Drugs

, Volume 67, Issue 8, pp 1167–1198 | Cite as

Immunosuppressive Therapy and Malignancy in Organ Transplant Recipients

A Systematic Review
Review Article

Abstract

Post-transplant malignancy is recognised as being a major limitation to the success of solid organ transplantation and it is currently considered one of the unavoidable costs of long-term immunosuppressive therapy. However, the continual introduction of new immunosuppressive drugs and the growing knowledge about their different oncogenic profiles, requires a continuous evaluation of the available evidence on this topic.

The incidence and risk of malignancy is elevated in solid organ transplant recipients compared with the general population. As proof of the relationship between immunosuppressive therapy and post-transplant malignancy, epidemiological data reveal that the length of exposure to immunosuppressive therapy and the intensity of therapy are clearly related to the post-transplant risk of malignancy, and that once cancer has developed, more intense immunosuppression can translate into more aggressive tumour progression in terms of accelerated growth and metastasis and lower patient survival. The association between malignancy and immunosuppressive therapy is mediated through several pathogenic factors. Indirectly, immunosuppressive drugs greatly increase the post-transplant risk of malignancy by impairing cancer surveillance and facilitating the action of oncogenic viruses. However, the direct pro- and anti-oncogenic actions of immunosuppressants also play an important role. The cancer-promoting effect of calcineurin inhibitors, independently of depressed immunosurveillance, has been demonstrated in recent years, and currently only mammalian target of rapamycin (mTOR) inhibitors have shown simultaneous immunosuppressive and antitumour properties. Reports of the initial results of the reduced incidence of cancer in organ transplant recipients receiving mTOR inhibitor therapy strongly indicate separate pathways for pharmacological immunosuppression and oncogenesis. The role of mTOR inhibitors has been firmly established for the treatment of post-transplant Kaposi’s sarcoma and its role in the management of patients with other post-transplant malignancies should be clarified as soon as possible.

Prevention of morbidity and mortality resulting from post-transplant malignancy should become a main endpoint in solid organ transplant programmes, and the choice and management of immunosuppressive therapy in each phase of transplantation plays a central role in this objective. Although comprehensive and rigorous information about the management of immunosuppressive therapy in transplant recipients at risk of or affected by cancer is still lacking, new experimental and clinical data about mTOR inhibitors offers novel approaches to this problem

References

  1. 1.
    Morris PJ. Transplantation: a medical miracle of the 20th century. N Engl J Med. 2004 Dec 23; 351 (26): 2678–80PubMedCrossRefGoogle Scholar
  2. 2.
    Organ Procurement and Transplant Network/Scientific Registry of Transplant Recipients. OPTN/SRTR 2005 Annual Report: table 1.14 [online]. Available from URL: http://www.ustransplant.org [Accessed 2006 Jul 1]
  3. 3.
    Council of Europe. International figures on organ donation and transplantation [online]. Newsletter Transplant 2005 Sep 10; 1. Available from URL: http://www.coe.int/t/E/Social_Cohesion/Health/NEWSLETTER%20TRANSPLANT%202005.pdf [Accessed 2006 Jul 1]
  4. 4.
    Penn I, Starzl TE. Proceedings: the effect of immunosuppression on cancer. Proc Natl Cancer Conf 1972; 7: 425–36PubMedGoogle Scholar
  5. 5.
    Hoover R, Fraumeni JF Jr. Risk of cancer in renal-transplant recipients. Lancet 1973 Jul 14; 2 (7820): 55–7PubMedCrossRefGoogle Scholar
  6. 6.
    Matas AJ, Simmons RL, Kjellstrand CM, et al. Increased incidence of malignancy during chronic renal failure. Lancet 1975 Apr 19; I (7912): 883–6CrossRefGoogle Scholar
  7. 7.
    Swanson MA, Schwartz RS. Immunosuppressive therapy: the relation between clinical response and immunologic competence. N Engl J Med 1967 Jul 27; 277 (4): 163–70PubMedCrossRefGoogle Scholar
  8. 8.
    Penn I. Malignant tumours in organ transplant recipients. Berlin: Springer, 1970CrossRefGoogle Scholar
  9. 9.
    Penn I. Neoplasia following transplantation. In: Norman DJ, Turka LA, editors. Primer on transplantation. 2nd ed. Mt Laurel (NJ): American Society of Transplantation, 2001: 268–75Google Scholar
  10. 10.
    Moloney FJ, Comber H, O’Lorcain P, et al. A population-based study of skin cancer incidence and prevalence in renal transplant recipients. Br J Dermatol 2006; 154: 498–504PubMedCrossRefGoogle Scholar
  11. 11.
    Birkeland SA, Lokkegaard H, Storm HH. Cancer risk in patients on dialysis and after renal transplantation. Lancet 2000 May 27; 355 (9218): 1886–7PubMedCrossRefGoogle Scholar
  12. 12.
    Kyllonen L, Salmela K, Pukkala E. Cancer incidence in a kidney-transplanted population. Transpl Int 2000; 13 Suppl. 1: S394–8PubMedCrossRefGoogle Scholar
  13. 13.
    Birkeland SA, Storm HH, Lamm LU, et al. Cancer risk after renal transplantation in the Nordic countries, 1964–1986. Int J Cancer 1995 Jan 17; 60 (2): 183–9PubMedCrossRefGoogle Scholar
  14. 14.
    Webster A, Chapman J. Australia and New Zealand dialysis and transplant registry: the 28th annual report, 2005. Chapter 10, Cancer report [online]. Available from URL: http://www.anzdata.org.au/ [Accessed 2006 Jul 1]
  15. 15.
    Collaborative transplant study [online]. Available from URL: http://www.ctstransplant.org/ [Accessed 2006 Jul 1]
  16. 16.
    Surveillance, epidemiology, and end results program of the National Cancer Institute [online]. Available from URL: http://seer.cancer.gov/about/ [Accessed 2006 Jul 1]
  17. 17.
    Adami J, Gabel H, Lindelof B, et al. Cancer risk following organ transplantation: a nationwide cohort study in Sweden. Br J Cancer 2003 Oct 6; 89 (7): 1221–7PubMedCrossRefGoogle Scholar
  18. 18.
    Gaya SB, Rees AJ, Lechler RI, et al. Malignant disease in patients with long-term renal transplants. Transplantation 1995 Jun 27; 59 (12): 1705–9PubMedCrossRefGoogle Scholar
  19. 19.
    Kasiske BL, Snyder JJ, Gilbertson DT, et al. Cancer after kidney transplantation in the United States. Am J Transplant 2004 Jun; 4 (6): 905–13PubMedCrossRefGoogle Scholar
  20. 20.
    Robson R, Cecka JM, Opelz G, et al. Prospective registry-based observational cohort study of the long-term risk of malignancies in renal transplant patients treated with mycophenolate mofetil. Am J Transplant 2005 Dec; 5 (12): 2954–60PubMedCrossRefGoogle Scholar
  21. 21.
    Chapman J, Webster A. Australia and New Zealand dialysis and transplant registry: the 27th Annual Report, 2004. Chapter 10, Cancer report [online]. Available from URL: http://www.anzdata.org.au/ [Accessed 2006 Jul 1]
  22. 22.
    Bustami RT, Ojo AO, Wolfe RA, et al. Immunosuppression and the risk of post-transplant malignancy among cadaveric first kidney transplant recipients. Am J Transplant 2004 Jan; 4 (1): 87–93PubMedCrossRefGoogle Scholar
  23. 23.
    Hoshida Y, Tsukuma H, Yasunaga Y, et al. Cancer risk after renal transplantation in Japan. Int J Cancer 1997 May 16; 71 (4): 517–20PubMedCrossRefGoogle Scholar
  24. 24.
    Brunner FP, Landais P, Seiwood NH. European Dialysis and Transplantation Association-European Renal Association. Malignancies after renal transplantation: the EDTA-ERA registry experience. Nephrol Dial Transplant 1995; 10 Suppl. 1: 74–80Google Scholar
  25. 25.
    Kyllonen L, Koskimies S, Salmela K. Renal transplant recipients with graft survival longer than 20 years: report on 107 cases. Transplant Proc 2001 Jun; 33 (4): 2444–5PubMedCrossRefGoogle Scholar
  26. 26.
    Sorensen HT, Mellemkjaer L, Nielsen GL, et al. Skin cancers and non-hodgkin lymphoma among users of systemic glucocorticoids: a population-based cohort study. J Natl Cancer Inst 2004 May 5; 96 (9): 709–11PubMedCrossRefGoogle Scholar
  27. 27.
    Sheil AG, Disney AP, Mathew TH, et al. De novo malignancy emerges as a major cause of morbidity and late failure in renal transplantation. Transplant Proc 1993 Feb; 25 (1 Pt 2): 1383–4PubMedGoogle Scholar
  28. 28.
    de Graaf YG, Basdew VR, van Zwan-Kralt N, et al. The occurrence of residual or recurrent squamous cell carcinomas in organ transplant recipients after curettage and electrodessication. Br J Dermatol 2006 Mar; 154 (3): 493–7PubMedCrossRefGoogle Scholar
  29. 29.
    Veness MJ, Quinn DI, Ong CS, et al. Aggressive cutaneous malignancies following cardiothoracic transplantation: the Australian experience. Cancer 1999 Apr 15; 85 (8): 1758–64PubMedCrossRefGoogle Scholar
  30. 30.
    Montagnino G, Lorca E, Tarantino A, et al. Cancer incidence in 854 kidney transplant recipients from a single institution: comparison with normal population and with patients under dialytic treatment. Clin Transplant 1996; 10 (5): 461–9PubMedGoogle Scholar
  31. 31.
    Snanoudj R, Kriaa F, Arzouk N, et al. Single-center experience with cyclosporine therapy for kidney transplantation: analysis of a twenty-year period in 1200 patients. Transplant Proc 2004 Mar; 36 (2 Suppl.): 833–8CrossRefGoogle Scholar
  32. 32.
    Dantal J, Hourmant M, Cantarovich D, et al. Effect of long-term immunosuppression in kidney-graft recipients on cancer incidence: randomised comparison of two cyclosporin regimens. Lancet 1998 Feb 28; 351 (9103): 623–8PubMedCrossRefGoogle Scholar
  33. 33.
    Hiesse C, Rieu P, Kriaa F, et al. Malignancy after renal transplantation: analysis of incidence and risk factors in 1700 patients followed during a 25-year period. Transplant Proc 1997 Feb–Mar; 29 (1-2): 831–3PubMedCrossRefGoogle Scholar
  34. 34.
    Wu MJ, Lian JD, Yang CR, et al. High cumulative incidence of urinary tract transitional cell carcinoma after kidney transplantation in Taiwan. Am J Kidney Dis 2004 Jun; 43 (6): 1091–7PubMedCrossRefGoogle Scholar
  35. 35.
    Agraharkar ML, Cinclair RD, Kuo YF, et al. Risk of malignancy with long-term immunosuppression in renal transplant recipients. Kidney Int 2004 Jul; 66 (1): 383–9PubMedCrossRefGoogle Scholar
  36. 36.
    Marcen R, Pascual J, Tato AM, et al. Influence of immunosuppression on the prevalence of cancer after kidney transplantation. Transplant Proc 2003 Aug; 35 (5): 1714–6PubMedCrossRefGoogle Scholar
  37. 37.
    Tremblay F, Fernandes M, Habbab F, et al. Malignancy after renal transplantation: incidence and role of type of immunosuppression. Ann Surg Oncol. 2002 Oct; 9 (8): 785–8PubMedCrossRefGoogle Scholar
  38. 38.
    London NJ, Farmery SM, Will EJ, et al. Risk of neoplasia in renal transplant patients [published erratum appears in Lancet 1995 Sep 9; 346 (8976): 714]. Lancet 1995 Aug 12; 346 (8972): 403–6PubMedCrossRefGoogle Scholar
  39. 39.
    Melosky B, Karim M, Chui A, et al. Lymphoproliferative disorders after renal transplantation in patients receiving triple or quadruple immunosuppression. J Am Soc Nephrol 1992 Jun; 2 (12 Suppl.): S290–4PubMedGoogle Scholar
  40. 40.
    Schmidt R, Stippel D, Schmitz-Rixen T, et al. Tumors after renal transplantation. Urol Int 1996; 57 (1): 21–6PubMedCrossRefGoogle Scholar
  41. 41.
    Kishikawa H, Ichikawa Y, Yazawa K, et al. Malignant neoplasm in kidney transplantation. Int J Urol 1998 Nov; 5 (6): 521–5PubMedCrossRefGoogle Scholar
  42. 42.
    Veroux M, Puliatti C, Fiamingo P, et al. Early de novo malignancies after kidney transplantation. Transplant Proc 2004 Apr; 36 (3): 718–20PubMedCrossRefGoogle Scholar
  43. 43.
    Amital A, Shitrit D, Raviv Y, et al. Development of malignancy following lung transplantation. Transplantation 2006 Feb 27; 81 (4): 547–51PubMedCrossRefGoogle Scholar
  44. 44.
    Trulock EP, Edwards LB, Taylor DO, et al. Registry of the International Society for Heart and Lung Transplantation: twenty-second official adult lung and heart-lung transplant report 2005. J Heart Lung Transplant 2005; 24 (8): 956–67PubMedCrossRefGoogle Scholar
  45. 45.
    Sheil AG. Cancer in dialysis and transplant patients. In: Morris PJ, editor. Kidney transplantation: principles and practice. Philadelphia (PA): Saunders, 2001: 558–70Google Scholar
  46. 46.
    Kyllonen L, Pukkala E, Eklund B. Cancer incidence in a kidney-transplanted population. Transpl Int 1994; 7 Suppl. 1: S350–2PubMedCrossRefGoogle Scholar
  47. 47.
    Hibberd AD, Trevillian PR, Wlodarzcyk JH, et al. Predialysis immunosuppression is an independent risk factor for some cancers in renal transplantation. Transplant Proc 2001 Feb–Mar; 33 (1–2): 1846–7PubMedCrossRefGoogle Scholar
  48. 48.
    Bordea C, Wojnarowska F, Millard PR, et al. Skin cancers in renal-transplant recipients occur more frequently than previously recognized in a temperate climate. Transplantation 2004 Feb 27; 77 (4): 574–9PubMedCrossRefGoogle Scholar
  49. 49.
    Ramsay HM, Fryer AA, Reece S, et al. Clinical risk factors associated with nonmelanoma skin cancer in renal transplant recipients. Am J Kidney Dis 2000 Jul; 36 (1): 167–76PubMedCrossRefGoogle Scholar
  50. 50.
    Frei U, Bode U, Repp H, et al. Malignancies under cyclosporine after kidney transplantation: analysis of a 10-year period. Transplant Proc 1993 Feb; 25 (1 Pt 2): 1394–6PubMedGoogle Scholar
  51. 51.
    Chapman JR, Webster AC. Cancer after renal transplantation: the next challenge. Am J Transplant 2004; 4: 841–2PubMedCrossRefGoogle Scholar
  52. 52.
    Maisonneuve P, Agodoa L, Geliert R, et al. Cancer in patients on dialysis for end-stage renal disease: an international collaborative study. Lancet 1999 Jul 10; 354 (9173): 93–9PubMedCrossRefGoogle Scholar
  53. 53.
    Fairley CK, Sheil AG, McNeil JJ, et al. The risk of ano-genital malignancies in dialysis and transplant patients. Clin Nephrol 1994 Feb; 41 (2): 101–5PubMedGoogle Scholar
  54. 54.
    Matas AJ, Simmons RL, Kjellstrand CM, et al. Increased incidence of malignancy during chronic renal failure. Lancet 1975 Apr 19; 1 (7912): 883–6PubMedCrossRefGoogle Scholar
  55. 55.
    Ojo AO, Hanson JA, Wolfe RA, et al. Long-term survival in renal transplant recipients with graft function. Kidney Int 2000 Jan; 57 (1): 307–13PubMedCrossRefGoogle Scholar
  56. 56.
    Briggs JD. Causes of death after renal transplantation. Nephrol Dial Transplant 2001 Aug; 16 (8): 1545–9PubMedCrossRefGoogle Scholar
  57. 57.
    Karagas MR, Greenberg ER, Spencer SK, et al. for the New Hampshire Skin Cancer Study Group. Increase in incidence rates of basal cell and squamous cell skin cancer in New Hampshire, USA. Int J Cancer 1999 May 17; 81 (4): 555–9Google Scholar
  58. 58.
    Karagas MR, Cushing GL Jr, Greenberg ER, et al. Non-melanoma skin cancers and glucocorticoid therapy. Br J Cancer 2001 Sep 1;85 (5): 683–6PubMedCrossRefGoogle Scholar
  59. 59.
    Trattner A, Hodak E, David M, et al. The appearance of Kaposi sarcoma during corticosteroid therapy. Cancer 1993 Sep 1; 72 (5): 1779–83PubMedCrossRefGoogle Scholar
  60. 60.
    Askling J, Klareskog L, Hjalgrim H, et al. Do steroids increase lymphoma risk? A case-control study of lymphoma risk in polymyalgia rheumatica/giant cell arteritis. Ann Rheum Dis 2005 Dec; 64 (12): 1765–8PubMedCrossRefGoogle Scholar
  61. 61.
    Paul CF, Ho VC, McGeown C, et al. Risk of malignancies in psoriasis patients treated with cyclosporine: a 5 year cohort study. J Invest Dermatol 2003 Feb; 120 (2): 211–6PubMedCrossRefGoogle Scholar
  62. 62.
    Marcil I, Stern RS. Squamous-cell cancer of the skin in patients given PUVA and ciclosporin: nested cohort crossover study. Lancet 2001 Sep 29; 358 (9287): 10425CrossRefGoogle Scholar
  63. 63.
    Arellano F. Risk of cancer with cyclosporine in psoriasis. Int J Dermatol 1997 Dec; 36 Suppl. 1: 15–7PubMedCrossRefGoogle Scholar
  64. 64.
    Taylor L, Hughes RA, McPherson K. The risk of cancer from azathioprine as a treatment for multiple sclerosis. Eur J Neurol 2004 Feb; 11 (2): 141PubMedCrossRefGoogle Scholar
  65. 65.
    Kinlen LJ. Incidence of cancer in rheumatoid arthritis and other disorders after immunosuppressive treatment. Am J Med 1985 Jan 21; 78 (1A): 44–9PubMedCrossRefGoogle Scholar
  66. 66.
    Confavreux C, Saddier P, Grimaud J, et al. Risk of cancer from azathioprine therapy in multiple sclerosis: a case-control study. Neurology 1996 Jun; 46 (6): 1607–12PubMedCrossRefGoogle Scholar
  67. 67.
    Kandiel A, Fraser AG, Korelitz BI, et al. Increased risk of lymphoma among inflammatory bowel disease patients treated with azathioprine and 6-mercaptopurine. Gut 2005 Aug; 54 (8): 1121–5PubMedCrossRefGoogle Scholar
  68. 68.
    Vivarelli M, Bellusci R, Cucchetti A, et al. Low recurrence rate of hepatocellular carcinoma after liver transplantation: better patient selection or lower immunosuppression? Transplanta-tion 2002; 74 (12): 1746–51Google Scholar
  69. 69.
    McGeown MG, Douglas JF, Middleton D, et al. One thousand renal transplants at Belfast City Hospital: post-graft neoplasia 1968–1999, comparing azathioprine only with cyclosporin-based regimes in a single centre. Clin Transpl 2000: 193-202Google Scholar
  70. 70.
    Swinnen LJ, Costanzo-Nordin MR, Fisher SG, et al. Increased incidence of lymphoproliferative disorder after immunosuppression with the monoclonal antibody OKT3 in cardiactransplant recipients. N Engl J Med 1990; 323 (25): 1723–8PubMedCrossRefGoogle Scholar
  71. 71.
    Glover MT, Deeks JJ, Raftery MJ, et al. Immunosuppression and risk of non-melanoma skin cancer in renal transplant recipients. Lancet 1997 Feb 8; 349 (9049): 398PubMedCrossRefGoogle Scholar
  72. 72.
    Kehinde EO, Petermann A, Morgan JD, et al. Triple therapy and incidence of de novo cancer in renal transplant recipients. Br J Surg 1994 Jul; 81 (7): 985–6PubMedCrossRefGoogle Scholar
  73. 73.
    Opelz G, Henderson R. Incidence of non-Hodgkin lymphoma in kidney and heart transplant recipients. Lancet 1993 Dec 18–25; 342 (8886-7): 1514–6PubMedCrossRefGoogle Scholar
  74. 74.
    Nalesnik MA, Makowka L, Starzl TE. The diagnosis and treatment of posttransplant lymphoproliferative disorders. Curr Probl Surg 1988 Jun; 25 (6): 367–472PubMedCrossRefGoogle Scholar
  75. 75.
    Opelz G, Dohler B. Lymphomas after solid organ transplantation: a collaborative transplant study report. Am J Transplant 2004 Feb; 4 (2): 222–30PubMedCrossRefGoogle Scholar
  76. 76.
    Offman J, Opelz G, Doehler B, et al. Defective DNA mismatch repair in acute myeloid leukemia/myelodysplastic syndrome after organ transplantation. Blood 2004 Aug 1; 104 (3): 822–8PubMedCrossRefGoogle Scholar
  77. 77.
    Kanitakis J, Alhaj-Ibrahim L, Euvrard S, et al. Basal cell carcinomas developing in solid organ transplant recipients: clinicopathologic study of 176 cases. Arch Dermatol 2003 Sep; 139 (9): 1133–7PubMedCrossRefGoogle Scholar
  78. 78.
    Jensen P, Hansen S, Moller B, et al. Skin cancer in kidney and heart transplant recipients and different long-term immunosuppressive therapy regimens. J Am Acad Dermatol 1999 Feb; 40 (2 Pt 1): 177–86PubMedCrossRefGoogle Scholar
  79. 79.
    Euvrard S, Kanitakis J, Pouteil-Noble C, et al. Comparative epidemiologic study of premalignant and malignant epithelial cutaneous lesions developing after kidney and heart transplantation. J Am Acad Dermatol 1995 Aug; 33 (2 Pt 1): 222–9PubMedCrossRefGoogle Scholar
  80. 80.
    Euvrard S, Kanitakis J, Decullier E, et al. Subsequent skin cancers in kidney and heart transplant recipients after the first squamous cell carcinoma. Transplantation 2006 Apr 27; 81 (8): 1093–100PubMedCrossRefGoogle Scholar
  81. 81.
    Yokoyama I, Carr B, Saitsu H, et al. Accelerated growth rates of recurrent hepatocellular carcinoma after liver transplantation. Cancer 1991 Nov 15; 68 (10): 2095–100PubMedCrossRefGoogle Scholar
  82. 82.
    Moloney FJ, Kelly PO, Kay EW, et al. Maintenance versus reduction of immunosuppression in renal transplant recipients with aggressive squamous cell carcinoma. Dermatol Surg 2004 Apr; 30 (4 Pt 2): 674–8PubMedCrossRefGoogle Scholar
  83. 83.
    Barrett WL, First MR, Aron BS, et al. Clinical course of malignancies in renal transplant recipients. Cancer 1993 Oct 1; 72 (7): 2186–9PubMedCrossRefGoogle Scholar
  84. 84.
    Buell JF, Papaconstantinou HT, Skalow B, et al. De novo colorectal cancer: five-year survival is markedly lower in transplant recipients compared with the general population. Transplant Proc 2005 Mar; 37 (2): 960–1PubMedCrossRefGoogle Scholar
  85. 85.
    Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002 Nov; 3 (11): 991–8PubMedCrossRefGoogle Scholar
  86. 86.
    Shinkai Y, Rathbun G, Lam KP, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992 Mar 6; 68 (5): 855–67PubMedCrossRefGoogle Scholar
  87. 87.
    Shankaran V, Ikeda H, Bruce AT, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001 Apr 26; 410 (6832): 1107–11PubMedCrossRefGoogle Scholar
  88. 88.
    Pages F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005 Dec 22; 353 (25): 2654–66PubMedCrossRefGoogle Scholar
  89. 89.
    Kurz P, Kohler H, Meuer S, et al. Impaired cellular immune responses in chronic renal failure: evidence for a T cell defect. Kidney Int 1986 Jun; 29 (6): 1209–14PubMedCrossRefGoogle Scholar
  90. 90.
    Girndt M, Sester M, Sester U, et al. Molecular aspects of T- and B-cell function in uremia. Kidney Int 2001 Feb; 78 Suppl.: S206–11Google Scholar
  91. 91.
    Jonasch E, Geroge DJ. Renal neoplasia. In: Brenner BM, editor. Brenner & Rector’s The kidney, 2004. 7th ed., Vol. 2. Philadelphia (PA): Elsevier, 2004: 1896–1923Google Scholar
  92. 92.
    Denton MD, Magee CC, Ovuworie C, et al. Prevalence of renal cell carcinoma in patients with ESRD pre-transplantation: a pathologic analysis. Kidney Int 2002 Jun; 61 (6): 2201–9PubMedCrossRefGoogle Scholar
  93. 93.
    Herrera LA, Benitez-Bribiesca L, Mohar A, et al. Role of infectious diseases in human carcinogenesis. Environ Mol Mutagen 2005 Mar–Apr; 45 (2-3): 284–303PubMedCrossRefGoogle Scholar
  94. 94.
    Tannock IF, Hill RP, editors. The basic science of oncology. New York: McGraw-Hill, 1998Google Scholar
  95. 95.
    Hoppe-Seyler F, Butz K. Molecular mechanisms of virus-induced carcinogenesis: the interaction of viral factors with cellular tumor suppressor proteins. J Mol Med 1995 Nov; 73 (11): 529–38PubMedCrossRefGoogle Scholar
  96. 96.
    Pagano JS, Blaser M, Buendia MA, et al. Infectious agents and cancer: criteria for a causal relation. Semin Cancer Biol 2004 Dec; (6): 453-71Google Scholar
  97. 97.
    Jaffe, ES, Harris NL, Stein H, et al., editors. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. World Health Organization classification of tumours, Vol. 3, 2001. ISBN 92 832 2411 6Google Scholar
  98. 98.
    Paya CV, Fung JJ, Nalesnik MA, et al. Epstein-Barr virusinduced posttransplant lymphoproliferative disorders: ASTS/ ASTP EBV-PTLD task force and the Mayo Clinic organized international consensus development meeting. Transplantation 1999; 68 (10): 1517–25PubMedCrossRefGoogle Scholar
  99. 99.
    Ho M. Risk factors and pathogenesis of posttransplant lymphoproliferative disorders. Transplant Proc 1995 Oct; 27 (5 Suppl. 1): 38–40PubMedGoogle Scholar
  100. 100.
    Funch DP, Ko HH, Travasso J, et al. Posttransplant lymphoproliferative disorder among renal transplant patients in relation to the use of mycophenolate mofetil. Transplantation 2005 Nov 15; 80 (9): 1174–80PubMedCrossRefGoogle Scholar
  101. 101.
    Young L, Alfieri C, Hennessy K, et al. Expression of Epstein-Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N Engl J Med 1989 Oct 19; 321 (16): 1080–5PubMedCrossRefGoogle Scholar
  102. 102.
    Birkeland SA. Chronic antigenic stimulation from the graft as a possible oncogenic factor after renal transplant. Scand J Urol Nephrol 1983; 17: 355–9PubMedCrossRefGoogle Scholar
  103. 103.
    Birkeland SA, Hamilton-Dutoit S. Is post transplant lymphoproliferative disorder (PTLD) caused by any specific immunosuppressive drugs or by the transplantation per se? Transplantation 2003; 76: 984–8PubMedCrossRefGoogle Scholar
  104. 104.
    Zucca E, Bertoni F, Roggero E, et al. Molecular analysis of the progression from Helicobacter pylori-associated chronic gastritis to mucosa-associated lymphoid-tissue lymphoma of the stomach. N Engl J Med 1998; 338: 804–10PubMedCrossRefGoogle Scholar
  105. 105.
    Caillard S, Dharnidharka V, Agodoa L, et al. Posttransplant lymphoproliferative disorders after renal transplantation in the United States in era of modern immunosuppression. Transplantation 2005 Nov 15; 80 (9): 1233–43PubMedCrossRefGoogle Scholar
  106. 106.
    Duvoux C, Pageaux GP, Vanlemmens C, et al. Risk factors for lymphoproliferative disorders after liver transplantation in adults: an analysis of 480 patients. Transplantation 2002 Oct 27; 74 (8): 1103–9PubMedCrossRefGoogle Scholar
  107. 107.
    Green M. Management of Epstein-Barr virus-induced posttransplant lymphoproliferative disease in recipients of solid organ transplantation. Am J Transplant 2001 Jul; 1 (2): 103–8PubMedGoogle Scholar
  108. 108.
    Starzl TE, Nalesnik MA, Porter KA, et al. Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-steroid therapy. Lancet 1984 Mar 17; I (8377): 583–7CrossRefGoogle Scholar
  109. 109.
    Tsai DE, Hardy CL, Tomaszewski JE, et al. Reduction in immunosuppression as initial therapy for posttransplant lymphoproliferative disorder: analysis of prognostic variables and long-term follow-up of 42 adult patients. Transplantation 2001; 71 (8): 1076–88PubMedCrossRefGoogle Scholar
  110. 110.
    Mozzanica N, Cattaneo A, Fracchiolla N, et al. Posttransplantation cutaneous B-cell lymphoma with monoclonal Epstein-Barr virus infection, responding to acyclovir and reduction in immunosuppression. J Heart Lung Transplant 1997 Sep; 16 (9): 964–8PubMedGoogle Scholar
  111. 111.
    Sheil AG, Mahoney JF, Horvath JS, et al. Cancer and survival after cadaveric donor renal transplantation. Transplant Proc 1979 Mar; 11 (1): 1052–4PubMedGoogle Scholar
  112. 112.
    Chapman J, Webster A. Australia and New Zealand dialysis and transplant registry: the 25th annual report. 2002. Chapter 10, Cancer report [online]. Available from URL: http://www.anzdata.org.au/ [Accessed 2006 Jul 1]
  113. 113.
    Buell JF, Hanaway MJ, Thomas M, et al. Skin cancer following transplantation: the Israel Penn International transplant tumor registry experience. Transplant Proc 2005 Mar; 37 (2): 962–3PubMedCrossRefGoogle Scholar
  114. 114.
    Fuente MJ, Sabat M, Roca J, et al. A prospective study of the incidence of skin cancer and its risk factors in a Spanish Mediterranean population of kidney transplant recipients. Br J Dermatol 2003 Dec; 149 (6): 1221–6PubMedCrossRefGoogle Scholar
  115. 115.
    Zavos G, Bokos J, Papaconstantinou J, et al. Study of “de novo” malignancies among Greek renal transplant recipients. Transplant Proc 2003 Jun; 35 (4): 1399–403PubMedCrossRefGoogle Scholar
  116. 116.
    Martinez JC, Otley CC, Stasko T, et al. Transplant-Skin Cancer Collaborative. Defining the clinical course of metastatic skin cancer in organ transplant recipients: a multicenter collaborative study. Arch Dermatol 2003 Mar; 139 (3): 301–6Google Scholar
  117. 117.
    Ramsay HM, Fryer AA, Hawley CM, et al. Factors associated with nonmelanoma skin cancer following renal transplantation in Queensland, Australia. J Am Acad Dermatol 2003 Sep; 49 (3): 397–406PubMedCrossRefGoogle Scholar
  118. 118.
    O’Donovan P, Perrett CM, Zhang X, et al. Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science 2005 Sep 16; 309 (5742): 1871–4PubMedCrossRefGoogle Scholar
  119. 119.
    Yarosh DB, Pena AV, Nay SL, et al. Calcineurin inhibitors decrease DNA repair and apoptosis in human keratinocytes following ultraviolet B irradiation. J Invest Dermatol 2005 Nov; 125 (5): 1020–5PubMedCrossRefGoogle Scholar
  120. 120.
    Niwa Y, Terashima T, Sumi H. Topical application of the immunosuppressant tacrolimus accelerates carcinogenesis in mouse skin. Br J Dermatol 2003 Nov; 149 (5): 960–7PubMedCrossRefGoogle Scholar
  121. 121.
    Yokota K, Gill TJ 3rd, Shinozuka H. Effects of oral versus topical administration of cyclosporine on phorbol ester promotion of murine epidermal carcinogenesis. Cancer Res 1989 Aug 15; 49 (16): 4586–90PubMedGoogle Scholar
  122. 122.
    Vogt A, Hebert J, Hwang J, et al. Anti-rejection drug treatment increases basal cell carcinoma burden in Ptchl+/−mice. J Invest Dermatol 2005 Jan; 124 (1): 263–7PubMedCrossRefGoogle Scholar
  123. 123.
    Sugie N, Fujii N, Danno K. Cyclosporin-A suppresses p53-dependent repair DNA synthesis and apoptosis following ultraviolet-B irradiation. Photodermatol Photoimmunol Photomed 2002 Aug; 18 (4): 163–8PubMedCrossRefGoogle Scholar
  124. 124.
    Kelly GE, Meikle W, Sheil AG. Effects of immunosuppressive therapy on the induction of skin tumors by ultraviolet irradiation in hairless mice. Transplantation 1987 Sep; 44 (3): 429–34PubMedCrossRefGoogle Scholar
  125. 125.
    Berkhout RJ, Tieben LM, Smits HL, et al. Nested PCR approach for detection and typing of epidermodysplasia verruciformisassociated human papillomavirus types in cutaneous cancers from renal transplant recipients. J Clin Microbiol 1995; 33: 690–5PubMedGoogle Scholar
  126. 126.
    Harwood CA, Surentheran T, McGregor JM, et al. Human papillomavirus infection and non-melanoma skin cancer in immunosuppressed and immunocompetent individuals. J Med Virol 2000; 61: 289–97PubMedCrossRefGoogle Scholar
  127. 127.
    Harwood CA, Proby CM. Human papillomaviruses and non-melanoma skin cancer. Curr Opin Infect Dis 2002; 15: 101–14PubMedCrossRefGoogle Scholar
  128. 128.
    Purdie KJ, Surentheran T, Sterling JC, et al. Human papillomavirus gene expression in cutaneous squamous cell carcinomas from immunosuppressed and immunocompetent individuals. J Invest Dermatol 2005; 125: 98–107PubMedCrossRefGoogle Scholar
  129. 129.
    de Jong-Tieben LM, Berkhout RJ, Smits HL, et al. High frequency of detection of epidermodysplasia verruciformis-associated human papillomavirus DNA in biopsies from malignant and premalignant skin lesions from renal transplant recipients. J Invest Dermatol 1995; 105: 367–71PubMedCrossRefGoogle Scholar
  130. 130.
    de Villiers EM, Lavergne D, McLaren K, et al. Prevailing papillomavirus types in non-melanoma carcinomas of the skin in renal allograft recipients. Int J Cancer 1997; 73: 356–61PubMedCrossRefGoogle Scholar
  131. 131.
    Berkhout RJ, Bouwes Bavinck JN, ter Schegget J. Persistence of human papillomavirus DNA in benign and (pre)malignant skin lesions from renal transplant recipients. J Clin Microbiol 2000; 38: 2087–96PubMedGoogle Scholar
  132. 132.
    Pfister H. Chapter 8: human papillomavirus and skin cancer. J Natl Cancer Inst Monogr 2003; 31: 52–6PubMedCrossRefGoogle Scholar
  133. 133.
    de Villiers EM. Human papillomavirus infections in skin cancers. Biomed Pharmacother 1998; 52: 26–33PubMedCrossRefGoogle Scholar
  134. 134.
    Wieland U, Ritzkowsky A, Stoltidis M, et al. Papillomavirus DNA in basal cell carcinomas of immunocompetent patients: an accidental association? J Invest Dermatol 2000; 115: 124–8PubMedCrossRefGoogle Scholar
  135. 135.
    Cherikh WS, Kauffman HM, McBride MA, et al. Association of the type of induction immunosuppression with posttransplant lymphoproliferative disorder, graft survival, and patient survival after primary kidney transplantation. Transplantation 2003; 76 (9): 1289–93PubMedCrossRefGoogle Scholar
  136. 136.
    Ducloux D, Kazory A, Challier B, et al. Long-term toxicity of antithymocyte globulin induction may vary with choice of agent: a single-center retrospective study. Transplantation 2004 Apr 15; 77 (7): 1029–33PubMedCrossRefGoogle Scholar
  137. 137.
    Opelz G, Naujokat C, Daniel V, et al. Disassociation between risk of graft loss and risk of non-Hodgkin lymphoma with induction agents in renal transplant recipients. Transplantation 2006; 81 (9): 1227–33PubMedCrossRefGoogle Scholar
  138. 138.
    Bourdage JS, Hamlin DM. Comparative polyclonal antithymocyte globulin and antilymphocyte/antilymphoblast globulin anti-CD antigen analysis by flow cytometry. Transplantation 1995 Apr 27; 59 (8): 1194–200PubMedGoogle Scholar
  139. 139.
    Norman DJ. Mechanisms of action and overview of OKT 3. Ther Drug Monit 1995 Dec; 17 (6): 615–20PubMedCrossRefGoogle Scholar
  140. 140.
    Brennan DC. Faith supported by reason: mechanistic support for the use of polyclonal antibodies in transplantation. Transplantation 2003 Mar 15; 75 (5): 577–8PubMedCrossRefGoogle Scholar
  141. 141.
    Adu D, Cockwell P, Ives NJ, et al. Interleukin-2 receptor monoclonal antibodies in renal transplantation: meta-analysis of randomised trials. BMJ 2003 Apr 12; 326 (7393): 789PubMedCrossRefGoogle Scholar
  142. 142.
    Chapman TM, Keating GM. Basiliximab: a review of its use as induction therapy in renal transplantation. Drugs 2003; 63 (24): 2803–35PubMedCrossRefGoogle Scholar
  143. 143.
    Rutz HP. Effects of corticosteroid use on treatment of solid tumours. Lancet 2002 Dec 14; 360 (9349): 1969–70PubMedCrossRefGoogle Scholar
  144. 144.
    Rutz HP, Herr I. Interference of glucocorticoids with apoptosis signaling and host-tumor interactions. Cancer Biol Ther 2004 Aug; 3 (8): 715–8PubMedCrossRefGoogle Scholar
  145. 145.
    Herr I, Ucur E, Herzer K, et al. Glucocorticoid cotreatment induces apoptosis resistance toward cancer therapy in carcinomas. Cancer Res 2003 Jun 15; 63 (12): 3112–20PubMedGoogle Scholar
  146. 146.
    Cidlowski JA, King KL, Evans-Storms RB, et al. The biochemistry and molecular biology of glucocorticoid-induced apoptosis in the immune system. Recent Prog Horm Res 1996; 51: 457–90; discussion 490-1PubMedGoogle Scholar
  147. 147.
    Von Knebel Doeberitz M, Koch S, Drzonek H, et al. Glucocorticoid hormones reduce the expression of major histocompatibility class I antigens on human epithelial cells. Eur J Immunol 1990 Jan; 20 (1): 35–40CrossRefGoogle Scholar
  148. 148.
    Jusko WJ. Pharmacokinetics and receptor-mediated pharmacodynamics of corticosteroids. Toxicology 1995 Sep 1; 102 (1-2): 189–96PubMedCrossRefGoogle Scholar
  149. 149.
    Morris PJ, editor. Kidney transplantation: principles and practice. Philadelphia (PA): WB Saunders, 2001Google Scholar
  150. 150.
    Swann PF, Waters TR, Moulton DC, et al. Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science 1996 Aug 23; 273 (5278): 1109–11PubMedCrossRefGoogle Scholar
  151. 151.
    Shuttleworth D, Marks R, Griffin PJ, et al. Epidermal dysplasia and cyclosporine therapy in renal transplant patients: a comparison with azathioprine. Br J Dermatol 1989 Apr; 120 (4): 551–4PubMedCrossRefGoogle Scholar
  152. 152.
    Tressler RJ, Garvin LJ, Slate DL. Anti-tumor activity of mycophenolate mofetil against human and mouse tumors in vivo. Int J Cancer 1994 May 15; 57 (4): 568–73PubMedCrossRefGoogle Scholar
  153. 153.
    Ohsugi Y, Suzuki S, Takagaki Y. Antitumor and immunosuppressive effects of mycophenolic acid derivatives. Cancer Res 1976 Aug; 36 (8): 2923–7PubMedGoogle Scholar
  154. 154.
    Blaheta RA, Bogossian H, Beecken WD, et al. Mycophenolate mofetil increases adhesion capacity of tumor cells in vitro. Transplantation 2003 Dec 27; 76 (12): 1735–41PubMedCrossRefGoogle Scholar
  155. 155.
    Oliveira VD, Zankl H, Rath T. Mutagenic and cytotoxic effects of immunosuppressive drugs on human lymphocyte cultures. Exp Clin Transplant 2004 Dec; 2 (2): 273–9PubMedGoogle Scholar
  156. 156.
    Leckel K, Beecken WD, Jonas D, et al. The immunosuppressive drug mycophenolate mofetil impairs the adhesion capacity of gastrointestinal tumour cells. Clin Exp Immunol 2003 Nov; 134 (2): 238–45PubMedCrossRefGoogle Scholar
  157. 157.
    Engl T, Makarevic J, Relja B, et al. Mycophenolate mofetil modulates adhesion receptors of the betal integrin family on tumor cells: impact on tumor recurrence and malignancy. BMC Cancer 2005 Jan 11; 5: 4PubMedCrossRefGoogle Scholar
  158. 158.
    Neyts J, Andrei G, De Clercq E. The novel immunosuppressive agent mycophenolate mofetil markedly potentiates the antiherpesvirus activities of acyclovir, ganciclovir, and penciclovir in vitro and in vivo. Antimicrob Agents Chemother 1998 Feb; 42 (2): 216–22PubMedGoogle Scholar
  159. 159.
    Eisen HJ, Kobashigawa J, Keogh A, et al. Mycophenolate Mofetil Cardiac Study Investigators. Three-year results of a randomized, double-blind, controlled trial of mycophenolate mofetil versus azathioprine in cardiac transplant recipients. J Heart Lung Transplant 2005 May; 24 (5): 517–25Google Scholar
  160. 160.
    Wang K, Zhang H, Li Y, et al. Safety of mycophenolate mofetil versus azathioprine in renal transplantation: a systematic review. Transplant Proc 2004 Sep; 36 (7): 2068–70PubMedCrossRefGoogle Scholar
  161. 161.
    Dharnidharka VR, Ho PL, Stablein DM, et al. Mycophenolate, tacrolimus and post-transplant lymphoproliferative disorder: a report of the North American Pediatric Renal Transplant Cooperative Study. Pediatr Transplant 2002 Oct; 6 (5): 396–9PubMedCrossRefGoogle Scholar
  162. 162.
    Halloran P, Mathew T, Tomlanovich S, et al. The International Mycophenolate Mofetil Renal Transplant Study Groups. Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double-blind, clinical studies in prevention of rejection [published erratum appears in Transplantation 1997 Feb 27; 63 (4): 618]. Transplantation 1997 Jan 15; 63 (1): 39–47PubMedCrossRefGoogle Scholar
  163. 163.
    Li B, Sehajpal PK, Khanna A, et al. Differential regulation of transforming growth factor beta and interleukin 2 genes in human T cells: demonstration by usage of novel competitor DNA constructs in the quantitative polymerase chain reaction. J Exp Med 1991 Nov 1; 174 (5): 1259–62PubMedCrossRefGoogle Scholar
  164. 164.
    Shihab FS, Andoh TF, Tanner AM, et al. Role of transforming growth factor-beta 1 in experimental chronic cyclosporine nephropathy. Kidney Int 1996 Apr; 49 (4): 1141–51PubMedCrossRefGoogle Scholar
  165. 165.
    Maluccio M, Sharma V, Lagman M, et al. Tacrolimus enhances transforming growth factor-betal expression and promotes tumor progression. Transplantation 2003; 76 (3): 597–602PubMedCrossRefGoogle Scholar
  166. 166.
    Prashar Y, Khanna A, Sehajpal P, et al. Stimulation of transforming growth factor-beta 1 transcription by cyclosporine. FEBS Lett 1995 Jan 23; 358 (2): 109–12PubMedCrossRefGoogle Scholar
  167. 167.
    Erickson AC, Barcellos-Hoff MH. The not-so innocent bystander: the microenvironment as a therapeutic target in cancer. Expert Opin Ther Targets 2003 Feb; 7 (1): 71–88PubMedCrossRefGoogle Scholar
  168. 168.
    Teicher BA. Malignant cells, directors of the malignant process: role of transforming growth factor-beta. Cancer Metastasis Rev 2001; 20 (1–2): 133–43PubMedCrossRefGoogle Scholar
  169. 169.
    Wikstrom P, Stattin P, Franck-Lissbrant I, et al. Transforming growth factor betal is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 1998 Sep 15; 37 (1): 19–29PubMedCrossRefGoogle Scholar
  170. 170.
    Niki M, Toyoda M, Nomura E, et al. Expression of transforming growth factor beta (TGF-beta) may contribute, in part, to the variations in histogenesis and the prevalence of peritoneal dissemination in human gastric carcinoma. Gastric Cancer 2000 Dec; 3 (4): 187–92PubMedCrossRefGoogle Scholar
  171. 171.
    Maehara Y, Kakeji Y, Kabashima A, et al. Role of transforming growth factor-beta 1 in invasion and metastasis in gastric carcinoma. J Clin Oncol 1999; 17 (2): 607–14PubMedGoogle Scholar
  172. 172.
    Hojo M, Morimoto T, Maluccio M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 1999 Feb 11; 397 (6719): 530–4PubMedCrossRefGoogle Scholar
  173. 173.
    Luan FL, Hojo M, Maluccio M, et al. Rapamycin blocks tumor progression: unlinking immunosuppression from antitumor efficacy. Transplantation 2002 May 27; 73 (10): 1565–72PubMedCrossRefGoogle Scholar
  174. 174.
    Koehl GE, Andrassy J, Guba M, et al. Rapamycin protects allografts from rejection while simultaneously attacking tumors in immunosuppressed mice. Transplantation 2004 May 15; 77 (9): 1319–26PubMedCrossRefGoogle Scholar
  175. 175.
    Ohsawa I, Murakami T, Uemoto S, et al. In vivo luminescent imaging of cyclosporin A-mediated cancer progression in rats. Transplantation 2006 Jun 15; 81 (11): 1558–67PubMedCrossRefGoogle Scholar
  176. 176.
    Moffatt SD, Metcalfe SM. Comparison between tacrolimus and cyclosporine as immunosuppressive agents compatible with tolerance induction by CD4/CD8 blockade. Transplantation 2000; 59: 1724–6CrossRefGoogle Scholar
  177. 177.
    Slattery C, Campbell E, McMorrow T, et al. Cyclosporine A-induced renal fibrosis: a role for epithelial-mesenchymal transition. Am J Pathol 2005 Aug; 167 (2): 395–407PubMedCrossRefGoogle Scholar
  178. 178.
    Shihab FS, Bennett WM, Tanner AM, et al. Mechanism of fibrosis in experimental tacrolimus nephrotoxicity. Transplantation 1997 Dec 27; 64 (12): 1829–37PubMedCrossRefGoogle Scholar
  179. 179.
    Perera MI, Kunz HW, Gill TJ 3rd, et al. Enhancement of induction of intestinal adenocarcinomas by cyclosporine in rats given a single dose of N-methyl N-nitrosourea. Transplantation 1986 Sep; 42 (3): 297–302PubMedCrossRefGoogle Scholar
  180. 180.
    Hattori A, Perera MI, Witkowski LA, et al. Accelerated development of spontaneous thymic lymphomas in male AKR mice receiving cyclosporine. Transplantation 1986 Jun; 41 (6): 784–7PubMedCrossRefGoogle Scholar
  181. 181.
    Reddi AS, Jyothirmayi GN, Halka K, et al. Potentiation of renal tumorigenicity by cyclosporine A in streptozotocin diabetic rats. Cancer Lett 1991 Feb; 56 (2): 109–15PubMedCrossRefGoogle Scholar
  182. 182.
    Guba M, von Breitenbuch P, Steinbauer M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002 Feb; 8 (2): 128–35PubMedCrossRefGoogle Scholar
  183. 183.
    Shihab FS, Bennett WM, Isaac J, et al. Nitric oxide modulates vascular endothelial growth factor and receptors in chronic cyclosporine nephrotoxicity. Kidney Int 2003 Feb; 63 (2): 522–33PubMedCrossRefGoogle Scholar
  184. 184.
    Rivera A, Maxwell SA. The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Biol Chem 2005 Aug 12; 280 (32): 29346–54PubMedCrossRefGoogle Scholar
  185. 185.
    Nelson EW, Eichwald EJ, Shelby J. Increased ultraviolet radiation-induced skin cancers in cyclosporine-treated mice. Transplant Proc 1987 Feb; 19 (1 Pt 1): 526–7PubMedGoogle Scholar
  186. 186.
    Tanabe K. Calcineurin inhibitors in renal transplantation: what is the best option? published erratum appears in Drugs 2003; 63 (20): 2234] Drugs 2003; 63 (15): 1535–48PubMedCrossRefGoogle Scholar
  187. 187.
    Webster A, Woodroffe RC, Taylor RS, et al. Tacrolimus versus cyclosporin as primary immunosuppression for kidney transplant recipients. Cochrane Database Syst Rev 2005 Oct 19; (4): CD003961Google Scholar
  188. 188.
    Baumeister S, Kleist C, Dohler B, et al. Risks of allogeneic hand transplantation. Microsurgery 2004; 24 (2): 98–103PubMedCrossRefGoogle Scholar
  189. 189.
    Wiesner RH. A long-term comparison of tacrolimus (FK506) versus cyclosporine in liver transplantation: a report of the United States FK506 Study Group. Transplantation 1998 Aug 27; 66 (4): 493–9PubMedCrossRefGoogle Scholar
  190. 190.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000 Jan 7; 100 (1): 57–70PubMedCrossRefGoogle Scholar
  191. 191.
    Shaw RJ, Cantley LC. Ras, PI (3)K and mTOR signalling controls tumour cell growth. Nature 2006 May 25; 441 (7092): 424–30PubMedCrossRefGoogle Scholar
  192. 192.
    Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006 Feb 10; 124 (3): 471–84PubMedCrossRefGoogle Scholar
  193. 193.
    McCormick F. Signalling networks that cause cancer. Trends Cell Biol 1999; 9 (12): M53–6PubMedCrossRefGoogle Scholar
  194. 194.
    Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 2003; 4 (4): 257–62PubMedCrossRefGoogle Scholar
  195. 195.
    Sarbassov DD, Ali SM, Kim DH, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004 Jul 27; 14 (14): 1296–302PubMedCrossRefGoogle Scholar
  196. 196.
    Jacinto E, Loewitch R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004 Nov; 6 (11): 1122–8PubMedCrossRefGoogle Scholar
  197. 197.
    Vignot S, Faivre S, Aguirre D, et al. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 2005 Apr; 16 (4): 525–37PubMedCrossRefGoogle Scholar
  198. 198.
    Webster AC, Le VW, Chapman JR, et al. Target of rapamycin inhibitors (sirolimus and everolimus) for primary immunosuppression of kidney transplant recipients: a systematic review and meta-analysis of randomized trials. Transplantation 2006 May; 81 (9): 1234–48PubMedCrossRefGoogle Scholar
  199. 199.
    Kahan BD. The Rapamune US Study Group. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. Lancet 2000 Jul 15; 356 (9225): 194–202Google Scholar
  200. 200.
    Kahan BD, Kaplan B, Lorber MI, et al. RAD in de novo renal transplantation: comparison of three doses on the incidence and severity of acute rejection. Transplantation 2001 May 27; 71 (10): 1400–6PubMedCrossRefGoogle Scholar
  201. 201.
    Boffa DJ, Luan F, Thomas D, et al. Rapamycin inhibits the growth and metastatic progression of non-small cell lung cancer. Clin Cancer Res 2004 Jan 1; 10 (1 Pt 1): 293–300PubMedCrossRefGoogle Scholar
  202. 202.
    McMahon G. VEGF receptor signaling in tumor angiogenesis. Oncologist 2000; 5 Suppl. 1: 3–10PubMedCrossRefGoogle Scholar
  203. 203.
    Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med 1999; 77: 527–43PubMedCrossRefGoogle Scholar
  204. 204.
    Brenneisen P, Wenk J, Wlaschek M, et al. Activation of p70 ribosomal protein S6 kinase is an essential step in the DNA damage-dependent signaling pathway responsible for the ultraviolet B-mediated increase in interstitial collagenase (MMP-1) and stromelysin-1 (MMP-3) protein levels in human dermal fibroblasts. J Biol Chem 2000 Feb 11; 275 (6): 4336–44PubMedCrossRefGoogle Scholar
  205. 205.
    Yarosh DB, Boumakis S, Brown AB, et al. Measurement of UVB-induced DNA damage and its consequences in models of immunosuppression. Methods 2002 Sep; 28 (1): 55–62PubMedCrossRefGoogle Scholar
  206. 206.
    Nepomuceno RR, Balatoni CE, Natkunam Y, et al. Rapamycin inhibits the interleukin 10 signal transduction pathway and the growth of Epstein Barr virus B-cell lymphomas. Cancer Res 2003 Aug 1; 63 (15): 4472–80PubMedGoogle Scholar
  207. 207.
    Majewski M, Korecka M, Joergensen J, et al. Immunosuppressive TOR kinase inhibitor everolimus (RAD) suppresses growth of cells derived from posttransplant lymphoproliferative disorder at allograft-protecting doses. Transplantation 2003 May 27; 75 (10): 1710–7PubMedCrossRefGoogle Scholar
  208. 208.
    Mathew T, Kreis H, Friend P. Two-year incidence of malignancy in sirolimus-treated renal transplant recipients: results from five multicenter studies. Clin Transplant 2004 Aug; 18 (4): 446–9PubMedCrossRefGoogle Scholar
  209. 209.
    Campistol JM, Eris J, Oberbauer R, et al. Sirolimus therapy after early cyclosporine withdrawal reduces the risk for cancer in adult renal transplantation. J Am Soc Nephrol 2006 Feb; 17 (2): 581–9PubMedCrossRefGoogle Scholar
  210. 210.
    Pascoe MD, Schena FP, Wali R, et al. The Sirolimus CONVERT Trial Study Group. Significantly lower malignancy rates in renal transplant recipients converted from calcineurin inhibitors (CNIs) to sirolimus compared with those who continued CNI therapy [abstract no. 1024]. World Transplant Congress; 2006 Jul 22-27; Boston (MA)Google Scholar
  211. 211.
    Kauffman HM, Cherikh WS, Cheng Y, et al. Maintenance immunosuppression with target-of-rapamycin inhibitors is associated with a reduced incidence of de novo malignancies. Transplantation 2005 Oct 15; 80 (7): 883–9PubMedCrossRefGoogle Scholar
  212. 212.
    Hayward GS. Initiation of angiogenic Kaposi’s sarcoma lesions. Cancer Cell 2003; 3 (1): 1–3PubMedCrossRefGoogle Scholar
  213. 213.
    Montaner S, Sodhi A, Molinolo A, et al. Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 2003; 3 (1): 23–36PubMedCrossRefGoogle Scholar
  214. 214.
    Campistol JM, Gutierrez-Dalmau A, Torregrosa JV. Conversion to sirolimus: a successful treatment for posttransplantation Kaposi’s sarcoma. Transplantation 2004 Mar 15; 77 (5): 760–2PubMedCrossRefGoogle Scholar
  215. 215.
    Stallone G, Schena A, Infante B, et al. Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med 2005 Mar 31; 352 (13): 1317–23PubMedCrossRefGoogle Scholar
  216. 216.
    Gutierrez-Dalmau A, Sanchez-Fructuoso A, Sanz-Guajardo A, et al. Efficacy of conversion to sirolimus in posttransplantation Kaposi’s sarcoma. Transplant Proc 2005 Nov; 37 (9): 3836–8PubMedCrossRefGoogle Scholar
  217. 217.
    Gutierrez-Dalmau A, Campistol JM. Kaposi’s sarcoma after renal transplantation. N Engl J Med 2005 Aug 25; 353 (8): 846–7PubMedCrossRefGoogle Scholar
  218. 218.
    Otley CC, Berg D, Ulrich C, et al. Reduction of Immunosup-pression Task Force of the International Transplant Skin Cancer Collaborative and the Skin Care in Organ Transplant Patients, Europe. Reduction of immunosuppression for transplant-associated skin cancer: expert consensus survey. Br J Dermatol 2006 Mar; 154 (3): 395–400Google Scholar
  219. 219.
    Penn I. The effect of immunosuppression on pre-existing cancers. Transplantation 1993 Apr; 55 (4): 742–7PubMedCrossRefGoogle Scholar
  220. 220.
    Poch E, Oppenheimer F, del Rio R, et al. Reinstitution of immunosuppression in a renal transplant recipient after remission of Kaposi’s sarcoma. Transplantation 1992; 54: 162–3PubMedCrossRefGoogle Scholar
  221. 221.
    Al-Sulaiman MH, Mousa DH, Dhar JM, et al. Does regressed posttransplantation Kaposi’s sarcoma recur following reintroduction of immunosuppression? Am J Nephrol 1992; 12: 384–6PubMedCrossRefGoogle Scholar
  222. 222.
    Doutrelepont JM, De Pauw L, Gruber SA, et al. Renal transplantation exposes patients with previous Kaposi’s sarcoma to a high risk of recurrence. Transplantation 1996; 62: 463–6PubMedCrossRefGoogle Scholar
  223. 223.
    Karras A, Thervet E, Le Meur Y, et al. Successful renal retransplantation after post-transplant lymphoproliferative disease. Am J Transplant 2004 Nov; 4 (11): 1904–9PubMedCrossRefGoogle Scholar
  224. 224.
    Birkeland SA, Hamilton-Dutoit S, Bendtzen K. Long-term follow-up of kidney transplant patients with posttransplant lymphoproliferative disorder: duration of posttransplant lymphoproliferative disorder-induced operational graft tolerance, interleukin-18 course, and results of retransplantation. Transplantation 2003 Jul 15; 76 (1): 153–8PubMedCrossRefGoogle Scholar
  225. 225.
    Kneteman NM, Oberholzer J, Al Saghier M, et al. Sirolimus-based immunosuppression for liver transplantation in the presence of extended criteria for hepatocellular carcinoma. Liver Transpl 2004 Oct; 10 (10): 1301–11PubMedCrossRefGoogle Scholar
  226. 226.
    Lebbe C, Euvrard S, Barrou B, et al. Sirolimus conversion for patients with posttransplant Kaposi’s sarcoma. Am J Transplant 2006; 6 (9): 2164–8PubMedCrossRefGoogle Scholar
  227. 227.
    Mazzaferro V, Regalia E, Doci R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 1996 Mar 14; 334 (11): 693–9PubMedCrossRefGoogle Scholar
  228. 228.
    Schumacher G, Oidtmann M, Rueggeberg A, et al. Sirolimus inhibits growth of human hepatoma cells alone or combined with tacrolimus, while tacrolimus promotes cell growth. World J Gastroenterol 2005 Mar 14; 11 (10): 1420–5PubMedGoogle Scholar
  229. 229.
    Elsharkawi M, Staib L, Henne-Bruns D, et al. Complete remission of posttransplant lung metastases from hepatocellular carcinoma under therapy with sirolimus and mycophenolate mofetil. Transplantation 2005 Apr 15; 79 (7): 855–7PubMedCrossRefGoogle Scholar
  230. 230.
    Stippel DL, Kasper HU, Schleimer K, et al. Successful use of sirolimus in a patient with bulky ovarian metastasis of hepatocellular carcinoma after liver transplantation. Transplant Proc 2005 Jun; 37 (5): 2185–7PubMedCrossRefGoogle Scholar
  231. 231.
    Rizell M, Cahlin C, Friman S, et al. Impressive regression of primary liver cancer after treatment with sirolimus. Acta Oncol 2005; 44 (5): 496PubMedCrossRefGoogle Scholar
  232. 232.
    EBPG Expert Group on Renal Tranplantation. European best practice guidelines for renal transplantation. Section IV: long-term management of the transplant recipient. IV.6.3. Cancer risk after renal tranplantation. Solid organ cancers: prevention and treatment. Nephrol Dial Tranplant 2002; 17 Suppl. 4: 32, 34-6CrossRefGoogle Scholar
  233. 233.
    Zeier M, Hartschuh W, Wiesel M, et al. Malignancy after renal transplantation. Am J Kidney Dis 2002 Jan; 39 (1): E5PubMedCrossRefGoogle Scholar
  234. 234.
    Kirk AD, Mannon RB, Swanson SJ, et al. Strategies for minimizing immunosuppression in kidney transplantation. Transpl Int 2005 Jan; 18 (1): 2–14PubMedCrossRefGoogle Scholar
  235. 235.
    Doutrelepont JM, De Pauw L, Gruber SA, et al. Renal transplantation exposes patients with previous Kaposi’s sarcoma to a high risk of recurrence. Transplantation 1996; 62 (4): 463–6PubMedCrossRefGoogle Scholar
  236. 236.
    Al-Akash SI, Al Makadma AS, Al Omari MG. Rapid response to rituximab in a pediatric liver transplant recipient with posttransplant lymphoproliferative disease and maintenance with sirolimus monotherapy. Pediatr Transplant 2005 Apr; 9 (2): 249–53PubMedCrossRefGoogle Scholar
  237. 237.
    Garcia VD, Bonamigo-Filho JS, Neumann J, et al. Rituximab and rapamycin for posttransplant lymphoproliferative disease treatment: report of three cases. Transplant Proc 2002 Nov; 34 (7): 2993–5PubMedCrossRefGoogle Scholar
  238. 238.
    Otley CC, Maragh SL. Reduction of immunosuppression for transplant-associated skin cancer: rationale and evidence of efficacy. Dermatol Surg 2005 Feb; 31 (2): 163–8PubMedCrossRefGoogle Scholar
  239. 239.
    Beuvink I, Boulay A, Fumagalli S, et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 2005 Mar 25; 120 (6): 747–59PubMedCrossRefGoogle Scholar
  240. 240.
    O’Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006 Feb 1; 66 (3): 1500–8PubMedCrossRefGoogle Scholar
  241. 241.
    Diekmann F, Budde K, Oppenheimer F, et al. Predictors of success in conversion from calcineurin inhibitor to sirolimus in chronic allograft dysfunction. Am J Transplant 2004; 4 (11): 1869–75PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2007

Authors and Affiliations

  1. 1.Department of Nephrology and Renal Transplantation, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Universitat de BarcelonaBarcelonaSpain

Personalised recommendations