCrossRefGoogle Scholar
  19. 19.
    Marson AG, Al-Kharusi AM, Alwaidh M, et al. The SANAD study of effectiveness of carbamazepine, gaba-pentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial. Lancet 2007 Mar 24; 369(9566): 1000–15PubMedCrossRefGoogle Scholar
  20. 20.
    Marson AG, Al-Kharusi AM, Alwaidh M, et al. The SANAD study of effectiveness of valproate, lamotrigine, or topiramate for generalised and unclassifiable epilepsy: an unblinded randomised controlled trial. Lancet 2007 Mar 24; 369(9566): 1016–26PubMedCrossRefGoogle Scholar
  21. 21.
    Hadzic N, Vara R, Raiman J, et al. Old versus new anti-epileptic drugs: the SANAD study. Lancet 2007 Jul 28; 370(9584): 315PubMedCrossRefGoogle Scholar
  22. 22.
    Shawcross D, Knighton S, Bernal W, et al. Old versus new antiepileptic drugs: the SANAD study. Lancet 2007 Jul 28; 370(9584): 314–5PubMedCrossRefGoogle Scholar
  23. 23.
    Cross H, Ferrie C, Lascelles K, et al. Old versus new antiepileptic drugs: the SANAD study. Lancet 2007 Jul 28; 370(9584): 314PubMedCrossRefGoogle Scholar
  24. 24.
    Perucca E, Alexandre Jr V, Tomson T. Old versus new antiepileptic drugs: the SANAD study. Lancet 2007 Jul 28; 370(9584): 313PubMedCrossRefGoogle Scholar
  25. 25.
    Panayiotopoulos CP. Old versus new antiepileptic drugs: the SANAD study. Lancet 2007 Jul 28; 370(9584): 313–4PubMedCrossRefGoogle Scholar
  26. 26.
    Panayiotopoulos CP. Evidence-based epileptology, randomized controlled trials, and SANAD: a critical clinical view. Epilepsia 2007; 48(7): 1268–74PubMedCrossRefGoogle Scholar
  27. 27.
    Battino D, Tomson T. Management of epilepsy during pregnancy. Drugs 2007; 67(18): 2727–46PubMedCrossRefGoogle Scholar
  28. 28.
    Meador KJ, Pennell PB, Harden CL, et al. Pregnancy registries in epilepsy: a consensus statement on health outcomes. Neurology 2008 Sep; 71(14): 1109–17PubMedCrossRefGoogle Scholar
  29. 29.
    Kluger BM, Meador KJ. Teratogenicity of antiepileptic medications. Semin Neurol 2008; 28(3): 328–35PubMedCrossRefGoogle Scholar
  30. 30.
    Wyszynski DF, Nambisan M, Surve T, et al. Increased rate of major malformations in offspring exposed to valproate during pregnancy. Neurology 2005 Mar; 64(6): 961–5PubMedCrossRefGoogle Scholar
  31. 31.
    Meador KJ, Baker GA, Finnell RH, et al. In utero antiepileptic drug exposure: fetal death and malformations. Neurology 2006 Aug; 67(3): 407–12PubMedCrossRefGoogle Scholar
  32. 32.
    Holmes LB, Baldwin EJ, Smith CR, et al. Increased frequency of isolated cleft palate in infants exposed to lamotrigine during pregnancy. Neurology 2008 May; 70 (22 Pt 2): 2152–8PubMedCrossRefGoogle Scholar
  33. 33.
    Botto LD, Moore CA, Khoury MJ, et al. Neural-tube defects. N Engl J Med 1999 Nov 11; 341(20): 1509–19PubMedCrossRefGoogle Scholar
  34. 34.
    Pennell PB. The importance of monotherapy in pregnancy. Neurology 2003; 60 Suppl. 4: S31–8PubMedCrossRefGoogle Scholar
  35. 35.
    Wilson RD, Davies G, Desilets V, et al. The use of folic acid for the prevention of neural tube defects and other congenital anomalies. J Obstet Gynaecol Can 2003 Nov; 25(11): 959–73PubMedGoogle Scholar
  36. 36.
    Adab N. Therapeutic monitoring of antiepileptic drugs during pregnancy and in the postpartum period: is it useful? CNS Drugs 2006; 20(10): 791–800PubMedCrossRefGoogle Scholar
  37. 37.
    Leppik IE, Brodie MJ, Saetre ER, et al. Outcomes research: clinical trials in the elderly. Epilepsy Res 2006; (68 Suppl.): S71-6Google Scholar
  38. 38.
    Edwards KR, Sackellares JC, Vuong A, et al. Lamotrigine monotherapy improves depressive symptoms in epilepsy: a double-blind comparison with valproate. Epilepsy Behav 2001 Feb; 2(1): 28–36PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2009

Authors and Affiliations

  1. 1.Department of Neurological SciencesRush University Medical CentreChicagoUSA

Personalised recommendations