Drugs

, Volume 68, Issue 5, pp 607–630

Effect of Drugs on Defibrillation Capacity

  • Anna Legreid Dopp
  • John M. Miller
  • James E. Tisdale
Review Article

Abstract

Over 300 000 people die of sudden cardiac death (SCD) in the US annually. Implantable cardioverter-defibrillators (ICDs) have been shown to be more effective than antiarrhythmic drugs for the prevention of SCD in specific susceptible populations. Many patients in whom ICDs have been implanted receive concomitant therapy with antiarrhythmic drugs, for the purpose of reducing the frequency of appropriate and inappropriate defibrillation shocks. Drugs may influence defibrillation capacity and therefore influence the function of ICDs. The objective of this article is to review and update the literature regarding the effects of drugs on defibrillation capacity.

A literature search was performed using PubMed (1966 to December 2007) to identify clinical studies, case reports and animal studies describing the effects of drugs on defibrillation capacity. Search terms included: antiarrhythmic drugs; cardiovascular drugs; amiodarone; sotalol; flecainide; propafenone; dofetilide; ibutilide; β-blockers; lidocaine; procainamide; N-acetylprocainamide; mexiletine; disopyramide; moricizine; calcium channel blockers; defibrillation threshold; defibrillation energy requirements; defibrillation energy changes; defibrillation efficacy; implantable cardioverter defibrillators; and external defibrillators.

Evidence from clinical studies indicates that amiodarone may increase defibrillation threshold (DFT). In addition, some data indicate that drugs including lidocaine, mexiletine, moracizine (moricizine), verapamil, venlafaxine and anaesthetic agents may increase DFT. In contrast, agents including sotalol, dofetilide and β-adrenergic receptor antagonists (β-blockers) may reduce DFT. Propafenone and procainamide appear to have minimal effect on DFT. For those antiarrhythmic drugs with both sodium and potassium channel blockade (e.g. amiodarone), the effect of sodium channel blockade predominates, resulting in an increase in DFT.

Numerous drugs may affect defibrillation capacity. These effects must be considered when managing patients who have an ICD and require concomitant pharmacotherapy.

References

  1. 1.
    Becker T, Doenges K, Vater M, et al. Newer implantable defibrillator leads may be more fragile than older ones. Journal report [online]. Available from URL: http://www.americanheart.org/presenter.jhtml?identifier=3047355/ [Accessed 2007 May 27]
  2. 2.
    Hohnloser SH, Dorian P, Roberts R, et al. Effect of amiodarone and sotalol on ventricular defibrillation threshold: the Optimal Pharmacological Therapy in Cardioverter defibrillator patients (OPTIC) trial. Circulation 2006; 114: 104–9PubMedCrossRefGoogle Scholar
  3. 3.
    Gregoratos G, Abrams J, Epstein AE, et al. ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/NASPE Committee to Update the 1998 Pacemaker Guidelines). Circulation 2002; 106: 2145–61PubMedCrossRefGoogle Scholar
  4. 4.
    Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult. J Am Coll Cardiol 2005; 46(6): 1116–43CrossRefGoogle Scholar
  5. 5.
    Swedberg K, Cleland J, Dargie H, et al. Guidelines for the diagnosis and treatment of chronic heart failure (update 2005). Eur Heart J 2005; 26: 1115–40PubMedCrossRefGoogle Scholar
  6. 6.
    Adams KF, Lindenfeld J, Arnold JMO, et al. Heart Failure Society of America (HFSA) 2006 comprehensive heart failure practice guideline. J Cardiac Fail 2006; 12(1): 1–29CrossRefGoogle Scholar
  7. 7.
    Zipes DP, Camm AJ, Borggrefe M, et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. J Am Coll Cardiol 2006; 48(5): e248–346CrossRefGoogle Scholar
  8. 8.
    Moss AJ, Hall WJ, Cannom DS, et al., on behalf of the Multicenter Automatic Defibrillator Implantation Trial Investigators. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. N Engl J Med 1996; 335: 1933–40PubMedCrossRefGoogle Scholar
  9. 9.
    Buxton AE, Lee KL, Fisher JD, et al., on behalf of the Multicenter Unsustained Tachycardia Trial Investigators. A randomized study of the prevention of sudden death in patients with coronary artery disease. N Engl J Med 1999; 341: 1882–90PubMedCrossRefGoogle Scholar
  10. 10.
    Moss AJ, Zareba W, Hall WJ, et al., on behalf of the Multicenter Automatic Defibrillator Implantation Trial II Investigators. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 2002; 346: 877–83PubMedCrossRefGoogle Scholar
  11. 11.
    Maron BJ, Shen WK, Link MS, et al. Efficacy of implantable cardioverter-defibrillators for the prevention of sudden death in patients with hypertrophic cardiomyopathy. Circulation 2000; 342: 365–73Google Scholar
  12. 12.
    Chan PS, Hayward RA. Mortality reduction by implantable cardioverter defibrillators in high-risk patients with heart failure, ischemic heart disease, and new-onset ventricular arrhythmia: an effectiveness study. J Am Coll Cardiol 2005; 45: 1474–81PubMedCrossRefGoogle Scholar
  13. 13.
    Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter defibrillator for congestive heart failure. N Engl J Med 2005; 352: 225–37PubMedCrossRefGoogle Scholar
  14. 14.
    The Antiarrhythmics Versus Implantable Defibrillators (AVID) Investigators. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med 1997; 337: 1576–83CrossRefGoogle Scholar
  15. 15.
    Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide or placebo: the Cardiac Arrhythmia Suppression Trial. N Engl J Med 1991; 324: 781–8PubMedCrossRefGoogle Scholar
  16. 16.
    The Cardiac Arrhythmia Suppression Trial II Investigators. Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. N Engl J Med 1992; 327(4): 227–33CrossRefGoogle Scholar
  17. 17.
    McClellan MB, Tunis SR. Medicare coverage of ICDs. N Engl J Med 2005; 352: 222–4PubMedCrossRefGoogle Scholar
  18. 18.
    Strickberger SA, Conti J, Daoud EG, et al. Patient selection for cardiac resynchronization therapy: from the Council on Clinical Cardiology Subcouncil on Electrocardiography and Arrhythmias and the Quality of Care and Outcomes Research Interdisciplinary Working Group, in collaboration with the Heart Rhythm Society. Circulation 2005; 111: 2146–50PubMedCrossRefGoogle Scholar
  19. 19.
    Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 2005; 352: 1539–49PubMedCrossRefGoogle Scholar
  20. 20.
    Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med 2002; 346(24): 1845–53PubMedCrossRefGoogle Scholar
  21. 21.
    Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004; 350: 2140–50PubMedCrossRefGoogle Scholar
  22. 22.
    Ho AT, Pai SM, Timothy P, et al. Effect of concomitant antiarrhythmic therapy on survival in patients with implantable cardioverter defibrillators. Pacing Clin Electrophysiol 2005; 28: 647–53PubMedCrossRefGoogle Scholar
  23. 23.
    Marchlinski FE, Zado ES, Deely MP, et al. Concomitant device and drug therapy: current trends, potential benefits, and adverse interactions. Am J Cardiol 1999; 84(9A): 69–75CrossRefGoogle Scholar
  24. 24.
    Santini M, Pandozi C, Ricci R. Combining antiarrhythmic drugs and implantable devices therapy: benefits and outcomes. J Intervent Cardiol Electrophysiol 2000; 4(1): 65–89CrossRefGoogle Scholar
  25. 25.
    Shorofsky SR, Peters RW, Rashba EJ, et al. Comparison of step-down and binary search algorithms for determination of defibrillation threshold in humans. Pacing Clin Electrophysiol 2004; 27: 218–20PubMedCrossRefGoogle Scholar
  26. 26.
    Swerdlow CD, Ahern T, Kass RM, et al. Upper limit of vulnerability is a good estimator of shock strength associated with 90% probability of successful defibrillation in humans with transvenous implantable cardioverter-defibrillators. J Am Coll Cardiol 1996; 27(5): 1112–8PubMedCrossRefGoogle Scholar
  27. 27.
    Hwang C, Swerdlow CD, Kass RM, et al. Upper limit of vulnerability reliably predicts the defibrillation threshold in humans. Circulation 1994; 90: 2308–14PubMedCrossRefGoogle Scholar
  28. 28.
    Glikson M, Gurevitz OT, Trusty JM, et al. Upper limit of vulnerability determination during implantable cardioverterdefibrillator placement to minimize ventricular inductions. Am J Cardiol 2004; 94: 1445–9PubMedCrossRefGoogle Scholar
  29. 29.
    Kirilmaz A, Dokumaci B, Uzun M, et al. Detection of defibrillation threshold using the upper limit of vulnerability following defibrillator implantation. Pacing Clin Electrophysiol 2005; 28(6): 498–505PubMedCrossRefGoogle Scholar
  30. 30.
    Kavanagh KM, Tang AS, Rollins DL, et al. Comparison of the internal defibrillation thresholds for monophasic and double and single capacitor biphasic waveforms. J Am Coll Cardiol 1989; 14(5): 1343–9PubMedCrossRefGoogle Scholar
  31. 31.
    Winkle RA, Mead RH, Ruder MA, et al. Improved low energy defibrillation efficacy in man with the use of a biphasic truncated exponential waveform. Am Heart J 1989; 117(1): 122–7PubMedCrossRefGoogle Scholar
  32. 32.
    Babbs CF, Whistler SJ, Yim GKW, et al. Dependence of defibrillation threshold upon extracellular/intracellular K[+] concentrations. J Electrocardiol 1980; 13: 73–8PubMedCrossRefGoogle Scholar
  33. 33.
    Ujhelyi MR, Schur M, Frede T, et al. Mechanisms of antiarrhythmic drug-induced changes in defibrillation threshold: role of potassium and sodium channel conductance. J Am Coll Cardiol 1996; 27: 1534–42PubMedCrossRefGoogle Scholar
  34. 34.
    Varma P, Qi X, Newman D, et al. Combination IK1 and IKr channel blockade: no additive lowering of the defibrillation threshold. Can J Physiol Pharmacol 2002; 80: 22–30PubMedCrossRefGoogle Scholar
  35. 35.
    Mehdirad AA, Carnes CA, Nelson SD. The influence of specific and nonspecific potassium current blockade on the defibrillation energy requirement of biphasic shock. PACE 1999; 22 (Pt 2): 147–51PubMedCrossRefGoogle Scholar
  36. 36.
    Harbison MT, Allen JD, Adgey AAJ. The effects of potassium-ATP channel modulation on ventricular fibrillation and defibrillation in the pig heart. Int J Cardiol 2000; 76: 187–97CrossRefGoogle Scholar
  37. 37.
    Ujhelyi MR, Schur M, Frede T, et al. Differential effects of lidocaine on defibrillation thresholds with monophasic vs biphasic shock waveforms. Circulation 1995; 92: 1644–50PubMedCrossRefGoogle Scholar
  38. 38.
    Sims JJ, Miller AW, Ujhelyi MR. Lidocaine increases the proarrhythmic effects of monophasic but not biphasic shocks. J Cardiovasc Electrophysiol 2001; 12: 1363–8PubMedCrossRefGoogle Scholar
  39. 39.
    Li L, Nikolski V, Efimov IR. Effects of lidocaine on shock-induced vulnerability. J Cardiovasc Electrophysiol 2003 (Suppl.); 14: S237–48PubMedCrossRefGoogle Scholar
  40. 40.
    Zaugg CE, Wu ST, Barbosa V, et al. Ventricular fibrillation-induced intracellular Ca[2+] overload causes failed electrical defibrillation and post-shock reinitiation of fibrillation. J Mol Cell Cardiol 1998; 30: 2183–92PubMedCrossRefGoogle Scholar
  41. 41.
    Kojima S, Wu ST, Wikman-Coffelt J, et al. Acute amiodarone terminates ventricular fibrillation by modifying cellular Ca++ homeostasis in isolated perfused rat hearts. J Pharmacol Exp Ther 1995; 275: 254–62PubMedGoogle Scholar
  42. 42.
    Chattipakorn N, Ideker RE. Delayed afterdepolarization inhibitor: a potential pharmacologic intervention to improve defibrillation efficacy. J Cardiovasc Electrophysiol 2003; 14: 72–5PubMedCrossRefGoogle Scholar
  43. 43.
    Rattes MF, Sharma AD, Klein GJ, et al. Adrenergic effects on internal cardiac defibrillation threshold. Am J Physiol 1987; 253: H500–6PubMedGoogle Scholar
  44. 44.
    Sezaki K, Murakawa Y, Inoue H, et al. Effect of isoproterenol on facilitation of electrical defibrillation by E-4031. J Cardiovasc Pharmacol 1995 Mar; 25(3): 393–6PubMedCrossRefGoogle Scholar
  45. 45.
    Barold HS, Shander G, Tomassoni G, et al. Effect of increased parasympathetic and sympathetic tone on internal atrial defibrillation thresholds in humans. Pacing Clin Electrophysiol 1999; 22 (Pt II): 238–42PubMedCrossRefGoogle Scholar
  46. 46.
    Kalus JS, White CM, Caron MF, et al. The impact of catecholamines on defibrillation threshold in patients with implanted cardioverter defibrillators. Pacing Clin Electrophysiol 2005; 28: 1147–56PubMedCrossRefGoogle Scholar
  47. 47.
    Pharand C, Goldman R, Fan C, et al. Effect of chronic oral moricizine and intravenous epinephrine on ventricular fibrillation and defibrillation thresholds. Pacing Clin Electrophysiol 1996; 19: 82–9PubMedCrossRefGoogle Scholar
  48. 48.
    Murakawa Y, Yamashita T, Kanese Y, et al. Effect of atrial natriuretic peptide on electrical defibrillation efficacy. J Cardiovasc Electrophysiol 1998; 9: 962–9PubMedCrossRefGoogle Scholar
  49. 49.
    Qi X, Varma P, Newman D, et al. Gap junction blockers decrease defibrillation thresholds without changes in ventricular refractoriness in isolated rabbit hearts. Circulation 2001; 104: 1544–9PubMedCrossRefGoogle Scholar
  50. 50.
    Vigh AG, Lowder J, Deantonio HJ. Does acute volume overloading in the setting of left ventricular dysfunction and pulmonary hypertension affect the defibrillation threshold? Pacing Clin Electrophysiol 1999; 22: 758–64CrossRefGoogle Scholar
  51. 51.
    Behrens S, Li C, Franz MR. Effects of long-term amiodarone treatment on ventricular-fibrillation vulnerability and defibrillation efficacy in response to monophasic and biphasic socks. J Cardiovasc Pharmacol 1997; 30: 412–8PubMedCrossRefGoogle Scholar
  52. 52.
    Fain ES, Lee JT, Winkle RA. Effects of acute intravenous and chronic oral amiodarone on defibrillation energy requirements. Am Heart J 1987; 114: 8–17PubMedCrossRefGoogle Scholar
  53. 53.
    Haberman RJ, Veltri EP, Mower M. The effect of amiodarone on defibrillation threshold. J Electrophysiol 1988; 2: 415–23Google Scholar
  54. 54.
    Frame LH. The effect of chronic oral and acute intravenous amiodarone administration on ventricular defibrillation threshold using implanted electrodes in dogs. PACE 1989; 12: 339–46PubMedCrossRefGoogle Scholar
  55. 55.
    Tsagalou EP, Anastasiou-Nana MI, Charitos CE, et al. Time course of fibrillation and defibrillation thresholds after an intravenous bolus of amiodarone: an experimental study. Resuscitation 2004; 61: 83–9PubMedCrossRefGoogle Scholar
  56. 56.
    Huang J, Skinner JL, Rogers JM, et al. The effects of acute and chronic amiodarone on activation patterns and defibrillation threshold during ventricular fibrillation in dogs. J Am Coll Cardiol 2002; 40: 375–83PubMedCrossRefGoogle Scholar
  57. 57.
    Arredondo MT, Guillen SG, Quinteiro RA. Effect of amiodarone on ventricular fibrillation and defibrillation thresholds in the canine heart under normal and ischemic conditions. Eur J Pharmacol 1986; 125: 23–38PubMedCrossRefGoogle Scholar
  58. 58.
    Fogoros RN. Amiodarone-induced refractoriness to cardioversion. Ann Intern Med 1984; 100: 699–700PubMedGoogle Scholar
  59. 59.
    Güldal M, Karaoguz R, Akalin H, et al. Is there an effect of amiodarone on the defibrillation threshold? Jpn Heart J 1993; 34: 221–6PubMedCrossRefGoogle Scholar
  60. 60.
    Boriani G, Biffi M, Frabetti L, et al. High defibrillation threshold at cardioverter defibrillator implantation under amiodarone treatment: favorable effects of D,L-sotalol. Heart Lung 2000; 29: 412–6PubMedCrossRefGoogle Scholar
  61. 61.
    Boriani G, Rapezzi C, Biffi M, et al. Hypertrophie cardiomyopathy with massive hypertrophy, amiodarone treatment and high defibrillation threshold at cardioverter-defibrillator implant [letter]. Int J Cardiol 2002; 83: 171–3PubMedCrossRefGoogle Scholar
  62. 62.
    Kühlkamp V, Mewis C, Suchalla R, et al. Effect of amiodarone and sotalol on the defibrillation threshold in comparison to patients without antiarrhythmic drug treatment. Int J Cardiol 1999; 69: 271–9PubMedCrossRefGoogle Scholar
  63. 63.
    Jung W, Manz M, Pizzulli L, et al. Effects of chronic amiodarone therapy on defibrillation threshold. Am J Cardiol 1992; 70: 1023–7PubMedCrossRefGoogle Scholar
  64. 64.
    Troup PJ, Chapman PD, Olinger GN, et al. The implanted defibrillator: relation of defibrillating lead configuration and clinical variables to defibrillation threshold. J Am Coll Cardiol 1985; 6: 1315–21PubMedCrossRefGoogle Scholar
  65. 65.
    Neuzner J, Bahawar H, Berkowitsch A, et al. Clinical predictors of defibrillation energy requirements. Am J Cardiol 1997; 79: 205–6PubMedCrossRefGoogle Scholar
  66. 66.
    Raitt MH, Johnson G, Dolack GL, et al. Clinical predictors of the defibrillation threshold with the unipolar implantable defibrillation system. J Am Coll Cardiol 1995; 25: 1576–83PubMedCrossRefGoogle Scholar
  67. 67.
    Daoud EG, Man C, Horwood L, et al. Relation between amiodarone and desethylamiodarone plasma concentrations and ventricular defibrillation energy requirements. Am J Cardiol 1997; 79: 97–100PubMedCrossRefGoogle Scholar
  68. 68.
    Connolly SJ, Dorian P, Roberts RS, et al. Comparison of β-blockers, amiodarone plus β-blockers, or sotalol for prevention of shocks from implantable cardioverter defibrillators. The OPTIC study: a randomized trial. JAMA 2006; 295: 165–71Google Scholar
  69. 69.
    Leong-Sit P, Gula LJ, Diamantouros P, et al. Effect of defibrillation testing on management during implantable cardioverterdefibrillator implantation. Am Heart J 2006; 152: 1104–8PubMedCrossRefGoogle Scholar
  70. 70.
    Wang M, Dorian P. DL and D sotalol decrease defibrillation energy requirements. Pacing Clin Electrophysiol 1989; 12: 1522–9PubMedCrossRefGoogle Scholar
  71. 71.
    Iskos D, Lurie KG, Adler SW, et al. Effect of parenteral d-sotalol on transvenous atrial defibrillation threshold in a canine model of atrial fibrillation. Am Heart J 1996; 132: 116–9PubMedCrossRefGoogle Scholar
  72. 72.
    Giardina EG, Fenster PE, Bigger Jr JT, et al. Efficacy, plasma concentrations and adverse effects of a new sustained release procainamide preparation. Am J Cardiol 1980; 46: 855–62PubMedCrossRefGoogle Scholar
  73. 73.
    Dorian P, Newman D, Sheahan R, et al. d-sotalol decreases defibrillation energy requirements in humans: a novel indication for drug therapy. J Cardiovasc Electrophysiol 1996; 7: 952–61PubMedCrossRefGoogle Scholar
  74. 74.
    Dorian P, Newman D. Effect of sotalol on ventricular fibrillation and defibrillation in humans. Am J Cardiol 1993; 72: 72–9ACrossRefGoogle Scholar
  75. 75.
    Lau C-P, Lok N-S. A comparison of transvenous atrial defibrillation of acute and chronic atrial fibrillation and the effect of intravenous sotalol on human atrial defibrillation threshold. PACE 1997; 20: 2442–52PubMedCrossRefGoogle Scholar
  76. 76.
    Szabo TS, Jones DL, McQuinn RL, et al. Flecainide acetate does not alter the energy requirements for direct ventricular defibrillation using sequential pulse defibrillation in pigs. J Cardiovasc Pharmacol 1988; 12: 377–83PubMedCrossRefGoogle Scholar
  77. 77.
    Natale A, Jones DL, Kleinstiver PW, et al. Effects of flecainide on defibrillation threshold in pigs. J Cardiovasc Pharmacol 1993; 21: 573–7PubMedCrossRefGoogle Scholar
  78. 78.
    Hernandez R, Mann DE, Breckinridge S, et al. Effects of flecainide on defibrillation thresholds in the anesthetized dog. J Am Coll Cardiol 1989; 14: 777–81PubMedCrossRefGoogle Scholar
  79. 79.
    Murakawa Y, Sezaki K, Inoue H, et al. Shock-induced refractory period extension and pharmacologic modulation of defibrillation threshold. J Cardiovasc Pharmacol 1994; 23: 822–5PubMedCrossRefGoogle Scholar
  80. 80.
    Murakawa Y, Inoue H, Kuo TT, et al. Prolongation of intraventricular conduction time associated with fatal impairment of defibrillation efficiency during treatment with class I antiarrhythmic agents. J Cardiovasc Pharmacol 1995; 25: 194–9PubMedCrossRefGoogle Scholar
  81. 81.
    Boriani G, Biffi M, Capucci A, et al. Favorable effects of flecainide in transvenous internal cardioversion of atrial fibrillation. J Am Coll Cardiol 1999; 33: 333–41PubMedCrossRefGoogle Scholar
  82. 82.
    Peters W, Gang ES, Okazaki H, et al. Acute effects of intravenous propafenone on the internal defibrillation threshold in the anesthetized dog. Am Heart J 1991; 122: 1355–60PubMedCrossRefGoogle Scholar
  83. 83.
    Natale A, Montenero AS, Bombardiert G, et al. Effects of acute and prolonged administration of propafenone on internal defibrillation threshold in the pig. Am Heart J 1992; 124: 104–9PubMedCrossRefGoogle Scholar
  84. 84.
    Montenero AS, Bombardieri G, Barilaro C, et al. Intravenous propafenone reduces energy requirements for defibrillation in pigs. Cardiologia 1990; 35: 291–4PubMedGoogle Scholar
  85. 85.
    Stevens SK, Haffajee CI, Naccarelli GV, et al. Effects of oral propafenone on defibrillation and pacing thresholds in patients receiving implantable cardioverter-defibrillators. J Am Coll Cardiol 1996; 28: 418–22PubMedCrossRefGoogle Scholar
  86. 86.
    Anvari A, Schmidinger H, Schuster E, et al. Effects of lidocaine, ajmaline, and diltiazem on ventricular defibrillation energy requirements in isolated rabbit heart. J Cardiovasc Pharmacol 1997; 29: 429–35PubMedCrossRefGoogle Scholar
  87. 87.
    Babbs CF, Yim KG, Whistler SJ, et al. Elevation of ventricular defibrillation threshold in dogs by antiarrhythmic drugs. Am Heart J 1979; 98: 345–50PubMedCrossRefGoogle Scholar
  88. 88.
    Echt DS, Black JN, Barbey JT, et al. Evaluation of antiarrhythmic drugs on defibrillation energy requirements in dogs. Sodium channel block and action potential prolongation. Circulation 1989; 79: 1106–17Google Scholar
  89. 89.
    Chow MSS, Kluger J, Lawrence R, et al. The effect of lidocaine and bretylium on the defibrillation threshold during cardiac arrest and cardiopulmonary resuscitation. Proc Soc Exp Biol Med 1986; 182: 63–7PubMedGoogle Scholar
  90. 90.
    Ujhelyi MR, O'Rangers EA, Kluger J, et al. Defibrillation energy requirements during moricizine and moricizine-lidocaine therapy. J Cardiovasc Pharmacol 1992; 20: 932–9PubMedCrossRefGoogle Scholar
  91. 91.
    Sato S, Imagawa N. Effects of lidocaine and mexiletine on defibrillation energy requirements in animals treated with flecainide. Resuscitation 1998; 36: 175–80PubMedCrossRefGoogle Scholar
  92. 92.
    Kerber RE, Pandian NG, Jensen SR, et al. Effect of lidocaine and bretylium on energy requirements for transthoracic defibrillation: experimental studies. J Am Coll Cardiol 1986 Feb; 7(2): 397–405PubMedCrossRefGoogle Scholar
  93. 93.
    Natale A, Jones DL, Kim YH, et al. Effects of lidocaine on defibrillation threshold in the pig: evidence of anesthesia related increase. Pacing Clin Electrophysiol 1991; 14: 1239–44PubMedCrossRefGoogle Scholar
  94. 94.
    Topham SL, Cha Y-M, Peters BP, et al. Effects of lidocaine on relation between defibrillation threshold and upper limit of vulnerability in open-chest dogs. Circulation 1992; 85: 1146–51PubMedCrossRefGoogle Scholar
  95. 95.
    Winecoff Miller AP, Sims JJ, McSwain R, et al. Lidocaine's effect on defibrillation threshold are dependent on the defibrillation electrode system: epicardial vs endocardial. J Cardiovasc Electrophysiol 1998; 9: 312–20PubMedCrossRefGoogle Scholar
  96. 96.
    Peters RW, Gilbert TB, Johns-Walton S, et al. Lidocaine-related increase in defibrillation threshold. Anesth Analg 1997; 85: 299–300PubMedGoogle Scholar
  97. 97.
    Jones DL, Klein GJ, Guiraudon GM, et al. Effects of lidocaine and verapamil on defibrillation in humans. J Electrocardiol 1991; 24: 299–305PubMedCrossRefGoogle Scholar
  98. 98.
    Deeb GM, Hardesty RL, Griffith BP, et al. The effects of cardiovascular drugs on the defibrillation threshold and the pathological effects on the heart using an automatic implantable defibrillator. Ann Thorac Surg 1983; 35: 361–5PubMedCrossRefGoogle Scholar
  99. 99.
    Fan W, Gotoh M, Chen P-S. Effects of the pacing site, procainamide, and lead configuration on the relationship between the upper limit of vulnerability and the defibrillation threshold. PACE 1995; 18: 1279–84PubMedCrossRefGoogle Scholar
  100. 100.
    Fiksinski E, Martin D, Venditti Jr F. Electrical proarrhythmia with procainamide: a new ICD-drug interaction. J Cardiovasc Electrophysiol 1994; 5: 144–5PubMedCrossRefGoogle Scholar
  101. 101.
    Dangman KH, Hoffman BF. In vivo and in vitro antiarrhythmic and arrhythmogenic effects of N-acetyl procainamide. J Pharmacol Exp Ther 1981; 217: 851–62PubMedGoogle Scholar
  102. 102.
    Wesley RC, Karkhani F, Morgan D, et al. Ibutilide: enhanced defibrillation via plateau sodium current activation. Am J Physiol 1993; 264: H1269–74PubMedGoogle Scholar
  103. 103.
    Labhasetwar V, Underwood T, Heil Jr RW, et al. Epicardial administration of ibutilide from polyurethane matrices: effects on defibrillation threshold and electrophysiologic parameters. J Cardiovasc Pharmacol 1994; 24: 826–40PubMedCrossRefGoogle Scholar
  104. 104.
    Oral H, Souza JJ, Michaud GF, et al. Facilitating transthoracic cardioversion of atrial fibrillation with ibutilide pretreatment. N Engl J Med 1999; 340: 1849–54PubMedCrossRefGoogle Scholar
  105. 105.
    Efremidis M, Sideris A, Batra R, et al. Facilitating internal cardioversion of chronic atrial fibrillation with ibutilide: predictors of atrial defibrillation-threshold decrease. Med Sci Monit 2004; 10: CR258–63PubMedGoogle Scholar
  106. 106.
    Davis DR, Beatch GN, Dickenson DR, et al. Dofetilide enhances shock-induced extension of refractoriness and lowers defibrillation threshold. Can J Cardiol 1999; 15: 193–200PubMedGoogle Scholar
  107. 107.
    Murakawa Y, Yamashita T, Kanese Y, et al. Do the effects of antiarrhythmic drugs on defibrillation efficacy vary among different shock waveforms? Pacing Clin Electrophysiol 1998; 21: 1901–8PubMedCrossRefGoogle Scholar
  108. 108.
    Sato S, Tsuji MH, Naito H. Mexiletine has no effect on defibrillation energy requirements in dogs. PACE 1994; 17: 2279–84PubMedCrossRefGoogle Scholar
  109. 109.
    Marinchak RA, Friehling TD, Kline RA, et al. Effect of antiarrhythmic drugs on defibrillation threshold: case report of an adverse effect of mexiletine and review of the literature. PACE 1988; 11: 7–12PubMedCrossRefGoogle Scholar
  110. 110.
    Crystal E, Ovsyschcher E, Wagshal AB, et al. Mexiletine related chronic defibrillation threshold elevation: case report and review of the literature. PACE 2002; 25: 507–8PubMedCrossRefGoogle Scholar
  111. 111.
    Avitall B, Hare J, Zander G, et al. Cardioversion, defibrillation, and overdrive pacing of ventricular arrhythmias: the effect of moricizine in dogs with sustained monomorphic ventricular tachycardia. PACE 1993; 16: 2092–7PubMedCrossRefGoogle Scholar
  112. 112.
    Tworek DA, Nazari J, Ezri M, et al. Interference by antiar-rhythmic agents with function of electrical cardiac devices. Clin Pharm 1992; 11: 48–56PubMedGoogle Scholar
  113. 113.
    Ruffy R, Schechtman K, Monje E, et al. Adrenergically mediated variations in the energy required to defibrillate the heart: observations in closed-chest, nonanesthetized dogs. Circulation 1986; 73: 374–80PubMedCrossRefGoogle Scholar
  114. 114.
    Melichercik J, Goepfrich M, Breidenbach T, et al. Rise of defibrillation energy requirement under carvedilol therapy. Pacing Clin Electrophysiol 2001; 24: 1417–9PubMedCrossRefGoogle Scholar
  115. 115.
    Jones DL, Kim YH, Natale A, et al. Bretylium decreases and verapamil increases defibrillation threshold in pigs. Pacing Clin Electrophysiol 1994; 17: 1380–90PubMedCrossRefGoogle Scholar
  116. 116.
    Carnes CA, Pickworth KK, Votolato NA, et al. Elevated defibrillation threshold with venlafaxine therapy. Pharmacotherapy 2004; 24: 1095–8PubMedCrossRefGoogle Scholar
  117. 117.
    Cohen TJ, Chenqot T, Quan C, et al. Elevation of defibrillation thresholds with propofol during implantable cardioverterdefibrillator testing. J Invasive Cardiol 2000; 12: 121–3PubMedGoogle Scholar
  118. 118.
    Weinbroum AA, Glick A, Copperman Y, et al. Halothane, isoflurane, and fentanyl increase the minimally effective defibrillation threshold of an implantable cardioverter defibrillator: first report in humans. Anesth Analg 2002; 95: 1147–53PubMedCrossRefGoogle Scholar
  119. 119.
    Moerman A, Herregods L, Tavernier R, et al. Influence of anaesthesia on defibrillation threshold. Anaesthesia 1998; 53: 1156–9PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2008

Authors and Affiliations

  • Anna Legreid Dopp
    • 1
  • John M. Miller
    • 2
  • James E. Tisdale
    • 2
    • 3
  1. 1.Division of Extension Services in PharmacySchool of Pharmacy, University of Wisconsin-MadisonMadisonUSA
  2. 2.Department of MedicineSchool of Medicine, Indiana UniversityIndianapolisUSA
  3. 3.Department of Pharmacy PracticeSchool of Pharmacy and Pharmaceutical Sciences, Purdue UniversityIndianapolisUSA

Personalised recommendations