Skip to main content
Log in

EGFR, HER2 and VEGF Pathways

Validated Targets for Cancer Treatment

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Targeted therapies are rationally designed to interfere with specific molecular events that are important in tumour growth, progression or survival. Several targeted therapies with anti-tumour activity in human cancer cell lines and xenograft models have now been shown to produce objective responses, delay disease progression and, in some cases, improve survival of patients with advanced malignancies. These targeted therapies include cetuximab, an anti-epidermal growth factor receptor (EGFR) monoclonal antibody; gefitinib and erlotinib, EGFR-specific tyrosine kinase inhibitors; trastuzumab, an anti-human EGFR type 2 (HER2)-related monoclonal antibody; lapatinib, a dual inhibitor of both EGFR- and HER2-associated tyrosine kinases; and bevacizumab, an anti-vascular endothelial growth factor (VEGF) monoclonal antibody.

On the basis of preclinical and clinical evidence, EGFR, HER2 and VEGF represent validated targets for cancer therapy and remain the subject of intensive investigation. Both EGFR and HER2 are targets found on cancer cells, whereas VEGF is a target that acts in the tumour microenvironment. Clinical studies are focusing on how to best incorporate targeted therapy into current treatment regimens and other studies are exploring whether different strategies for inhibiting these targets will offer greater benefit. It is clear that optimal use of targeted therapy will depend on understanding how these drugs work mechanistically, and recognising that their activities may differ across patient populations, tumour types and disease stages, as well as when and how they are used in cancer treatment. The results achieved with targeted therapies to date are promising, although they illustrate the need for additional preclinical and clinical study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Table III
Fig. 2
Fig. 3
Table IV
Table V
Fig. 4

Similar content being viewed by others

References

  1. Guillemard V, Saragovi HU. Novel approaches for targeted cancer therapy. Curr Cancer Drug Targets 2004; 4: 313–26

    Article  PubMed  CAS  Google Scholar 

  2. Baselga J. Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 2002; 7 Suppl. 7: 2–8

    Article  PubMed  CAS  Google Scholar 

  3. Sawyers C. Targeted cancer therapy. Nature 2004; 432: 294–7

    Article  PubMed  CAS  Google Scholar 

  4. Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nature Rev 2004; 4: 361–70

    Article  CAS  Google Scholar 

  5. Thomson PDR. 2005 Physicians’ desk reference. 59th ed. Montvale (NJ): Thomson Healthcare, Inc., 2005

    Google Scholar 

  6. Wells A. EGF receptor. Int J Biochem Cell Biol 1999; 31: 637–43

    Article  PubMed  CAS  Google Scholar 

  7. Nanney LB, Stoscheck CM, King LE, et al. Immunolocalization of epidermal growth factor receptors in normal developing human skin. J Invest Dermatol 1990; 94: 742–8

    Article  PubMed  CAS  Google Scholar 

  8. Arteaga CL. The epidermal growth factor receptor: from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. J Clin Oncol 2001; 19 Suppl. 18S: 32s–40s

    PubMed  CAS  Google Scholar 

  9. Yarden Y, Sliwkowski MX. Untangling the erbB signaling network. Nature Rev 2001; 2: 127–37

    Article  CAS  Google Scholar 

  10. Saltz L, Rubin M, Hochster H, et al. Cetuximab (IMC-C225) plus irinotecan (CPT-11) is active in CPT-11-refractory colorectal cancer (CRC) that expresses epidermal growth factor receptor (EGFR) [abstract no. 7]. Proc Am Soc Clin Oncol 2001; 20: 3a

    Google Scholar 

  11. Saltz LB, Meropol NJ, Loehrer Sr PJ, et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 2004; 22: 1201–8

    Article  PubMed  CAS  Google Scholar 

  12. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351: 337–45

    Article  PubMed  CAS  Google Scholar 

  13. Lenz HJ, Mayer RJ, Gold PJ, et al. Activity of cetuximab in patients with colorectal cancer refractory to both irinotecan and oxaliplatin [abstract no. 3510 and slide presentation]. J Clin Oncol 2004; 22 Suppl. 14S: 3510

    Google Scholar 

  14. Lenz HJ, Mayer RJ, Mirtsching B, et al. Consistent response to treatment with cetuximab monotherapy in patients with metastatic colorectal cancer [abstract no. 3536 and poster presentation]. J Clin Oncol 2005; 23 Suppl. 16S: 255s

    Google Scholar 

  15. Hecht JR, Patnaik A, Malik I, et al. ABX-EGF monotherapy in patients (pts) with metastatic colorectal cancer (mCRC): an updated analysis [abstract no. 3511]. J Clin Oncol 2004; 22 Suppl. 14S: 3511

    Google Scholar 

  16. Malik I, Hecht JR, Patnaik A, et al. Safety and efficacy of panitumumab monotherapy in patients with metastatic colorectal cancer (mCRC) [abstract no. 3520 and slide presentation]. Proc Am Soc Clin Oncol 2005; 24: 251s

    Google Scholar 

  17. Saltz LB, Lenz H, Hochster H, et al. Randomized phase II trial of cetuximab/bevacizumab/irinotecan (CBI) versus cetuximab/bevacizumab (CB) in irinotecan-refractory colorectal cancer [abstract no. 3508]. J Clin Oncol 2005; 23 Suppl. 16S: 248s

    Google Scholar 

  18. Peeters M, Van Cutsem E, Siena S, et al. A phase 3, multicenter, randomized controlled trial (RCT) of panitumumab plus best supportive care (BSC) vs BSC alone in patients (pts) with metastatic colorectal cancer (mCRC) [abstract no. CP-1]. 97th AACR Annual Meeting; 2006 Apr 1–5; Washington, DC

  19. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 2003; 290: 2149–58

    Article  PubMed  CAS  Google Scholar 

  20. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 2003; 21: 2237–46

    Article  PubMed  CAS  Google Scholar 

  21. Giaccone G, Herbst RS, Manegold C, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial-INTACT 1. J Clin Oncol 2004; 22: 777–84

    Article  PubMed  CAS  Google Scholar 

  22. Herbst RS, Giaccone G, Sciller JH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial — INTACT 2. J Clin Oncol 2004; 22: 785–94

    Article  PubMed  CAS  Google Scholar 

  23. Fuster LMB, Sandler AB. Select clinical trials of erlotinib (OSI-774) in non-small-cell lung cancer with emphasis on phase III outcomes. Clin Lung Cancer 2004; 6 Suppl. 1: S24–9

    Article  PubMed  CAS  Google Scholar 

  24. Nokihara H, Ohe Y, Kawaishi M, et al. A randomized phase II study of sequential carboplatin/paclitaxel (CP) and gefitinib (G) in chemotherapy-naïve patients with advanced non-small-cell lung cancer (NSCLC): preliminary results [abstract no. 7096]. Proc Am Soc Clin Oncol 2006; 24: 388s

    Google Scholar 

  25. Perez-Soler R, Chachoua A, Hammond LA, et al. Determinants of tumor response and survival with erlotinib in patients with non-small cell lung cancer. J Clin Oncol 2004; 22: 3238–47

    Article  PubMed  CAS  Google Scholar 

  26. Shepherd FA, Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005; 353: 123–32

    Article  PubMed  CAS  Google Scholar 

  27. Shepherd FA, Pereira J, Ciuleanu TE, et al. A randomized placebo-controlled trial of erlotinib in patients with advanced non-small cell lung cancer (NSCLC) following failure of 1st line or 2nd line chemotherapy: a National Cancer Institute of Canada Clinical Trials Group (NCIC-CTG) trial [abstract no. 7022 and slide presentation]. J Clin Oncol 2004; 22 Suppl. 14S: 7022. Available from URL: http://www.asco.org [Accessed 2006 Sep 26]

    Google Scholar 

  28. Gatzemeier U, Pluzanska A, Szczesna A, et al. Results of a phase III trial of erlotinib (OSI-774) combined with cisplatin and gemcitabine (GC) chemotherapy in advanced non-small cell lung cancer (NSCLC) [abstract no. 7010]. J Clin Oncol 2004; 22 Suppl. 14S: 7010

    Google Scholar 

  29. Herbst RS, Prager D, Hermann R, et al. TRIBUTE: a phase III trial of erlotinib HCl (OSI-774) combined with carboplatin and paclitaxel (CP) chemotherapy in advanced non-small cell lung cancer (NSCLC) [abstract no. 7011]. J Clin Oncol 2004; 22 Suppl. 14S: 7011

    Google Scholar 

  30. ERBITUX® (Cetuximab) [package insert]. New York: ImClone Systems Inc. and Princeton (NJ): Bristol-Myers Squibb Company, 2006 Mar

  31. Prewett MC, Hooper AT, Bassi R, et al. Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal antibody IMC-C225 in combination with irinotecan (CPT-11) against human colorectal tumor xenografts. Clin Cancer Res 2002; 8: 994–1003

    PubMed  CAS  Google Scholar 

  32. Lenz HJ, Van Cutsem E, Khambata-Ford S, et al. Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J Clin Oncol 2006; 24: 4914–21

    Article  PubMed  CAS  Google Scholar 

  33. Chung KY, Shia J, Kemeny NE, et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 2005; 23: 1803–10

    Article  PubMed  CAS  Google Scholar 

  34. Dziadziuszko R, Witta SE, Cappuzzo F, et al. Epidermal growth factor receptor messenger RNA expression, gene dosage, and gefitinib sensitivity in non-small cell lung cancer. Clin Cancer Res 2006; 12: 3078–84

    Article  PubMed  CAS  Google Scholar 

  35. Moroni M, Veronese S, Benvenuti S, et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol 2005 May; 6: 279–86

    Article  PubMed  CAS  Google Scholar 

  36. Steen H, Kuster B, Fernandez M, et al. Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J Biol Chem 2002; 277: 1031–9

    Article  PubMed  CAS  Google Scholar 

  37. Zhang W, Gordon M, Schultheis AM, et al. Two immunoglobulin G fragment C receptor polymorphisms associated with clinical outcome of EGFR-expressing metastatic colorectal cancer patients treated with single agent cetuximab [abstract no. 3028]. Proc Am Soc Clin Oncol 2006; 24: 127s

    Google Scholar 

  38. Rougier P, Raoul J-L, Van Laethem J-L, et al. Cetuximab + FOLFIRI as first-line treatment for metastatic colorectal CA [abstract no. 3513]. J Clin Oncol 2004; 22 Suppl. 14S: 248s

    Google Scholar 

  39. Tabernero JM, Van Custem E, Sastre J, et al. An international phase II study of cetuximab in combination with oxaliplatin/5-fluorouracil (5-FU)/folinic acid (FA)(FOLFOX-4) in the first-line treatment of patients with metastatic colorectal cancer (CRC) expressing epidermal growth factor receptor (EGFR): preliminary results [abstract no. 3512]. Proc Am Soc Clin Oncol 2004; 23: 248

    Article  Google Scholar 

  40. Diaz Rubio E, Tabernero J, van Cutsem E, et al. Cetuximab in combination with oxaliplatin/5-fluorouracil (5-FU)/folinic acid (FA)(FOLFOX-4) in the first-line treatment of patients with epidermal factor receptor (EGFR)-expressing metastatic colorectal cancer: an international phase II study [abstract no. 3535]. Proc Am Soc Clin Oncol 2005; 23: 254s

    Article  CAS  Google Scholar 

  41. Venook A, Niedzwiecki D, Hollis D, et al. Phase III study of irinotecan/5FU/LV (FOLFIRI) or oxaliplatin/5FU/LV (FOLFOX) ± cetuximab for patients (pts) with untreated metastatic adenocarcinoma of the colon or rectum (MCRC): CALGB 80203 preliminary results [abstract no. 3509]. Proc Am Soc Clin Oncol 2006; 24: 148s

    Google Scholar 

  42. Susman E. Rash correlates with tumor response after cetuximab [letter]. Lancet Oncol 2004; 5: 647

    Article  PubMed  Google Scholar 

  43. Schrag D, Chung KY, Flombaum C, et al. Cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Inst 2005; 97: 1221–4

    Article  PubMed  CAS  Google Scholar 

  44. Xiong HQ, Rosenberg A, LoBuglio A, et al. Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: a multicenter phase II trial. J Clin Oncol 2004; 22: 2610–6

    Article  PubMed  CAS  Google Scholar 

  45. Bonner JA, Giralt J, Harari PM, et al. Cetuximab prolongs survival in patients with locoregionally advanced squamous cell carcinoma of head and neck: a phase III study of high dose radiation therapy with or without cetuximab [abstract no. 5507]. J Clin Oncol 2004; 22 Suppl. 14S: 5507

    Google Scholar 

  46. Bonner JA, Harari PM, Giralt J, et al. Improved preservation of larynx with the addition of cetuximab to radiation for cancer of the larynx and hypopharynx [abstract no. 5533]. J Clin Oncol 2005; 23 Suppl. 16S: 508s

    Google Scholar 

  47. Foon KA, Yang XD, Weiner LM, et al. Preclinical and clinical evaluation of ABX-EGF, a fully human anti-epidermal growth factor receptor antibody. Int J Radiat Oncol Biol Phys 2004; 58: 984–90

    Article  PubMed  CAS  Google Scholar 

  48. Sridhar SS, Seymour L, Shepherd FA. Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. Lancet Oncol 2003; 4: 397–406

    Article  PubMed  CAS  Google Scholar 

  49. Rowinsky EK, Schwartz GH, Gollob JA, et al. Safety, pharmacokinetics, and activity of ABX-EGF, a fully human anti-epidermal growth factor monoclonal antibody in patients with metastatic renal cell cancer. J Clin Oncol 2004; 22: 3003–15

    Article  PubMed  CAS  Google Scholar 

  50. Vanhoefer U, Tewes M, Rojo F, et al. Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumors that express the epidermal growth factor receptor. J Clin Oncol 2004; 22: 175–84

    Article  PubMed  CAS  Google Scholar 

  51. Iressa® (gefitinib tablets) [package insert]. Wilmington, DE: AstraZeneca Pharmaceuticals LP; June 2005

  52. AstraZeneca International. Gefitinib (Iressa™) marketing authorisation application withdrawn in EU [online]. Available from URL: http://www.astrazeneca.com [Accessed 2006 Sep26]

  53. Tarceva (erlotinib) tablets [package insert]. San Francisco (CA): Genentech, Inc., and Melville (NY): OSI Pharmaceuticals Inc., 2004

  54. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non—small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 2129–39

    Article  PubMed  CAS  Google Scholar 

  55. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497–500

    Article  PubMed  CAS  Google Scholar 

  56. Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared to gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group [NCIC-CTG] [abstract no. 1]. J Clin Oncol 2005; 23 Suppl. 16S: 1s

    Google Scholar 

  57. Bonomi P. Clinical studies with non-iressa EGFR tyrosine kinase inhibitors. Lung Cancer 2003; 41 Suppl. 1: S43–8

    Article  PubMed  Google Scholar 

  58. Ravaud A, Gardner J, Hawkins R, et al. Efficacy of lapatinib in patients with high tumor EGFR expression: results of a phase III trial in advanced renal cell carcinoma [abstract no. 4502]. Proc Am Soc Clin Oncol 2006; 24: 217s

    Google Scholar 

  59. Ross HJ, Blumenschein GR, Dowlati A, et al. Preliminary safety results of a phase II trial comparing two schedules of lapatinib (GW572016) as first line therapy for advanced or metastatic non-small cell lung cancer [abstract no. 7099]. J Clin Oncol 2005; 23 Suppl. 16S: 7099

    Google Scholar 

  60. Fields AL, Rinaldi DA, Henderson CA, et al. An open-label multicenter phase II study of oral lapatinib (GW572016) as single agent, second-line therapy in patients with metastatic colorectal cancer [abstract no. 3583]. J Clin Oncol 2005; 23 Suppl. 16S: 3583

    Google Scholar 

  61. Midgley R, Flaherty KT, Haller DG, et al. Phase I study of GW572016 (lapatinib), a dual kinase inhibitor, in combination with irinotecan (IR), 5-fluorouracil (FU), and leucovorin (LV) [abstract no. 3086]. J Clin Oncol 2005; 23 Suppl. 16S: 3086

    Google Scholar 

  62. Takano T, Ohe Y, Sakamoto H, et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J Clin Oncol 2005; 23: 6829–37

    Article  PubMed  CAS  Google Scholar 

  63. Cappuzzo F, Hirsch FR, Rossi E, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 2005; 97: 643–55

    Article  PubMed  CAS  Google Scholar 

  64. Hirsch FR, Varella-Garcia M, McCoy J, et al. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group study. J Clin Oncol 2005; 23: 6838–45

    Article  PubMed  CAS  Google Scholar 

  65. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–82

    Article  PubMed  CAS  Google Scholar 

  66. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–12

    Article  PubMed  CAS  Google Scholar 

  67. Saffari B, Jones LA, El-Naggar A, et al. Amplification and overexpression of HER-2/neu (c-erb B-2) in endometrial cancers: correlation with overall survival. Cancer Res 1995; 55: 5693–8

    PubMed  CAS  Google Scholar 

  68. Press MF, Pike MC, Hung G, et al. Amplification and over-expression of HER-2/neu in carcinomas of the salivary gland: correlation with poor prognosis. Cancer Res 1994; 54: 5675–82

    PubMed  CAS  Google Scholar 

  69. King CR, Borrello I, Bellot F, et al. EGF binding to its receptor triggers a rapid tyrosine phosphorylation of the erbB-2 protein in the mammary tumor cell line SK-BR-3. EMBO J 1988; 7: 1647–51

    PubMed  CAS  Google Scholar 

  70. Rubin I, Yarden Y. The basic biology of HER2. Ann Oncol 2001; 12: S3–8

    Article  PubMed  Google Scholar 

  71. Chazin VR, Kaleko M, Miller AD, et al. Transformation mediated by the human HER-2 gene independent of the epidermal growth factor receptor. Oncogene 1992; 7: 1859–66

    PubMed  CAS  Google Scholar 

  72. Neve RM, Lane HA, Haynes NE. The role of overexpressed HER2 in transformation. Ann Oncol 2001; 12 Suppl. 1: S9–13

    Article  PubMed  Google Scholar 

  73. Stephens P, Hunter C, Bignell G, et al. Lung cancer: intragenic ERBB2 kinase mutations in tumors. Nature 2004; 431: 525–6

    Article  PubMed  CAS  Google Scholar 

  74. Herceptin® (trastuzumab) [package insert]. South San Francisco (CA): Genentech, Inc., 2004 Jun

  75. Hommelgaard AM, Lerdrup M, van Deurs B. Association with membrane protrusions makes erbB2 an internalization-resistant receptor. Mol Biol Cell 2004; 15: 1557–67

    Article  PubMed  CAS  Google Scholar 

  76. Clynes RA, Towers TL, Presta LG, et al. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nature Med 2000; 6: 443–6

    Article  PubMed  CAS  Google Scholar 

  77. Miura D, Kitagawa D, Tsutsumi K, et al. Adding paclitaxel to trastuzumab enhances antibody-dependent cell-mediated cytotoxicity via increment of natural killer cells in patients with HER-2 overexpressing breast cancer [abstract no. 10548]. J Clin Oncol 2006; 24 Suppl. 18S: 10548

    Google Scholar 

  78. Musolino A, Naldi N, Bortesi B, et al. Immunoglobulin G fragment C receptor polymorphisms and response to trastuzumab-based treatment in patients with HER-2/neu-positive metastatic breast cancer [abstract no. 13090]. J Clin Oncol 2006; 24 Suppl. 18S: 13090

    Google Scholar 

  79. Baselga J, Tripathy D, Mendelsohn J, et al. Phase II study of weekly intravenous recombinant humanized anti p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 1996; 14: 737–44

    PubMed  CAS  Google Scholar 

  80. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17: 2639–48

    PubMed  CAS  Google Scholar 

  81. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–92

    Article  PubMed  CAS  Google Scholar 

  82. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab (Herceptin) as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20: 719–26

    Article  PubMed  CAS  Google Scholar 

  83. Mass RD, Press MF, Anderson S, et al. Evaluation of clinical outcomes according to HER2 detection by fluorescence in situ hybridization in women with metastatic breast cancer treated with trastuzumab. Clin Breast Cancer 2005; 6: 240–6

    Article  PubMed  Google Scholar 

  84. Gelmon KA, Mackey J, Verma S, et al. Use of trastuzumab beyond disease progression: observations from a retrospective review of case histories. Clin Breast Cancer 2004; 5: 52–8; discussion 59-62

    Article  PubMed  CAS  Google Scholar 

  85. Pegram MD, Konecny GE, O’Callaghan C, et al. Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst 2004; 96: 739–49

    Article  PubMed  CAS  Google Scholar 

  86. Burstein HJ, Harris LN, Gelman R, et al. Preoperative therapy with trastuzumab and paclitaxel followed by sequential adjuvant doxorubicin/cyclophosphamide for HER2 overexpressing stage II or III breast cancer. J Clin Oncol 2003; 21: 46–53

    Article  PubMed  CAS  Google Scholar 

  87. Pegram MD, Pienkowski T, Northfelt DW, et al. Results of two open-label, multicenter phase II studies of docetaxel, platinum salts, and trastuzumab in HER2-positive advanced breast cancer. J Natl Cancer Inst 2004; 96: 759–69

    Article  PubMed  CAS  Google Scholar 

  88. Tedesco KL, Thor AD, Johnson DH, et al. Docetaxel combined with trastuzumab is an active regimen in HER-2 3+ overexpressing and fluorescent in situ hybridization-positive metastatic breast cancer: a multi-institutional phase II trial. J Clin Oncol 2004; 22: 1071–7

    Article  PubMed  CAS  Google Scholar 

  89. Montemurro F, Choa G, Faggiuolo R, et al. A phase II study of three-weekly docetaxel and weekly trastuzumab in HER2-overexpressing advanced breast cancer. Oncology 2004; 66: 38–45

    Article  PubMed  CAS  Google Scholar 

  90. O’Shaughnessy JA, Vukelja S, Marsland T, et al. Phase II study of trastuzumab plus gemcitabine in chemotherapy-pretreated patients with metastatic breast cancer. Clin Breast Cancer 2004; 5: 142–7

    Article  PubMed  Google Scholar 

  91. Fountzilas G, Christodoulou C, Tsavdaridis D, et al. Paclitaxel and gemcitabine, as first-line chemotherapy, combined with trastuzumab in patients with advanced breast cancer: a phase II study conducted by the Hellenic Cooperative Oncology Group (HeCOG). Cancer Invest 2004; 22: 655–62

    Article  PubMed  CAS  Google Scholar 

  92. Yardley DA, Greco FA, Porter LL, et al. First line treatment with weekly docetaxel, vinorelbine, and trastuzumab in HER2 overexpressing metastatic breast cancer (HER2+ MBC): a Minnie Pearl Cancer Research Network phase II trial [abstract no. 643]. J Clin Oncol 2004; 22 Suppl. 14S: 643

    Google Scholar 

  93. Burris III H, Yardley D, Jones S, et al. Phase II trial of trastuzumab followed by weekly paclitaxel/carboplatin as first-line treatment for patients with metastatic breast cancer. J Clin Oncol 2004; 22: 1621–9

    Article  PubMed  CAS  Google Scholar 

  94. Waintraub SE. Phase II trial to study the efficacy and toxicity of combined docetaxel (D), carboplatin (C), ± trastuzumab (T) administered weekly (W) in patients (pts) with HER2/neu± metastatic breast cancer (MBC) [abstract no. 832]. J Clin Oncol 2005; 23 Suppl. 16S: 832

    Google Scholar 

  95. Mehta RS, Shubbert T, Hsiang D, et al. Phase II study of neoadjuvant biweekly doxorubicin and cyclophosphamide (AC) with GM-CSF followed by weekly paclitaxel, carboplatin ± trastuzumab (TC±H) in the treatment of breast cancer [abstract no. 826]. J Clin Oncol 2005; 23 Suppl. 16S: 826

    Google Scholar 

  96. Ali SM, Esteva FJ, Fornier M, et al. Serum HER-2/neu change predicts clinical outcome to trastuzumab-based therapy [abstract no. 500]. Proc Am Soc Clin Oncol 2006; 24: 3s

    Article  Google Scholar 

  97. Liu PC, Liu X, Li Y, et al. Identification of ADAM10 as a major source of HER2 ectodomain sheddase activity in HER2 over-expressing breast cancer cells. Cancer Biol Ther 2006; 5: 657–64

    Article  PubMed  CAS  Google Scholar 

  98. Kostler WJ, Schwab B, Singer CF, et al. Monitoring of serum HER-2/neu predicts response and progression-free survival to trastuzumab-based treatment in patients with metastatic breast cancer. Clin Cancer Res 2004; 10: 1618–24

    Article  PubMed  Google Scholar 

  99. Molina MA, Codony-Servat J, Albanell J, et al. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 2001; 61: 4744–9

    PubMed  CAS  Google Scholar 

  100. Zhou BB, Fridman JS, Liu X, et al. ADAM proteases, ErbB pathways and cancer. Expert Opin Investig Drugs 2005; 14: 591–606

    Article  PubMed  CAS  Google Scholar 

  101. Franklin MC, Carey KD, Vajados FF, et al. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 2004; 5: 317–28

    Article  PubMed  CAS  Google Scholar 

  102. Agus DB, Gordon M, Taylor C, et al. Clinical activity in a phase I trial of HER-2-targeted rhuMAb 2C4 (pertuzumab) in patients with advanced solid malignancies [abstract no. 771]. Proc Am Soc Clin Oncol 2003; 22: 192

    Google Scholar 

  103. Gordon MS, Matei D, Abhajanian C, et al. Clinical activity of pertuzumab (rhuMab 2C4) in advanced, refractory or recurrent ovarian cancer (OC), and the role of HER2 activation status [abstract no. 5051]. J Clin Oncol 2005; 23 Suppl. 16S: 5051

    Google Scholar 

  104. Cortes J, Baselga J, Kellokumpu-Lehitenen P, et al. Open-label, randomized, phase II study of pertuzumab (P) in patients (pts) with metastatic breast cancer (MBC) with low expression of HER2 [abstract no. 3068]. J Clin Oncol 2005; 23 Suppl. 16S: 3068

    Google Scholar 

  105. Agus DB, Sweeney CJ, Morris M, et al. Efficacy and safety of single agent pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in hormone refractory prostate cancer after failure of taxane-based therapy [abstract no. 4624]. J Clin Oncol 2005; 23 Suppl. 16S: 4624

    Google Scholar 

  106. Burris III HA. Dual kinase inhibition in the treatment of breast cancer: initial experience with the EGFR/ErbB-2 inhibitor lapatinib. Oncologist 2004; 9 Suppl. 3: 10–5

    Article  PubMed  CAS  Google Scholar 

  107. Esteva FJ. Monoclonal antibodies, small molecules, and vaccines in the treatment of breast cancer. Oncologist 2004; 9 Suppl. 3: 4–9

    Article  PubMed  CAS  Google Scholar 

  108. Storniolo A, Burris H, Pegram M, et al. A phase I, open-label study of lapatinib (GW572016) plus trastuzumab: a clinically active regimen [abstract no. 559]. J Clin Oncol 2005; 23 Suppl. 16S: 559

    Google Scholar 

  109. Chu Q, Goldstein L, Murray N, et al. A phase I, open-label study of the safety, tolerability and pharmacokinetics of lapatinib (GW572016) in combination with letrozole in cancer patients [abstract no. 3001]. J Clin Oncol 2005; 23 Suppl. 16S: 3001

    Google Scholar 

  110. Burris HA III, Storniolo AM, Overmoyer EA, et al. A phase I, open-label study of the safety, tolerability and pharmacokinetics of lapatinib (GW572016) in combination with trastuzumab [abstract no. 3043]. 27th Annual San Antonio Breast Cancer Symposium; 2004 Dec 8–11; San Antonio (TX)

  111. Geyer Jr CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 2006; 355: 2733–43

    Article  PubMed  CAS  Google Scholar 

  112. Britten C. Phase I study of CP-724,714 in patients with metastatic HER2-overexpressing breast cancer [online]. Clinical trials (PDQ®). Available from URL: http://www.cancer.gov/search/ViewClinicalTrials/aspx?.cdrid=271533&version=HealthProfessional&protocolsearch. [Accessed 2005 Jan 20]

  113. Kotoula V, Koletsa T, Boutis A, et al. HER receptor and herstatin profiles in human breast cancer [abstract no. 3141]. American Association of Cancer Research; 2005 Apr 16–20; Anaheim (CA)

  114. Justman QA, Clinton GM. Herstatin, an autoinhibitor of the human epidermal growth factor receptor 2 tyrosine kinase, modulates epidermal growth factor signaling pathways resulting in growth arrest. J Biol Chem 2002; 277: 20618–24

    Article  PubMed  CAS  Google Scholar 

  115. Bernhard H, Salazar L, Schiffman K, et al. Vaccination against the HER-2/neu oncogenic protein. Endocr Relat Cancer 2002; 9: 33–44

    Article  PubMed  CAS  Google Scholar 

  116. Disis ML, Schiffman K, Guthrie K, et al. Effect of dose on immune response in patients vaccinated with an HER-2/neu intracellular domain protein-based vaccine. J Clin Oncol 2004; 22: 1916–25

    Article  PubMed  CAS  Google Scholar 

  117. Starling N, Cunningham D. Monoclonal antibodies against vascular endothelial growth factor and epidermal growth factor receptor in advanced colorectal cancers: present and future directions. Curr Opin Oncol 2004; 16: 385–90

    Article  PubMed  CAS  Google Scholar 

  118. Cao Y. Antiangiogenic cancer therapy. Semin Cancer Biol 2004; 14: 139–45

    Article  PubMed  CAS  Google Scholar 

  119. Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy. Oncologist 2004; 9 Suppl. 1: 2–10

    Article  PubMed  CAS  Google Scholar 

  120. Ellis LM. Preclinical data targeting vascular endothelial growth factor in colorectal cancer. Clin Colorectal Cancer 2004; 4 Suppl. 2: S55–61

    Article  PubMed  CAS  Google Scholar 

  121. Heldin C-H, Rubin K, Pietras K, et al. High interstitial pressure: an obstacle in cancer therapy. Nature Rev 2004; 4: 806–13

    Article  CAS  Google Scholar 

  122. Wey JS, Stoeltzing O, Ellis LM. Vascular endothelial growth factor receptors: expression and function in solid tumors. Clin Adv Hematol Oncol 2004; 2: 37–45

    PubMed  Google Scholar 

  123. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005; 23: 1011–27

    Article  PubMed  CAS  Google Scholar 

  124. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307: 58–62

    Article  PubMed  CAS  Google Scholar 

  125. Genetech, Inc. Avastin® (bevacizumab) [package insert]. South San Francisco (CA): Genentech, Inc., 2005 Jan

    Google Scholar 

  126. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 2335–42

    Article  PubMed  CAS  Google Scholar 

  127. Kozloff M, Cohn A, Christiansen N, et al. Safety of bevacizumab (BV, Avastin™) among patients (pts) receiving first-line chemotherapy (CT) for metastatic colorectal cancer (mCRC): preliminary results from a larger registry in the US [abstract no. 3566]. J Clin Oncol 2005; 23 Suppl. 165: 3566

    Google Scholar 

  128. Fernando N, Yu D, Morse M, et al. A phase II study of oxaliplatin, capecitabine and bevacizumab in the treatment of metastatic colorectal cancer [abstract no. 3556]. J Clin Oncol 2005; 23 Suppl. 16S: 3556

    Google Scholar 

  129. Kabbinavar F, Hurwitz HI, Fehrenbacher L, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with meta-static colorectal cancer. J Clin Oncol 2003; 21: 60–5

    Article  PubMed  CAS  Google Scholar 

  130. Giantonio BJ, Catalano N, Meropol PJ, et al. High-dose bevacizumab improves survival when combined with FOLFOX4 in previously treated advanced colorectal cancer: results from the Eastern Cooperative Oncology Group (ECOG) study E3200 [abstract no. 2]. J Clin Oncol 2005; 23 Suppl. 16S: 2

    Google Scholar 

  131. Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 2003; 349: 427–34

    Article  PubMed  CAS  Google Scholar 

  132. Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 2004; 22: 2184–91

    Article  PubMed  CAS  Google Scholar 

  133. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006; 355: 2542–50

    Article  PubMed  CAS  Google Scholar 

  134. Chen H, Mooney M, Boron M, et al. Bevacizumab (BV) plus 5-FU/leucovorin (FU/LV) for advanced colorectal cancer (CRC) that has progressed after standard chemotherapy: an NCI Treatment Referral Center Trial (TRC-0301) [abstract no. 3515]. J Clin Oncol 2004; 22 Suppl. 14S: 3515

    Google Scholar 

  135. Ton NC, Jayson GC. Resistance to anti-VEGF agents. Curr Pharm Design 2004; 10: 51–64

    Article  CAS  Google Scholar 

  136. Rini BI, Halabi S, Taylor J, et al. Cancer and Leukemia Group B 90206: a randomized phase III trial of interferon-alpha or interferon-alpha plus antivascular endothelial growth factor antibody (bevacizumab) in metastatic renal cell carcinoma. Clin Cancer Res 2004; 10: 2584–6

    Article  PubMed  CAS  Google Scholar 

  137. Spigel DR, Hainsworth JD, Sosman JA, et al. Bevacizumab and erlotinib in the treatment of patients with metastatic renal carcinoma (RCC): update of a phase II multicenter trial [abstract no. 4540].J Clin Oncol 2005; 23 Suppl. 16S: 4540

    Google Scholar 

  138. National Cancer Institute (NCI). Bevacizumab combined with chemotherapy improves progression-free survival for patients with advanced breast cancer [press release]. Available from URL: http://www.cancer.gov [Accessed 2006 Sep 26]

  139. Brahmer JR, Gray R, Schiller JH, et al. ECOG 4599 phase III trial of carboplatin and paclitaxel ± bevacizumab: subset analysis of survival by gender [abstract no. 7036]. Proc Am Soc Clin Oncol 2006; 24: 373s

    Google Scholar 

  140. Dowlati A, Gray R, Johnson DH, et al. Prospective correlative assessment of biomarkers in E4599 randomized phase II/III trial of carboplatin and paclitaxel ± bevacizumab in advanced non-small cell lung cancer (NSCLC) [abstract no. 7027]. Proc Am Soc Clin Oncol 2006; 24: 370s

    Article  CAS  Google Scholar 

  141. Holash J, Davis S, Papdopoulos N, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci US A 2002; 99: 11393–8

    Article  CAS  Google Scholar 

  142. Fukasawa M, Korc M. Vascular endothelial growth factor-trap suppresses tumorigenicity of multiple pancreatic cancer cell lines. Clin Cancer Res 2004; 10: 3327–32

    Article  PubMed  CAS  Google Scholar 

  143. Dupont J, Camastra D, Gordon MS, et al. Phase I study of VEGF Trap in patients with solid tumors and lymphoma [abstract no. 776]. Proc Am Soc Clin Oncol 2003; 22: 194

    Google Scholar 

  144. Dupont J, Schwartz L, Koutcher J, et al. Phase I and pharmacokinetic study of VEGF Trap administered subcutaneously (SC) to patients (pts) with advanced solid malignancies [abstract no. 3009]. J Clin Oncol 2004; 22 Suppl. 14S: 3009

    Google Scholar 

  145. Drevs J, Hofmann I, Hugenschmidt H, et al. Effects of PTK787/ ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res 2000; 60: 4819–24

    PubMed  CAS  Google Scholar 

  146. Morgan B, Thomas AL, Drevs J, et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 2003; 21: 3955–64

    Article  PubMed  CAS  Google Scholar 

  147. Steward WP, Thomas A, Morgan B, et al. Expanded phase I/II study of PTK787/ZK 222584 (PTK/ZK), a novel, oral angio-genesis inhibitor, in combination with FOLFOX-4 as first line treatment for patients with metastatic colorectal cancer [abstract no. 3556]. J Clin Oncol 2004; 22 Suppl. 14S: 3556

    Google Scholar 

  148. Hecht JR, Trarbach T, Jaeger E, et al. A randomized, double-blind, placebo-controlled, phase III study in patients (pts) with metastatic adenocarcinoma of the colon or rectum receiving first-line chemotherapy with oxaliplatin/5-fluorouracil/leucovorin and PTK787/ZK222584 or placebo (CONFIRM-1) [abstract no. LBA3]. J Clin Oncol 2005; 23 Suppl. 16S: LBA3

    Google Scholar 

  149. Koehne C, Bajetta E, Lin E, et al. Results of an interim analysis of a multinational randomized, double-blind, phase III study in patients (pts) with previously treated metastatic colorectal cancer (mCRC) receiving FOLFOX4 and PTK787/ZK 222584 (PTK/ZK) or placebo (CONFIRM 2) [abstract no. 3508]. J Clin Oncol 2006; 24 Suppl. 18S: 3508

    Google Scholar 

  150. Jain RK, Duda DG, Clark JW, et al. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 2006; 3: 24–40

    Article  PubMed  CAS  Google Scholar 

  151. O’Farrell AM, Foran JM, Fiedler W, et al. An innovative phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin Cancer Res 2003; 9: 5465–76

    PubMed  Google Scholar 

  152. Motzer RJ, Hutson TE, Tomczak P, et al. Phase III randomized trial of sunitinib (SU11248) versus interferon-alfa (IFN-α) as first-line systemic therapy for patients with metastatic renal cell carcinoma (mRCC) [abstract no. LBA3]. J Clin Oncol 2006; 24 Suppl. 18S: LBA3

    Google Scholar 

  153. Demetri GD, Desai J, Fletcher JA, et al. SU11248, a multi-targeted tyrosine kinase inhibitor, can overcome imatinib (IM) resistance caused by diverse genetic mechanisms in patients (pts) with metastatic gastrointestinal stromal tumor (GIST) [abstract no. 3001]. J Clin Oncol 2004; 22 Suppl. 14S: 3001

    Google Scholar 

  154. Miller KD, Burstein HJ, Elias AD, et al. Phase II study of SU11248, a multitargeted receptor tyrosine kinase inhibitor (TKI), in patients (pts) with previously treated metastatic breast cancer (MBC) [abstract no. 563]. J Clin Oncol 2005; 23 Suppl. 16S: 563

    Google Scholar 

  155. Kulke M, Lenz HJ, Meropol NJ, et al. A phase 2 study to evaluate the efficacy and safety of SU 11248 in patients (pts) with unresectable neuroendocrine tumors (NETs) [abstract no. 4008]. J Clin Oncol 2005; 23 Suppl. 16S: 4008

    Google Scholar 

  156. Kuenen BC, Tabernero J, Baselga J, et al. Efficacy and toxicity of the angiogenesis inhibitor SU5416 as a single agent in patients with advanced renal cell carcinoma, melanoma, and soft tissue sarcoma. Clin Cancer Res 2003; 9: 1648–55

    PubMed  CAS  Google Scholar 

  157. Stadler WM, Cao D, Vogelzang NJ, et al. A randomized phase II trial of the antiangiogenic agent SU5416 in hormone-refractory prostate cancer. Clin Cancer Res 2004; 10: 3365–70

    Article  PubMed  CAS  Google Scholar 

  158. Giles FJ, Cooper MA, Silverman L, et al. Phase II study of SU5416 — a small molecule, vascular endothelial growth factor tyrosine-kinase receptor inhibitor — in patients with refractory myeloproliferative diseases. Cancer 2004; 97: 1920–8

    Article  CAS  Google Scholar 

  159. Lara Jr PN, Quinn DI, Margolin K, et al. SU5416 plus interferon alpha in advanced renal cell carcinoma: a phase II California Cancer Consortium Study with biological and imaging correlates of angiogenesis inhibition. Clin Cancer Res 2003; 9: 4772–81

    PubMed  CAS  Google Scholar 

  160. Venook A, Hurwitz H, Cunningham C, et al. Relationship of clinical outcome in metastatic colorectal carcinoma to levels of soluble VEGFR-1: results of a phase II trial of a ribozyme targeting the pre-mRNA of VEGFR-1 (angiozyme), in combination with chemotherapy [abstract no. 1025]. Proc Am Soc Clin Oncol 2003; 22: 256

    Google Scholar 

  161. Huang S, Armstrong EA, Benavente S, et al. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res 2004; 64: 5355–62

    Article  PubMed  CAS  Google Scholar 

  162. Matar P, Rojo F, Cassia R, et al. Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225): superiority over single-agent receptor targeting. Clin Cancer Res 2004; 10: 6487–501

    Article  PubMed  CAS  Google Scholar 

  163. Nahta R, Hung MC, Esteva FJ. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 2004; 64: 2343–6

    Article  PubMed  CAS  Google Scholar 

  164. Konecny GE, Meng YG, Untch M, et al. Association between HER-2/neu and vascular endothelial growth factor expression predicts clinical outcome in primary breast cancer patients. Clin Cancer Res 2004; 10: 1706–16

    Article  PubMed  CAS  Google Scholar 

  165. Pegram MD, Yeon C, Ku NC, et al. Phase I combined biological therapy of breast cancer using two humanized monoclonal antibodies directed against HER2 proto-oncogene and vascular endothelial growth factor (VEGF) [abstract no. 3039]. Proceedings 27th Annual San Antonio Breast Cancer Symposium; 2004 Dec 8–11; San Antonio (TX)

  166. Shaheen RM, Ahmad SA, Liu W, et al. Inhibited growth of colon cancer carcinomatosis by antibodies to vascular endothelial and epidermal growth factor receptors. Br J Cancer 2001; 85: 584–9

    Article  PubMed  CAS  Google Scholar 

  167. Jung YD, Mansfield PF, Akagi M, et al. Effects of combination anti-vascular endothelial growth factor receptor and anti-epidermal growth factor receptor therapies on the growth of gastric cancer in a nude mouse model. Eur J Cancer 2002; 38: 1133–40

    Article  PubMed  CAS  Google Scholar 

  168. Lu Y, Zi X, Zhao Y, et al. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 2001; 93: 1852–7

    Article  PubMed  CAS  Google Scholar 

  169. Lu Y, Zi X, Pollak M. Molecular mechanisms underlying IGF-1-induced attenuation of the growth-inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells. Int J Cancer 2004; 108: 334–41

    Article  PubMed  CAS  Google Scholar 

  170. Nagata Y, Lan K-H, Zhou X, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004; 6: 117–27

    Article  PubMed  CAS  Google Scholar 

  171. Pandolfi PP. Breast cancer: loss of PTEN predicts resistance to treatment. N Engl J Med 2004; 351: 2337–8

    Article  PubMed  CAS  Google Scholar 

  172. Goldberg RM, Rothenberg ML, Van Cutsem E, et al. The continuum of care: a paradigm for the management of metastatic colorectal cancer. Oncologist 2007; 12: 38–50

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr Lenz has acted as a consultant for and received honoraria from Pfizer, Genentech, Bristol-Myers Squibb, sanofi-aventis, Imclone, Roche, Novartis and Response-Genetics; he has also received clinical trial support from Roche, Bristol-Myers Squibb, Eisai, Genentech, sanofi-aventis; and participated in advisory boards and speakers bureau for Imclone and Merck KG. Dr Press has received honoraria for speaker’s bureau from Genentech. The preparation of this review was supported by Bristol-Myers Squibb and ImClone Systems Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz-Josef Lenz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Press, M.F., Lenz, HJ. EGFR, HER2 and VEGF Pathways. Drugs 67, 2045–2075 (2007). https://doi.org/10.2165/00003495-200767140-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200767140-00006

Keywords

Navigation