Drugs

, Volume 67, Issue 13, pp 1883–1892 | Cite as

Primary Ciliary Dyskinesia

Recent Advances in Pathogenesis, Diagnosis and Treatment
Review Article

Abstract

Primary ciliary dyskinesia is a genetic disorder causing dysfunctional motility of cilia and impaired mucociliary clearance, resulting in a myriad of clinical manifestations including recurrent sinopulmonary disease, laterality defects and infertility. The heterogenous clinical presentation of primary ciliary dyskinesia and the limitations of transmission electron microscopy to assess ultrastructural defects within the cilium often delay diagnosis. Recent advances in the understanding of the basic biology and function of the cilium have led to potential diagnostic alternatives, including ciliary beat analysis and nasal nitric oxide measurements. Moreover, the identification of disease-causing mutations could lead to the development of comprehensive genetic testing that may overcome many of the current diagnostic limitations. Although the clinical manifestations of primary ciliary dyskinesia have been recognised for over a century, there are few studies examining treatments and standards of care have yet to be established. Multicentre collaborative efforts have been established in North America and Europe, which should help to develop standardised approaches to the diagnosis and treatment of primary ciliary dyskinesia.

References

  1. 1.
    Afzelius BA, Eliasson R, Johnson O, et al. Lack of dyein arms in immotile human spermatozoa. J Cell Biol 1975; 66: 225–32PubMedCrossRefGoogle Scholar
  2. 2.
    Pedersen H, Rebbe H. Absence of arms in the axoneme of immobile human spermatozoa. Biol Reprod 1975; 12: 541–4PubMedCrossRefGoogle Scholar
  3. 3.
    Eliasson R, Mossberg B, Camner P, et al. The immotile-cilia syndrome: a congenital ciliary abnormality as an etiologic factor in chronic airway infections and male sterility. N Engl J Med 1977; 297: 1–6PubMedCrossRefGoogle Scholar
  4. 4.
    Rossman CM, Forrest JB, Lee RM, et al. The dyskinetic cilia syndrome: ciliary motility in immotile cilia syndrome. Chest 1980; 78: 580–2PubMedCrossRefGoogle Scholar
  5. 5.
    Wanner A, Salathé M, O’Riordan TG. Mucociliary clearance in the airways. Am J Respir Crit Care Med 1996; 154: 1868–902PubMedGoogle Scholar
  6. 6.
    Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 2002; 109: 571–7PubMedGoogle Scholar
  7. 7.
    Beisson J, Wright M. Basal body/centriole assembly and continuity. Curr Opin Cell Biol 2003; 15: 96–104PubMedCrossRefGoogle Scholar
  8. 8.
    Luck DJL. Genetic and biochemical dissection of the eukaryotic flagellum. J Cell Biol 1984; 98: 789–94PubMedCrossRefGoogle Scholar
  9. 9.
    Ostrowski LE, Blackburn K, Radde KM, et al. A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics 2002; 1: 451–65PubMedCrossRefGoogle Scholar
  10. 10.
    Houtmeyers E, Gosselink R, Gayan-Ramirez G, et al. Regulation of mucociliary clearance in health and disease. Eur Respir J 1999; 13: 1177–88PubMedCrossRefGoogle Scholar
  11. 11.
    Afzelius BA. Cilia-related diseases. J Pathol 2004; 204: 470–7PubMedCrossRefGoogle Scholar
  12. 12.
    Ibañez-Tallon I, Heintz N, Omran H. To beat or not to beat: roles of cilia in development and disease. Hum Mol Genet 2003; 12: R27–35PubMedCrossRefGoogle Scholar
  13. 13.
    Eley L, Yates LM, Goodship JA. Cilia and disease. Curr Opin Genet Dev 2005; 15: 308–14PubMedCrossRefGoogle Scholar
  14. 14.
    Davenport JR, Yoker BK. An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am J Physiol Renal Physiol 2005; 289: F1159–69PubMedCrossRefGoogle Scholar
  15. 15.
    Badano JL, Mitsuma N, Beales PL, et al. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 2006; 7: 125–48PubMedCrossRefGoogle Scholar
  16. 16.
    Cano DA, Sekine S, Hebrok M. Primary cilia deletion in pancreatic epithelial cells results in cyst formation and pancreatitis. Gastroenterology 2006; 131: 1856–9PubMedCrossRefGoogle Scholar
  17. 17.
    Nonaka S, Tanaka Y, Okada Y, et al. Randomization of left-right asymmetry due to loss of nodal cilia generative leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998; 95: 829–37PubMedCrossRefGoogle Scholar
  18. 18.
    McGrath J, Somlo S, Makova S, et al. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 2003; 114: 61–73PubMedCrossRefGoogle Scholar
  19. 19.
    Okada Y, Nonaka S, Tanaka Y, et al. Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol Cell 1999; 4: 459–68PubMedCrossRefGoogle Scholar
  20. 20.
    Krawczynski MR, Dmenska H, Witt M. Apparent X-linked primary ciliary dyskinesia associated with retinitis pigmentosa and a hearing loss. J Appl Genet 2004; 45: 107–10PubMedGoogle Scholar
  21. 21.
    Moore A, Escudier E, Roger G, et al. RPGR is mutated in patients with a complex X-linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet 2005; 43: 326–33PubMedCrossRefGoogle Scholar
  22. 22.
    Torgersen J. Situs inversus, asymmetry, and twinning. Am J Hum Genet 1950; 2: 361–70PubMedGoogle Scholar
  23. 23.
    Katsuhara K, Kawamoto S, Wakabayashi T, et al. Situs inversus totalis and Kartagener’s syndrome in a Japanese population. Chest 1972; 61: 56–61PubMedCrossRefGoogle Scholar
  24. 24.
    Afzeluis BA, Mossberg B. Immotile cilia syndrome (primary ciliary dyskinesia) including Kartagener syndrome. New York: McGraw-Hill, 1995Google Scholar
  25. 25.
    Afzeluis BA. Genetics and pulmonary medicine. 6. Immotile cilia syndrome: past, present, and prospects for the future. Thorax 1998; 53: 894–7Google Scholar
  26. 26.
    Blouin JL, Meeks M, Radhakrishna U, et al. Primary ciliary dyskinesia: a genome-wide linkage analysis reveals extensive locus heterogeneity. Eur J Hum Genet 2000; 8: 109–18PubMedCrossRefGoogle Scholar
  27. 27.
    Geremek M, Witt M. Primary ciliary dyskinesia: genes, candidate genes and chromosomal regions. J Appl Genet 2004; 45: 347–61PubMedGoogle Scholar
  28. 28.
    Blair DF, Dutcher SK. Flagella in prokaryotes and lower eukaryotes. Curr Opin Genet Dev 1992; 2: 756–67PubMedCrossRefGoogle Scholar
  29. 29.
    Gibbons IR. Dynein family of motor proteins: present status and future questions. Cell Motil Cytoskeleton 1995; 32: 136–44PubMedCrossRefGoogle Scholar
  30. 30.
    Harrison A, King SM. The molecular anatomy of dynein. Essays Biochem 2000; 35: 75–87PubMedGoogle Scholar
  31. 31.
    Li JB, Gerdes JM, Haycraft CJ, et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 2004; 117: 541–52PubMedCrossRefGoogle Scholar
  32. 32.
    Pazour GJ, Agrin N, Leszyk J, et al. Proteomic analysis of a eukaryotic cilium. J Cell Biol 2005; 170: 103–13PubMedCrossRefGoogle Scholar
  33. 33.
    Maiti AK, Mattel MG, Jorissen M, et al. Identification, tissue specific expression, and chromosomal localization of several human dynein heavy chain genes. Eur J Hum Genet 2000; 8: 923–32PubMedCrossRefGoogle Scholar
  34. 34.
    Wilkerson CG, King SM, Witman GB. Molecular analysis of the gamma heavy chain of Chlamydomonas flagellar outer arm dynein. J Cell Sci 1994; 107: 497–506PubMedGoogle Scholar
  35. 35.
    Pennarun G, Escudier E, Chapelin C, et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet 1999; 65: 1508–19PubMedCrossRefGoogle Scholar
  36. 36.
    Guichard C, Harricane MC, Lafitte JJ, et al. Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet 2001; 68: 1030–5PubMedCrossRefGoogle Scholar
  37. 37.
    Zariwala M, Noone PG, Sannuti A, et al. Germline mutations in an intermediate chain dynein causes primary ciliary dyskinesia. Am J Respir Cell Mol Biol 2001; 25: 577–83PubMedGoogle Scholar
  38. 38.
    Zariwala MA, Leigh MW, Ceppa F, et al. Mutations of DNAI1 in primary ciliary dyskinesia: evidence of founder effect in a common mutation. Am J Respir Crit Care Med 2006; 174: 858–66PubMedCrossRefGoogle Scholar
  39. 39.
    Ibanez-Tallon I, Gorokhova S, Heintz N. Loss of function of axonemal Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet 2002; 15: 715–21CrossRefGoogle Scholar
  40. 40.
    Olbrich H, Haffner K, Kispert A, et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet 2002; 30: 143–4PubMedCrossRefGoogle Scholar
  41. 41.
    Kispert A, Petry M, Olbrich H, et al. Genotype-phenotype correlations in PCD patients carrying DNAH5 mutations. Thorax 2003; 58: 552–4PubMedCrossRefGoogle Scholar
  42. 42.
    Fliegauf M, Olbrich H, Horvath J, et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 2005; 171: 1343–9PubMedCrossRefGoogle Scholar
  43. 43.
    Hornef N, Olbrich H, Horvath J, et al. DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. Am J Respir Crit Care Med 2006; 174: 120–6PubMedCrossRefGoogle Scholar
  44. 44.
    Bartoloni L, Blouin JL, Pan Y, et al. Mutations in the DNAH11 (axonemal heavy chain dynein arm type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci U S A 2002; 99: 10282–6PubMedCrossRefGoogle Scholar
  45. 45.
    Pan Y, McCaskill CD, Thompson KH, et al. Paternal isodisomy of chromosome 7 associated with complete situs inversus and immotile cilia. Am J Hum Genet 1998; 62: 1551–5PubMedCrossRefGoogle Scholar
  46. 46.
    Sleigh MA, Blake JR, Liron N. The propulsion of mucus by cilia. Am Rev Respir Dis 1988; 137: 726–41PubMedGoogle Scholar
  47. 47.
    Bush A, Cole P, Hariri M, et al. Primary ciliary dyskinesia: diagnosis and standards of care. Eur Respir J 1998; 12: 982–8PubMedCrossRefGoogle Scholar
  48. 48.
    Noone PG, Leigh MW, Sannuti A, et al. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med 2004; 169: 459–67PubMedCrossRefGoogle Scholar
  49. 49.
    Hossain T, Kappelman MD, Perez-Atayde AR, et al. Primary ciliary dyskinesia as a cause of neonatal respiratory distress: implications for the neonatologist. J Perinatal 2003; 23: 684–7CrossRefGoogle Scholar
  50. 50.
    Holzmann D, Felix H. Neonatal respiratory distress syndrome: a sign of primary ciliary dyskinesia? Eur J Pediatr 2000; 159: 857–60PubMedCrossRefGoogle Scholar
  51. 51.
    Bromiker R, Neeman Z, Bar-Oz B, et al. Early diagnosis of primary ciliary dyskinesia in a newborn without situs inversus. Acta Paediatr 2002; 91: 1002–11PubMedCrossRefGoogle Scholar
  52. 52.
    Coren ME, Meeks M, Morrison I, et al. Primary ciliary dyskinesia: age at diagnosis and symptom history. Acta Paediatr 2002; 91: 667–9PubMedCrossRefGoogle Scholar
  53. 53.
    Morini F, Cozzi DA, Conforti A, et al. An infant with respiratory distress and failure to thrive. Eur Respir J 2002; 20: 500–3PubMedCrossRefGoogle Scholar
  54. 54.
    van der Baan S, Veerman AJ, Heidendahl GA, et al. Primary ciliary dyskinesia and nasal mucociliary clearance. Respiration 1987; 52: 68–75Google Scholar
  55. 55.
    Greenstone M, Rutman A, Dewar A, et al. Primary ciliary dyskinesia: cytological and clinical features. Q J Med 1988; 67: 405–30PubMedGoogle Scholar
  56. 56.
    Turner JA, Corkey CW, Lee JY, et al. Clinical expressions of immotile cilia syndrome. Pediatrics 1981; 67: 805–10PubMedGoogle Scholar
  57. 57.
    El Zein L, Omran H, Bouvagnet P. Lateralization defects and ciliary dyskinesia: lessons from algae. Trends Genet 2003; 19: 162–7PubMedCrossRefGoogle Scholar
  58. 58.
    Brueckner M. Cilia propel the embryo in the right direction. Am J Med Genet 2001; 101: 339–44PubMedCrossRefGoogle Scholar
  59. 59.
    Raman R, Al-Ali SY, Poole CA, et al. Isomerism of the right atrial appendages: clinical, anatomical, and microscopic study of a long-surviving case with asplenia and ciliary abnormalities. Clin Anat 2003; 16: 269–76PubMedCrossRefGoogle Scholar
  60. 60.
    Munro NC, Currie DC, Lindsay KS, et al. Fertility in men with primary ciliary dyskinesia presenting with respiratory infection. Thorax 1994; 49: 684–7PubMedCrossRefGoogle Scholar
  61. 61.
    Halbert SA, Patton DL, Zarutskie PW, et al. Function and structure of cilia in the fallopian tube of an infertile woman with Kartagener’s syndrome. Hum Reprod 1997; 12: 55–8PubMedCrossRefGoogle Scholar
  62. 62.
    Afzelius BA, Eliasson R. Male and female infertility problems in the immotile cilia syndrome. Eur J Respir Dis 1983; 64: 144–7Google Scholar
  63. 63.
    Greenstone MA, Jones RW, Dewar A, et al. Hydrocephalus and primary ciliary dyskinesia. Arch Dis Child 1984; 59: 481–2PubMedCrossRefGoogle Scholar
  64. 64.
    De Santi MM, Magni A, Valletta EA, et al. Hydrocephalus, bronchiectasis, and ciliary aplasia. Arch Dis Child 1990; 65: 543–4PubMedCrossRefGoogle Scholar
  65. 65.
    Zito I, Dowries SM, Patel RJ, et al. RPGR mutation associated with retinitis pigmentosa, impaired hearing, and sinorespiratory infections. J Med Genet 2003; 40: 609–15PubMedCrossRefGoogle Scholar
  66. 66.
    Engesaeth VG, Warner JO, Bush A. New associations of primary ciliary dyskinesia syndrome. Pediatr Pulmonol 1993; 16: 9–12PubMedCrossRefGoogle Scholar
  67. 67.
    Carson JL, Collier AM. Ciliary defects: cell biology and clinical perspectives. Adv Pediatr 1988; 35: 139–65PubMedGoogle Scholar
  68. 68.
    Bertrand B, Collet S, Eloy P, et al. Secondary ciliary dyskinesia in upper respiratory tract. Acta Otorhinolaryngol Belg 2000; 54: 309–16PubMedGoogle Scholar
  69. 69.
    Carson JL, Collier AM, Fernald GW, et al. Microtubular discontinuities as acquired ciliary defects in airway epithelium of patients with chronic respiratory diseases. Ultrastruct Pathol 1994; 18: 327–32PubMedCrossRefGoogle Scholar
  70. 70.
    Pifferi M, Cangiotti AM, Ragazzo V, et al. Primary ciliary dyskinesia: diagnosis in children with inconclusive ultrastructural findings. Pediatr Allergy Immunol 2001; 12: 274–82PubMedCrossRefGoogle Scholar
  71. 71.
    Greenstone MA, Dewar A, Cole PJ. Ciliary dyskinesia with normal ultrastructure. Thorax 1983; 38: 875–6PubMedCrossRefGoogle Scholar
  72. 72.
    Carda C, Armengot M, Escribano A, et al. Ultrastructural patterns of primary ciliary dyskinesia syndrome. Ultrastruct Pathol 2005; 29: 3–8PubMedCrossRefGoogle Scholar
  73. 73.
    Jorissen M, Willems T. Success rates of respiratory epithelial cell culture techniques with ciliogenesis for diagnosing primary ciliary dyskinesia. Acta Otorhinolaryngol Belg 2000; 54: 357–65PubMedGoogle Scholar
  74. 74.
    Stanley P, MacWilliam L, Greenstone M, et al. Efficacy of a saccharin test for screening to detect abnormal mucociliary clearance. Br J Dis Chest 1984; 78: 9–26CrossRefGoogle Scholar
  75. 75.
    Stannard W, Rutman A, Wallis C, et al. Central microtubular agenesis causing primary ciliary dyskinesia. Am J Respir Crit Care Med 2004; 169: 634–7PubMedCrossRefGoogle Scholar
  76. 76.
    Chilvers MA, Rutman A, O’Callaghan C. Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J Allergy Clin Immunol 2003; 112: 518–24PubMedCrossRefGoogle Scholar
  77. 77.
    Wodehouse T, Kharitonov SA, Mackay IS, et al. Nasal nitric oxide measurements for the screening of primary ciliary dyskinesia. Eur Respir J 2003; 21: 43–7PubMedCrossRefGoogle Scholar
  78. 78.
    Corbelli R, Bringolf-Isler B, Amacher A, et al. Nasal nitric oxide measurements to screen children for primary ciliary dyskinesia. Chest 2004; 126: 1054–9PubMedCrossRefGoogle Scholar
  79. 79.
    Jain B, Rubinstein I, Robbins RA, et al. Modulation of airway epithelial cell ciliary beat frequency by nitric oxide. Biochem Biophys Res Commun 1993; 191: 83–8PubMedCrossRefGoogle Scholar
  80. 80.
    Xue C, Botkin SJ, Johns RA. Localization of endothelial NOS at the basal microtubule membrane in ciliated epithelium of the rat lung. J Histochem Cytochem 1996; 44: 463–71PubMedCrossRefGoogle Scholar
  81. 81.
    Kawamoto H, Takeno S, Yajin K. Increased expression of inducible nitric oxide synthase in nasal epithelial cells in patients with allergic rhinitis. Laryngoscope 1999; 109: 2015–20PubMedCrossRefGoogle Scholar
  82. 82.
    Baraldi E, Pasquale MF, Cangiotti AM, et al. Nasal nitric oxide is low early in life: case study of two infants with primary ciliary dyskinesia. Eur Respir J 2004; 24: 881–3PubMedCrossRefGoogle Scholar
  83. 83.
    Bush A, Ferkol T. Movement: the emerging genetics of primary ciliary dyskinesia. Am J Respir Crit Care Med 2006; 174: 109–10PubMedCrossRefGoogle Scholar
  84. 84.
    Ellerman A, Bisgaard H. Longitudinal study of lung function in a cohort of primary ciliary dyskinesia. Eur Respir J 1997; 10: 2376–9PubMedCrossRefGoogle Scholar
  85. 85.
    Corkey CW, Levison H, Turner JA. The immotile cilia syndrome: a longitudinal survey. Am Rev Respir Dis 1981; 124: 544–8PubMedGoogle Scholar
  86. 86.
    Hellinckx J, Demedts M, De Boeck K. Primary ciliary dyskinesia: evolution of pulmonary function. Eur J Pediatr 1998; 157: 422–6PubMedCrossRefGoogle Scholar
  87. 87.
    Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 2003; 168: 918–51PubMedCrossRefGoogle Scholar
  88. 88.
    Phillips GE, Thomas S, Heather S, et al. Airway response of children with primary ciliary dyskinesia to exercise and β2-agonist challenge. Eur Respir J 1998; 11: 1389–91PubMedCrossRefGoogle Scholar
  89. 89.
    Shak S, Capon DJ, Hellmiss R, et al. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci U S A 1990; 87: 9188–92PubMedCrossRefGoogle Scholar
  90. 90.
    Phipps RJ, Nadel JA, Davis B. Effect of alpha-adrenergic stimulation on mucus secretion and on ion transport in cat trachea in vitro. Am Rev Respir Dis 1980; 121: 359–65PubMedGoogle Scholar
  91. 91.
    Phipps RJ, Williams IP, Richardson PS, et al. Sympathomimetic drugs stimulate the output of secretory glycoproteins from human bronchi in vitro. Clin Sci Lond 1982; 63: 23–8PubMedGoogle Scholar
  92. 92.
    Bennett WD. Effect of β-adrenergic agonists on mucociliary clearance. J Allergy Clin Immunol 2002; 110: S291–7PubMedCrossRefGoogle Scholar
  93. 93.
    Grasemann H, Gartig SS, Wiesemann HG, et al. Effect of Larginine infusion on airway NO in cystic fibrosis and primary ciliary dyskinesia syndrome. Eur Respir J 1999; 13: 114–8PubMedCrossRefGoogle Scholar
  94. 94.
    Noone PG, Bennett WD, Regnis JA, et al. Effect of aerosolized uridine-5′-triphosphate on airway clearance with cough in patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 1999; 160: 144–9PubMedGoogle Scholar
  95. 95.
    Smit HJ, Schreurs AJ, van den Bosch JM, et al. Is resection of bronchiectasis beneficial in patients with primary ciliary dyskinesia? Chest 1996; 109: 1541–4PubMedCrossRefGoogle Scholar
  96. 96.
    Macchiarini P, Chapelier A, Vouhe P, et al. Double lung transplantation in situs inversus with Kartagener’s syndrome. Paris-Sud University Lung Transplant Group. J Thorac Cardiovasc Surg 1994; 108: 86–91Google Scholar
  97. 97.
    Rabago G, Copeland JG, Rosapepe F, et al. Heart-lung transplantation in situs inversus. Ann Thorac Surg 1996; 62: 296–8PubMedCrossRefGoogle Scholar
  98. 98.
    Hadfield PJ, Rowe-Jones JM, Bush A, et al. Treatment of otitis media with effusion in children with primary ciliary dyskinesia. Clin Otolayrngol 1997; 22: 302–6CrossRefGoogle Scholar
  99. 99.
    Majithia A, Fong J, Hariri M, et al. Hearing outcomes in children with primary ciliary dyskinesia: a longitudinal study. Int J Pediatr Otorhinolaryngol 2005; 69: 1061–4PubMedCrossRefGoogle Scholar
  100. 100.
    Parsons DS, Greene BA. A treatment for primary ciliary dyskinesia: efficacy of functional endoscopic sinus surgery. Laryngoscope 1993; 103: 1269–72PubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2007

Authors and Affiliations

  1. 1.Division of Pediatric Allergy and Pulmonary Medicine, Department of PediatricsWashington University School of Medicine, St. Louis Children’s HospitalSt. LouisUSA

Personalised recommendations