, Volume 67, Issue 10, pp 1383–1392 | Cite as

Bile Acid Sequestrants and the Treatment of Type 2 Diabetes Mellitus

Current Opinion


Bile acids promote bile formation and facilitate dietary lipid absorption. Animal and human studies showing disturbed bile acid metabolism in diabetes mellitus suggest a link between bile acids and glucose control. Bile acids are activating ligands of the farnesoid X receptor (FXR), a nuclear receptor with an established role in bile acid and lipid metabolism. Evidence suggests a role for FXR also in maintenance of glucose homeostasis. Animal and human studies employing bile acid sequestrants (bile acid binding agents), which interrupt the enterohepatic circulation of bile acids and effectively reduce plasma cholesterol, support a link between bile acid and glucose metabolism. In lipid-lowering trials, bile acid sequestrants, such as colesevelam hydrochloride, colestyramine (cholestyramine) and colestilan (colestimide), have also been shown to lower plasma glucose and glycosylated haemoglobin levels, suggesting the utility of these agents as a potential therapy for type 2 diabetes. In this article, we review the relationship between bile acid metabolism and glucose homeostasis, and present data demonstrating the utility of bile acid sequestrants in the management of diabetes.


Bile Acid Chenodeoxycholic Acid Bile Acid Synthesis Colesevelam Bile Acid Sequestrant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Bart Staels and Folkert Kuipers were supported by the EU Grant Hepadip (N° 018734). Bart Staels received additional support by a grant from the Agence Nationale de la Recherche (N° A05056GS). Editorial support was provided by Karen Stauffer, PhD and funded by Daiichi Sankyo, Inc.


  1. 1.
    International Diabetes Federation. Diabetes atlas [online]. Available from URL: http://www.eatlas.idf.org [Accessed 2006 Aug 21]
  2. 2.
    DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM: a balanced overview. Diabetes Care 1992 Mar; 15(3): 318–68PubMedCrossRefGoogle Scholar
  3. 3.
    Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 2005; 65(3): 385–411PubMedCrossRefGoogle Scholar
  4. 4.
    Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. Embo J 2006 Apr 5; 25(7): 1419–25PubMedCrossRefGoogle Scholar
  5. 5.
    Modica S, Moschetta A. Nuclear bile acid receptor FXR as pharmacological target: are we there yet? FEBS Lett 2006 Oct 9; 580(23): 5492–9PubMedCrossRefGoogle Scholar
  6. 6.
    Claudel T, Staels B, Kuipers F. The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 2005 Oct; 25(10): 2020–30PubMedCrossRefGoogle Scholar
  7. 7.
    Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006 Jan 26; 439(7075): 484–9PubMedCrossRefGoogle Scholar
  8. 8.
    Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus: a short-term, double-blind, crossover trial. Ann Intern Med 1994 Sep 15; 121(6): 416–22PubMedGoogle Scholar
  9. 9.
    Zieve FJ, Kalin MF, Schwartz SL, et al. Results of the Glucose-Lowering effect of WelChol Study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin Ther 2007; 29(1): 74–83PubMedCrossRefGoogle Scholar
  10. 10.
    Weinman SA, Kemmer N. Bile secretion and cholestasis. In: Yamada T, editor. Textbook of gastroenterology. 4th ed. Philadelphia (PA): Lippincott Williams and Wilkins, 2003: 366–88Google Scholar
  11. 11.
    Insull Jr W. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South Med J 2006 Mar; 99(3): 257–73PubMedCrossRefGoogle Scholar
  12. 12.
    Hassan AS, Ravi Subbiah MT, Thiebert P. Specific changes of bile acid metabolism in spontaneously diabetic Wistar rats. Proc Soc Exp Biol Med 1980 Sep; 164(4): 449–52PubMedGoogle Scholar
  13. 13.
    Hassan AS, Hedeen K, Ravi Subbiah MT. Effect of maternal diabetes on fetal bile acid metabolism in the rat. Biochem Med 1981 Apr; 25(2): 168–73PubMedCrossRefGoogle Scholar
  14. 14.
    Nervi FO, Gonzalez A, Valdivieso VD. Studies on cholesterol metabolism in the diabetic rat. Metabolism 1974 Jun; 23(6): 495–503PubMedCrossRefGoogle Scholar
  15. 15.
    Wey HE, Yunker RL, Harris P, et al. Effect of streptozotocin-induced diabetes in neonatal rat on bile acid pool changes in adult life: selective sensitivity in females. Biochem Med 1984 Apr; 31(2): 167–73PubMedCrossRefGoogle Scholar
  16. 16.
    Nervi FO, Severin CH, Valdivieso VD. Bile acid pool changes and regulation of cholate synthesis in experimental diabetes. Biochim Biophys Acta 1978 May 25; 529(2): 212–23PubMedCrossRefGoogle Scholar
  17. 17.
    van Waarde WM, Verkade HJ, Wolters H, et al. Differential effects of streptozotocin-induced diabetes on expression of hepatic ABC-transporters in rats. Gastroenterology 2002 Jun; 122(7): 1842–52PubMedCrossRefGoogle Scholar
  18. 18.
    Uchida K, Makino S, Akiyoshi T. Altered bile acid metabolism in nonobese, spontaneously diabetic (NOD) mice. Diabetes 1985 Jan; 34(1): 79–83PubMedCrossRefGoogle Scholar
  19. 19.
    Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 2000 Jul; 6(1): 87–97PubMedGoogle Scholar
  20. 20.
    Villanueva GR, Herreros M, Perez-Barriocanal F, et al. Enhancement of bile acid-induced biliary lipid secretion by streptozotocin in rats: role of insulin deficiency. J Lab Clin Med 1990 Apr; 115(4): 441–8PubMedGoogle Scholar
  21. 21.
    Twisk J, Hoekman MF, Lehmann EM, et al. Insulin suppresses bile acid synthesis in cultured rat hepatocytes by down-regulation of cholesterol 7 alpha-hydroxylase and sterol 27-hydroxylase gene transcription. Hepatology 1995 Feb; 21(2): 501–10PubMedGoogle Scholar
  22. 22.
    Hyogo H, Roy S, Paigen B, et al. Leptin promotes biliary cholesterol elimination during weight loss in ob/ob mice by regulating the enterohepatic circulation of bile salts. J Biol Chem 2002 Sep 13; 277(37): 34117–24PubMedCrossRefGoogle Scholar
  23. 23.
    Bennion LJ, Grundy SM. Effects of diabetes mellitus on cholesterol metabolism in man. N Engl J Med 1977 Jun 16; 296(24): 1365–71PubMedCrossRefGoogle Scholar
  24. 24.
    Abrams JJ, Ginsberg H, Grundy SM. Metabolism of cholesterol and plasma triglycerides in nonketotic diabetes mellitus. Diabetes 1982 Oct; 31(10): 903–10PubMedCrossRefGoogle Scholar
  25. 25.
    Andersen E, Hellstrom P, Hellstrom K. Cholesterol biosynthesis in nonketotic diabetics before and during insulin therapy. Diabetes Res Clin Pract 1987 Jul–Aug; 3(4): 207–14PubMedCrossRefGoogle Scholar
  26. 26.
    Andersen E, Karlaganis G, Sjovall J. Altered bile acid profiles in duodenal bile and urine in diabetic subjects. Eur J Clin Invest 1988 Apr; 18(2): 166–72PubMedCrossRefGoogle Scholar
  27. 27.
    Farmer JA, Gotto AM Jr. Choosing the right lipid-regulating agent. A guide to selection. Drugs 1996 Nov; 52(5): 649–61Google Scholar
  28. 28.
    The Lipid Research Clinics Coronary Primary Prevention Trial results: I. Reduction in incidence of coronary heart disease. JAMA 1984 Jan 20; 251(3): 351–64CrossRefGoogle Scholar
  29. 29.
    Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 1990 Nov 8; 323(19): 1289–98PubMedCrossRefGoogle Scholar
  30. 30.
    Eckel RH. Treating dyslipidemia of the metabolic syndrome: where’s the evidence? Nat Clin Pract Endocrinol Metab 2007 Jun; 3(6): 437PubMedCrossRefGoogle Scholar
  31. 31.
    Koike K, Murakami K, Nozaki N, et al. Colestilan, a new bile acid-sequestering resin, reduces bodyweight in postmenopausal women who have dieted unsuccessfully. Drugs R D 2005; 6(5): 273–9PubMedCrossRefGoogle Scholar
  32. 32.
    Brand SJ, Morgan RG. Stimulation of pancreatic secretion and growth in the rat after feeding cholestyramine. Gastroenterology 1982 Oct; 83(4): 851–9PubMedGoogle Scholar
  33. 33.
    Koop I, Lindenthal M, Schade M, et al. Role of cholecystokinin in cholestyramine-induced changes of the exocrine pancreas. Pancreas 1991 Sep; 6(5): 564–70PubMedCrossRefGoogle Scholar
  34. 34.
    Kogire M, Gomez G, Uchida T, et al. Chronic effect of oral cholestyramine, a bile salt sequestrant, and exogenous cholecystokinin on insulin release in rats. Pancreas 1992; 7(1): 15–20PubMedCrossRefGoogle Scholar
  35. 35.
    Kobayashi M, Ikegami H, Fujisawa T, et al. Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes 2007 Jan; 56(1): 239–47PubMedCrossRefGoogle Scholar
  36. 36.
    Bays H, Goldberg R, Truitt K, et al. Addition of colesevelam HCl to patients with type 2 diabetes mellitus inadequately controlled on a metformin-based therapy improves glycemic control [abstract no. 204]. 16th Annual American Association of Clinical Endocrinologists Meeting and Clinical Congress; 2007 Apr 11–15; Seattle (WA), 18Google Scholar
  37. 37.
    Fonseca V, Rosenstock J, Truitt K, et al. Colesevelam HCl added to sulfonylurea-based therapy in patients with inadequately controlled type 2 diabetes mellitus improves glycemic control [abstract no. 409]. 16th Annual American Association of Clinical Endocrinologists Meeting and Clinical Congress; 2007 Apr 11–15 Seattle (WA), 10Google Scholar
  38. 38.
    Goldberg R, Truitt K. Colesevelam HCl improves glycemic control in type 2 diabetes mellitus subjects managed with insulin therapy [abstract no. 1581]. American Heart Association Scientific Sessions; 2006 Nov 12–15; Chicago (IL)Google Scholar
  39. 39.
    Kawabata Y, Ikegami H, Fujisawa T, et al. Bile-acid binding resin ameliorates glycemic control in patients with type 2 diabetes [abstract]. Diabetes 2006; 55 Suppl. 1: A120CrossRefGoogle Scholar
  40. 40.
    Hashim SA, Bergen SS Jr, Van Itallie TB. Experimental steatorrhea induced in man by bile acid sequestrant. Proc Soc Exp Biol Med 1961 Jan; 106: 173–5PubMedGoogle Scholar
  41. 41.
    Thomson AB, Keelan M. Feeding rats diets containing chenoor ursodeoxycholic acid or cholestyramine modifies intestinal uptake of glucose and lipids. Digestion 1987; 38(3): 160–70PubMedCrossRefGoogle Scholar
  42. 42.
    Cariou B, Duran-Sandoval D, Kuipers F, et al. Farnesoid X receptor: a new player in glucose metabolism? Endocrinology 2005 Mar; 146(3): 981–3PubMedCrossRefGoogle Scholar
  43. 43.
    De Fabiani E, Mitro N, Gilardi F, et al. Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle. J Biol Chem 2003 Oct 3; 278(40): 39124–32PubMedCrossRefGoogle Scholar
  44. 44.
    Duran-Sandoval D, Cariou B, Fruchart JC, et al. Potential regulatory role of the farnesoid X receptor in the metabolic syndrome. Biochimie 2005 Jan; 87(1): 93–8PubMedCrossRefGoogle Scholar
  45. 45.
    Duran-Sandoval D, Mautino G, Martin G, et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes 2004 Apr; 53(4): 890–8PubMedCrossRefGoogle Scholar
  46. 46.
    Stayrook KR, Bramlett KS, Savkur RS, et al. Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology 2005 Mar; 146(3): 984–91PubMedCrossRefGoogle Scholar
  47. 47.
    Yamagata K, Daitoku H, Shimamoto Y, et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxol. J Biol Chem 2004 May 28; 279(22): 23158–65PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 2006 Jan 24; 103(4): 1006–11PubMedCrossRefGoogle Scholar
  49. 49.
    Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science 1999 May 21; 284(5418): 1362–5PubMedCrossRefGoogle Scholar
  50. 50.
    Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999 May 21; 284(5418): 1365–8PubMedCrossRefGoogle Scholar
  51. 51.
    Wang H, Chen J, Hollister K, et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999 May; 3(5): 543–53PubMedCrossRefGoogle Scholar
  52. 52.
    Forman BM, Goode E, Chen J, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995 Jun 2; 81(5): 687–93PubMedCrossRefGoogle Scholar
  53. 53.
    Kok T, Hulzebos CV, Wolters H, et al. Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice: efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J Biol Chem 2003 Oct 24; 278(43): 41930–7PubMedCrossRefGoogle Scholar
  54. 54.
    Cariou B, van Harmelen K, Duran-Sandoval D, et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 2006 Apr 21; 281(16): 11039–49PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang M, Chiang JY. Transcriptional regulation of the human sterol 12alpha-hydroxylase gene (CYP8B1): roles of hepatocyte nuclear factor 4alpha in mediating bile acid repression. J Biol Chem 2001 Nov 9; 276(45): 41690–9PubMedCrossRefGoogle Scholar
  56. 56.
    Inoue Y, Yu AM, Yim SH, et al. Regulation of bile acid biosynthesis by hepatocyte nuclear factor 4alpha. J Lipid Res 2006 Jan; 47(1): 215–27PubMedCrossRefGoogle Scholar
  57. 57.
    Cariou B, van Harmelen K, Duran-Sandoval D, et al. Transient impairment of the adaptive response to fasting in FXR-deficient mice. FEBS Lett 2005 Aug 1; 579(19): 4076–80PubMedCrossRefGoogle Scholar
  58. 58.
    Ma K, Saha PK, Chan L, et al. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 2006 Apr; 116(4): 1102–9PubMedCrossRefGoogle Scholar
  59. 59.
    Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000 Aug 12; 321(7258): 405–12PubMedCrossRefGoogle Scholar
  60. 60.
    Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003 Jan 30; 348(5): 383–93PubMedCrossRefGoogle Scholar
  61. 61.
    Saydah SH, Fradkin J, Cowie CC. Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA 2004 Jan 21; 291(3): 335–42PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2007

Authors and Affiliations

  1. 1.Institut Pasteur de LilleLilleFrance
  2. 2.Departement d’ArtheroscleroseInserm U545, Institut Pasteur de LilleLilleFrance
  3. 3.Faculty of Pharmaceutical and Biological Sciences and Faculty of MedicineUniversity of Lille 2LilleFrance
  4. 4.Center for Liver, Digestive, and Metabolic DiseasesUniversity Medical Center GroningenHanzepleinThe Netherlands

Personalised recommendations