Advertisement

Drugs

, Volume 66, Issue 17, pp 2213–2234 | Cite as

Blood Pressure Lowering for the Prevention and Treatment of Diabetic Kidney Disease

  • Merlin C. ThomasEmail author
  • Robert C. Atkins
Review Article

Abstract

The current pandemic of diabetes mellitus will inevitably be followed by an epidemic of chronic kidney disease. It is anticipated that 25–40% of patients with type 1 diabetes and 5–40% of patients with type 2 diabetes will ultimately develop diabetic kidney disease. The control of blood pressure represents a key component for the prevention and management of diabetic nephropathy. There is a strong epidemiological connection between hypertension in diabetes and adverse outcomes in diabetes. Hypertension is closely linked to insulin resistance as part of the ‘metabolic syndrome’. Diabetic nephropathy may lead to hypertension through direct actions on renal sodium handling, vascular compliance and vasomotor function.

Recent clinical trials also support the utility of blood pressure reduction in the prevention of diabetic kidney disease. In patients with normoalbuminuria, transition to microalbuminuria can be prevented by blood pressure reduction. This action appears to be significant regardless of whether patients have elevated blood pressure or not. The efficacy of ACE inhibition appears to be greater than that achieved by other agents with a similar degree of blood pressure reduction; although large observational studies suggest the risk of microalbuminuria may be reduced by blood pressure reduction, regardless of modality. In patients with established microalbuminuria, ACE inhibitors and angiotensin receptor antagonists (angiotensin receptor blockers [ARBs]) consistently reduce the risk of progression from microalbuminuria to macroalbuminuria, over and above their antihypertensive actions. The clinical utility of combining these strategies remains to be established. In patients with overt nephropathy, blood pressure reduction is associated with reduced urinary albumin excretion and, subsequently, a reduced risk of renal impairment or end stage renal disease. In addition to actions on systemic blood pressure, it is now clear that ACE inhibitors and ARBs also reduce proteinuria in patients with diabetes. This anti-proteinuric activity is distinct from other antihypertensive agents and diuretics.

Although there is a clear physiological rationale for blockade of the renin angiotensin system, which is strongly supported by clinical studies, to achieve the optimal lowering of blood pressure, particularly in the setting of established diabetic renal disease, a number of different antihypertensive agents will always be needed. In the end, the choice of agents should be individualised to achieve the maximal tolerated reduction in blood pressure and albuminuria. Ultimately, no matter how it is achieved, so long as it is achieved, renal risk can be reduced by agents that lower blood pressure and albuminuria.

Keywords

Chronic Kidney Disease Losartan Telmisartan Perindopril Irbesartan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

No sources of funding were used to assist in the preparation of this review. Dr Thomas has received honoraria from Servier Australia for work on the NEFRON study of diabetes in Australia. Prof. Atkins has no conflicts of interest that are directly relevant to the content of this review.

References

  1. 1.
    Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414(6865): 782–7PubMedCrossRefGoogle Scholar
  2. 2.
    Hogan P, Dall T, Nikolov P. Economic costs of diabetes in the US in 2002. Diabetes Care 2003; 26(3): 917–32PubMedCrossRefGoogle Scholar
  3. 3.
    Colagiuri S, Colagiuri R, Conway B, et al. DiabCost Australia: assessing the burden of type 2 diabetes in Australia. Canberra: Diabetes Australia, 2003Google Scholar
  4. 4.
    Ismail N, Becker B, Strzelczyk P, et al. Renal disease and hypertension in non-insulin-dependent diabetes mellitus. Kidney Int 1999; 55(1): 1–28PubMedCrossRefGoogle Scholar
  5. 5.
    Parving HH, Hommel E, Mathiesen E, et al. Prevalence of microalbuminuria, arterial hypertension, retinopathy and neuropathy in patients with insulin dependent diabetes. BMJ (Clin Res Ed) 1988; 296(6616): 156–60CrossRefGoogle Scholar
  6. 6.
    Standl E, Stiegler H. Microalbuminuria in a random cohort of recently diagnosed type 2 (non-insulin-dependent) diabetic patients living in the greater Munich area. Diabetologia 1993; 36(10): 1017–20PubMedCrossRefGoogle Scholar
  7. 7.
    Schmitz A, Vaeth M, Mogensen CE. Systolic blood pressure relates to the rate of progression of albuminuria in NIDDM. Diabetologia 1994; 37(12): 1251–8PubMedCrossRefGoogle Scholar
  8. 8.
    Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med 1999; 341(15): 1127–33PubMedCrossRefGoogle Scholar
  9. 9.
    US Renal Data System. USRDS 2004 annual data report: atlas of end-stage renal disease in the United States. Bethesda (MD): National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2004Google Scholar
  10. 10.
    Atkins RC. The epidemiology of chronic kidney disease. Kidney Int Suppl 2005; (94): S14-18Google Scholar
  11. 11.
    Gall MA, Nielsen FS, Smidt UM, et al. The course of kidney function in type 2 (non-insulin-dependent) diabetic patients with diabetic nephropathy. Diabetologia 1993; 36(10): 1071–8PubMedCrossRefGoogle Scholar
  12. 12.
    Rossing P, Hougaard P, Borch-Johnsen K, et al. Predictors of mortality in insulin dependent diabetes: 10 year observational follow up study. BMJ 1996; 313(7060): 779–84PubMedCrossRefGoogle Scholar
  13. 13.
    Muhlhauser I, Sawicki PT, Blank M, et al. Reliability of causes of death in persons with type I diabetes. Diabetologia 2002; 45(11): 1490–7PubMedCrossRefGoogle Scholar
  14. 14.
    Stephenson JM, Kenny S, Stevens LK, et al. Proteinuria and mortality in diabetes: the WHO Multinational Study of Vascular Disease in Diabetes. Diabet Med 1995; 12(2): 149–55PubMedCrossRefGoogle Scholar
  15. 15.
    Adler AI, Stevens RJ, Manley SE, et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 2003; 63(1): 225–32PubMedCrossRefGoogle Scholar
  16. 16.
    Hasslacher C, Ritz E, Wahl P, et al. Similar risks of nephropathy in patients with type I or type II diabetes mellitus. Nephrol Dial Transplant 1989; 4(10): 859–63PubMedGoogle Scholar
  17. 17.
    Mogensen CE. Combined high blood pressure and glucose in type 2 diabetes: double jeopardy. British trial shows clear effects of treatment, especially blood pressure reduction. BMJ 1998; 317(7160): 693–4PubMedCrossRefGoogle Scholar
  18. 18.
    UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998; 317(7160): 703–13CrossRefGoogle Scholar
  19. 19.
    Summary of revisions for the 2006 clinical practice recommendations. Diabetes Care 2006; 29 Suppl. 1: S3Google Scholar
  20. 20.
    National High Blood Pressure Education Program Working Group report on hypertension in diabetes. Hypertension 1994; 23(2): 145–58; discussion 159-60CrossRefGoogle Scholar
  21. 21.
    Norris KC, Agodoa LY. Unraveling the racial disparities associated with kidney disease. Kidney Int 2005 Sep; 68(3): 914–24PubMedCrossRefGoogle Scholar
  22. 22.
    Weil EJ, Nelson RG. Kidney disease among the indigenous peoples of Oceania. Ethn Dis 2006; 16 (2 Suppl. 2): S2–24PubMedGoogle Scholar
  23. 23.
    Ayodele OE, Alebiosu CO, Salako BL. Diabetic nephropathy: a review of the natural history, burden, risk factors and treatment. J Natl Med Assoc 2004; 96(11): 1445–54PubMedGoogle Scholar
  24. 24.
    Gress TW, Nieto FJ, Shahar E, et al. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis Risk in Communities Study. N Engl J Med 2000; 342(13): 905–12Google Scholar
  25. 25.
    Ferrannini E, Buzzigoli G, Bonadonna R, et al. Insulin resistance in essential hypertension. N Engl J Med 1987; 317(6): 350–7PubMedCrossRefGoogle Scholar
  26. 26.
    Parving HH. Controlling hypertension in diabetes. Acta Diabetol 2002; 39 Suppl. 2: S35–40PubMedCrossRefGoogle Scholar
  27. 27.
    Cardillo C, Campia U, Bryant MB, et al. Increased activity of endogenous endothelin in patients with type II diabetes mellitus. Circulation 2002; 106(14): 1783–7PubMedCrossRefGoogle Scholar
  28. 28.
    Thomas MC. Pathway-selective insulin resistance and microvascular disease in diabetes. Nat Clin Pract Endocrinol Metab 2005; 1(1): 74–8Google Scholar
  29. 29.
    Tuck M, Corry D, Trujillo A. Salt-sensitive blood pressure and exaggerated vascular reactivity in the hypertension of diabetes mellitus. Am J Med 1990; 88(3): 210–6PubMedCrossRefGoogle Scholar
  30. 30.
    Imanishi M, Yoshioka K, Okumura M, et al. Sodium sensitivity related to albuminuria appearing before hypertension in type 2 diabetic patients. Diabetes Care 2001; 24(1): 111–6PubMedCrossRefGoogle Scholar
  31. 31.
    Thomson SC, Vallon V, Blantz RC. Kidney function in early diabetes: the tubular hypothesis of glomerular filtration. Am J Physiol Renal Physiol 2004; 286(1): F8–15PubMedCrossRefGoogle Scholar
  32. 32.
    Vedovato M, Lepore G, Coracina A, et al. Effect of sodium intake on blood pressure and albuminuria in type 2 diabetic patients: the role of insulin resistance. Diabetologia 2004; 47(2): 300–3PubMedCrossRefGoogle Scholar
  33. 33.
    ter Maaten JC, Bakker SJ, Serne EH, et al. Insulin’s acute effects on glomerular filtration rate correlate with insulin sensitivity whereas insulin’s acute effects on proximal tubular sodium reabsorption correlation with salt sensitivity in normal subjects. Nephrol Dial Transplant 1999; 14(10): 2357–63PubMedCrossRefGoogle Scholar
  34. 34.
    Gans RO, Bilo HJ, Donker AJ. The renal response to exogenous insulin in non-insulin-dependent diabetes mellitus in relation to blood pressure and cardiovascular hormonal status. Nephrol Dial Transplant 1996; 11(5): 794–802PubMedCrossRefGoogle Scholar
  35. 35.
    Flack JM, Peters R, Shafi T, et al. Prevention of hypertension and its complications: theoretical basis and guidelines for treatment. J Am Soc Nephrol 2003; 14 (7 Suppl. 2): S92–8PubMedCrossRefGoogle Scholar
  36. 36.
    Brands MW, Fitzgerald SM. Blood pressure control early in diabetes: a balance between angiotensin II and nitric oxide. Clin Exp Pharmacol Physiol 2002; 29(1–2): 127–31PubMedCrossRefGoogle Scholar
  37. 37.
    Strojek K, Grzeszczak W, Lacka B, et al. Increased prevalence of salt sensitivity of blood pressure in IDDM with and without microalbuminuria. Diabetologia 1995; 38(12): 1443–8PubMedCrossRefGoogle Scholar
  38. 38.
    Beretta-Piccoli C, Weidmann P. Body sodium-blood volume state in nonazotemic diabetes mellitus. Miner Electrolyte Metab 1982; 7(1): 36–47PubMedGoogle Scholar
  39. 39.
    Trevisan R, Fioretto P, Semplicini A, et al. Role of insulin and atrial natriuretic peptide in sodium retention in insulin-treated IDDM patients during isotonic volume expansion. Diabetes 1990; 39(3): 289–98PubMedCrossRefGoogle Scholar
  40. 40.
    McKenna K, Smith D, Sherlock M, et al. Elevated plasma concentrations of atrial and brain natriuretic peptide in type 1 diabetic subjects. Ir J Med Sci 2005; 174(3): 53–7PubMedCrossRefGoogle Scholar
  41. 41.
    Simkova R, Kazdova L, Karasova L, et al. Effect of acute hyperglycaemia on sodium handling and excretion of nitric oxide metabolites, bradykinin, and cGMP in type 1 diabetes mellitus. Diabet Med 2004; 21(9): 968–75PubMedCrossRefGoogle Scholar
  42. 42.
    Karamanos B, Porta M, Songini M, et al. Different risk factors of microangiopathy in patients with type I diabetes mellitus of short versus long duration. The EURODIAB IDDM Complications Study. Diabetologia 2000; 43(3): 348–55Google Scholar
  43. 43.
    Lee SH, Lee TW, Ihm CG, et al. Genetics of diabetic nephropa-thy in type 2 DM: candidate gene analysis for the pathogenic role of inflammation. Nephrology (Carlton) 2005; 10 Suppl.: S32–6CrossRefGoogle Scholar
  44. 44.
    Sandrim VC, Syllos RW, Lisboa HR, et al. Endothelial nitric oxide synthase haplotypes affect the susceptibility to hypertension in patients with type 2 diabetes mellitus. Atherosclerosis 2006 Nov; 189(1): 241–6PubMedCrossRefGoogle Scholar
  45. 45.
    Miller JA, Scholey JW. The impact of renin-angiotensin system polymorphisms on physiological and pathophysiological processes in humans. Curr Opin Nephrol Hypertens 2004; 13(1): 101–6PubMedCrossRefGoogle Scholar
  46. 46.
    Kannel WB, McGee DL. Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care 1979; 2(2): 120–6PubMedCrossRefGoogle Scholar
  47. 47.
    Zatz R, Dunn BR, Meyer TW, et al. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 1986; 77(6): 1925–30PubMedCrossRefGoogle Scholar
  48. 48.
    Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med 1984; 311(2): 89–93PubMedCrossRefGoogle Scholar
  49. 49.
    Jerums G, Allen TJ, Campbell DJ, et al. Long-term comparison between perindopril and nifedipine in normotensive patients with type 1 diabetes and microalbuminuria. Am J Kidney Dis 2001; 37(5): 890–9PubMedCrossRefGoogle Scholar
  50. 50.
    Rumble JR, Doyle AE, Cooper ME. Comparison of effects of ACE inhibition with calcium channel blockade on renal disease in a model combining genetic hypertension and diabetes. Am J Hypertens 1995; 8(1): 53–7PubMedCrossRefGoogle Scholar
  51. 51.
    Parving HH, Kastrup H, Smidt UM, et al. Impaired autoregulation of glomerular filtration rate in type 1 (insulin-dependent) diabetic patients with nephropathy. Diabetologia 1984; 27(6): 547–52PubMedCrossRefGoogle Scholar
  52. 52.
    Christensen PK, Hansen HP, Parving HH. Impaired autoregulation of GFR in hypertensive non-insulin dependent diabetic patients. Kidney Int 1997; 52(5): 1369–74PubMedCrossRefGoogle Scholar
  53. 53.
    Park SK, Kang SK. Renal function and hemodynamic study in obese Zucker rats. Korean J Intern Med 1995; 10(1): 48–53PubMedGoogle Scholar
  54. 54.
    Yagi K, Kim S, Wanibuchi H, et al. Characteristics of diabetes, blood pressure, and cardiac and renal complications in Otsuka Long-Evans Tokushima Fatty rats. Hypertension 1997; 29(3): 728–35PubMedCrossRefGoogle Scholar
  55. 55.
    Levine DZ, Iacovitti M, Robertson SJ, et al. Modulation of single-nephron GFR in the db/db mouse model of type 2 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol 2006; 290(4): R975–81PubMedCrossRefGoogle Scholar
  56. 56.
    Cooper ME. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia 2001; 44(11): 1957–72PubMedCrossRefGoogle Scholar
  57. 57.
    Cortes P, Zhao X, Riser BL, et al. Role of glomerular mechanical strain in the pathogenesis of diabetic nephropathy. Kidney Int 1997; 51(1): 57–68PubMedCrossRefGoogle Scholar
  58. 58.
    Danda RS, Habiba NM, Rincon-Choles H, et al. Kidney involvement in a nongenetic rat model of type 2 diabetes. Kidney Int 2005; 68(6): 2562–71PubMedCrossRefGoogle Scholar
  59. 59.
    Janssen U, Riley SG, Vassiliadou A, et al. Hypertension superimposed on type II diabetes in Goto Kakizaki rats induces progressive nephropathy. Kidney Int 2003; 63(6): 2162–70PubMedCrossRefGoogle Scholar
  60. 60.
    Strippoli GF, Craig M, Schena FP, et al. Antihypertensive agents for primary prevention of diabetic nephropathy. J Am Soc Nephrol 2005; 16(10): 3081–91PubMedCrossRefGoogle Scholar
  61. 61.
    Strippoli G, Craig M, Craig J. Antihypertensive agents for preventing diabetic kidney disease. Cochrane Database Syst Rev 2005; 4: CD004136PubMedGoogle Scholar
  62. 62.
    Gross ML, Dikow R, Ritz E. Diabetic nephropathy: recent insights into the pathophysiology and the progression of diabetic nephropathy. Kidney Int Suppl 2005; (94): S50-3Google Scholar
  63. 63.
    Kelly DJ, Cox AJ, Tolcos M, et al. Attenuation of tubular apoptosis by blockade of the renin-angiotensin system in diabetic Ren-2 rats. Kidney Int 2002; 61(1): 31–9PubMedCrossRefGoogle Scholar
  64. 64.
    Huang W, Gallois Y, Bouby N, et al. Genetically increased angiotensin I-converting enzyme level and renal complications in the diabetic mouse. Proc Natl Acad Sci U S A 2001; 98(23): 13330–4PubMedCrossRefGoogle Scholar
  65. 65.
    Marre M, Hadjadj S, Bouhanick B. Hereditary factors in the development of diabetic renal disease. Diabetes Metab 2000; 26 Suppl. 4: 30–6Google Scholar
  66. 66.
    Price DA, De’Oliveira JM, Fisher ND, et al. The state and responsiveness of the renin-angiotensin-aldosterone system in patients with type II diabetes mellitus. Am J Hypertens 1999; 12 (4 Pt 1): 348–55PubMedGoogle Scholar
  67. 67.
    Zimpelmann J, Kumar D, Levine DZ, et al. Early diabetes mellitus stimulates proximal tubule renin mRNA expression in the rat. Kidney Int 2000; 58(6): 2320–30PubMedCrossRefGoogle Scholar
  68. 68.
    Bonnet F, Candido R, Carey RM, et al. Renal expression of angiotensin receptors in long-term diabetes and the effects of angiotensin type 1 receptor blockade. J Hypertens 2002; 20(8): 1615–24PubMedCrossRefGoogle Scholar
  69. 69.
    Vallon V, Wead LM, Blantz RC. Renal hemodynamics and plasma and kidney angiotensin II in established diabetes mellitus in rats: effect of sodium and salt restriction. J Am Soc Nephrol 1995; 5(10): 1761–7PubMedGoogle Scholar
  70. 70.
    Campbell DJ, Kelly DJ, Wilkinson-Berka JL, et al. Increased bradykinin and “normal” angiotensin peptide levels in diabetic Sprague-Dawley and transgenic (mRen-2)27 rats. Kidney Int 1999; 56(1): 211–21PubMedCrossRefGoogle Scholar
  71. 71.
    Osei SY, Price DA, Laffel LM, et al. Effect of angiotensin II antagonist eprosartan on hyperglycemia-induced activation of intrarenal renin-angiotensin system in healthy humans. Hypertension 2000; 36(1): 122–6PubMedCrossRefGoogle Scholar
  72. 72.
    Parving HH, Rossing P. Therapeutic benefits of ACE inhibitors and other antihypertensive drugs in patients with type 2 diabetes. Diabetes Care 2001; 24(1): 177–80PubMedCrossRefGoogle Scholar
  73. 73.
    Mezzano S, Droguett A, Burgos ME, et al. Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy. Kidney Int Suppl 2003; (86): S64–70Google Scholar
  74. 74.
    Singh R, Alavi N, Singh AK, et al. Role of angiotensin II in glucose-induced inhibition of mesangial matrix degradation. Diabetes 1999; 48(10): 2066–73PubMedCrossRefGoogle Scholar
  75. 75.
    McLennan SV, Martell SK, Yue DK. Effects of mesangium glycation on matrix metalloproteinase activities: possible role in diabetic nephropathy. Diabetes 2002; 51(8): 2612–8PubMedCrossRefGoogle Scholar
  76. 76.
    Clavant SP, Forbes JM, Thallas V, et al. Reversible angiotensin II-mediated albuminuria in rat kidneys is dynamically associated with cytoskeletal organization. Nephron Physiol 2003; 93(2): 51–60CrossRefGoogle Scholar
  77. 77.
    Langham RG, Kelly DJ, Cox AJ, et al. Ang II-induced protein-uria and expression of the podocyte slit pore membrane protein, nephrin. Nephrol Dial Transplant 2004; 19(1): 262–3PubMedCrossRefGoogle Scholar
  78. 78.
    Griendling KK, Ushio-Fukai M. Reactive oxygen species as mediators of angiotensin II signaling. Regul Pept 2000; 91(1–3): 21–7PubMedCrossRefGoogle Scholar
  79. 79.
    Tikellis C, Cooper ME, Thomas MC. Role of the rennin-angiotensin system in the endocrine pancreas: implications for the development of diabetes. Int J Biochem Cell Biol 2006; 38(5–6): 737–51PubMedCrossRefGoogle Scholar
  80. 80.
    Maclsaac RJ, Tsalamandris C, Panagiotopoulos S, et al. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 2004; 27(1): 195–200CrossRefGoogle Scholar
  81. 81.
    Gerstein HC, Mann JF, Pogue J, et al. Prevalence and determinants of microalbuminuria in high-risk diabetic and nondiabetic patients in the Heart Outcomes Prevention Evaluation Study. The HOPE Study Investigators. Diabetes Care 2000; 23 Suppl. 2: B35–9Google Scholar
  82. 82.
    Kvetny J, Gregersen G, Pedersen RS. Randomized placebo-controlled trial of perindopril in normotensive, normoalbumin-uric patients with type 1 diabetes mellitus. QIM 2001; 94(2): 89–94Google Scholar
  83. 83.
    The EUCLID Study Group. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. Lancet 1997; 349(9068): 1787–92CrossRefGoogle Scholar
  84. 84.
    Kasiske BL, Kalil RS, Ma JZ, et al. Effect of antihypertensive therapy on the kidney in patients with diabetes: a meta-regression analysis. Ann Intern Med 1993; 118(2): 129–38PubMedGoogle Scholar
  85. 85.
    UK Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. BMJ 1998; 317(7160): 713–20CrossRefGoogle Scholar
  86. 86.
    Strippoli GF, Craig M, Deeks JJ, et al. Effects of angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists on mortality and renal outcomes in diabetic nephropathy: systematic review. BMJ 2004; 329(7470): 828PubMedCrossRefGoogle Scholar
  87. 87.
    Perrin NE, Torbjornsdotter TB, Jaremko GA, et al. The course of diabetic glomerulopathy in patients with type I diabetes: a 6-year follow-up with serial biopsies. Kidney Int 2006; 69(4): 699–705PubMedCrossRefGoogle Scholar
  88. 88.
    Bertani T, Gambara V, Remuzzi G. Structural basis of diabetic nephropathy in microalbuminuric NIDDM patients: a light microscopy study. Diabetologia 1996; 39(12): 1625–8PubMedCrossRefGoogle Scholar
  89. 89.
    Derby L, Warram JH, Laffel LM, et al. Elevated blood pressure predicts the development of persistent proteinuria in the presence of poor glycemic control, in patients with type I diabetes. Diabetes Metab 1989; 15 (5 Pt 2): 320–6Google Scholar
  90. 90.
    Tanaka Y, Atsumi Y, Matsuoka K, et al. Role of glycemic control and blood pressure in the development and progression of nephropathy in elderly Japanese NIDDM patients. Diabetes Care 1998; 21(1): 116–20PubMedCrossRefGoogle Scholar
  91. 91.
    Perkins BA, Ficociello LH, Silva KH, et al. Regression of microalbuminuria in type 1 diabetes. N Engl J Med 2003; 348(23): 2285–93PubMedCrossRefGoogle Scholar
  92. 92.
    Yamada T, Komatsu M, Komiya I, et al. Development, progression, and regression of microalbuminuria in Japanese patients with type 2 diabetes under tight glycemic and blood pressure control: the Kashiwa study. Diabetes Care 2005; 28(11): 2733–8PubMedCrossRefGoogle Scholar
  93. 93.
    Effect of 3 years of antihypertensive therapy on renal structure in type 1 diabetic patients with albuminuria: the European Study for the Prevention of Renal Disease in Type 1 Diabetes (ESPRIT). Diabetes 2001; 50 (4): 843–50Google Scholar
  94. 94.
    Osterby R, Bangstad HJ, Rudberg S. Follow-up study of glomerular dimensions and cortical interstitium in microalbuminuric type 1 diabetic patients with or without antihypertensive treatment. Nephrol Dial Transplant 2000; 15(10): 1609–16PubMedCrossRefGoogle Scholar
  95. 95.
    Ahmad J, Shafique S, Abidi SM, et al. Effect of 5-year enalapril therapy on progression of microalbuminuria and glomerular structural changes in type 1 diabetic subjects. Diabetes Res Clin Pract 2003; 60(2): 131–8PubMedCrossRefGoogle Scholar
  96. 96.
    Hollenberg NK. Renal implications of angiotensin receptor blockers. Am J Hypertens 2001; 14 (7 Pt 2): 237–41SCrossRefGoogle Scholar
  97. 97.
    Acbay O. Effects of low-dose losartan treatment on persistent microalbuminuria in normotensive type 1 diabetic subjects. J Endocrinol Invest 2001; 24(8): 608–11PubMedGoogle Scholar
  98. 98.
    Chiarelli F, Di Marzio D, Santilli F, et al. Effects of irbesartan on intracellular antioxidant enzyme expression and activity in adolescents and young adults with early diabetic angiopathy. Diabetes Care 2005; 28(7): 1690–7PubMedCrossRefGoogle Scholar
  99. 99.
    O’Hare P, Bilbous R, Mitchell T, et al. Low-dose ramipril reduces microalbuminuria in type 1 diabetic patients without hypertension: results of a randomized controlled trial. Diabetes Care 2000; 23(12): 1823–9PubMedCrossRefGoogle Scholar
  100. 100.
    Voyaki SM, Staessen JA, Thijs L, et al. Follow-up of renal function in treated and untreated older patients with isolated systolic hypertension. Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. J Hypertens 2001; 19(3): 511–9PubMedCrossRefGoogle Scholar
  101. 101.
    Estacio RO, Jeffers BW, Gifford N, et al. Effect of blood pressure control on diabetic microvascular complications in patients with hypertension and type 2 diabetes. Diabetes Care 2000; 23 Suppl. 2: B54–64PubMedGoogle Scholar
  102. 102.
    Jerums G, Allen TJ, Campbell DJ, et al. Long-term renoprotection by perindopril or nifedipine in non-hypertensive patients with type 2 diabetes and microalbuminuria. Diabet Med 2004; 21(11): 1192–9PubMedCrossRefGoogle Scholar
  103. 103.
    Casas JP, Chua W, Loukogeorgakis S, et al. Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis. Lancet 2005; 366(9502): 2026–33PubMedCrossRefGoogle Scholar
  104. 104.
    Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and micro-HOPE substudy. Lancet 2000; 355(9200): 253–9CrossRefGoogle Scholar
  105. 105.
    Parving HH, Lehnert H, Brochner-Mortensen J, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001; 345(12): 870–8PubMedCrossRefGoogle Scholar
  106. 106.
    Viberti G, Wheeldon NM. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: a blood pressure-independent effect. Circulation 2002; 106(6): 672–8PubMedCrossRefGoogle Scholar
  107. 107.
    Tan KC, Chow WS, Ai VH, et al. Effects of angiotensin II receptor antagonist on endothelial vasomotor function and urinary albumin excretion in type 2 diabetic patients with microalbuminuria. Diabetes Metab Res Rev 2002; 18(1): 71–6PubMedCrossRefGoogle Scholar
  108. 108.
    Muirhead N, Feagan B, Mahon J, et al. The effects of valsartan and captopril on reducing microalbuminuria in patients with type 2 diabetes mellitus: a placebo-controlled trial. Curr Ther Res 1999; 60: 650–60CrossRefGoogle Scholar
  109. 109.
    Lacourciere Y, Belanger A, Godin C, et al. Long-term comparison of losartan and enalapril on kidney function in hypertensive type 2 diabetics with early nephropathy. Kidney Int 2000; 58(2): 762–9PubMedCrossRefGoogle Scholar
  110. 110.
    Tutuncu NB, Gurlek A, Gedik O. Efficacy of ACE inhibitors and ATII receptor blockers in patients with microalbuminuria: a prospective study. Acta Diabetol 2001; 38(4): 157–61PubMedCrossRefGoogle Scholar
  111. 111.
    Barnett AH, Bain SC, Bouter P, et al. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med 2004; 351(19): 1952–61PubMedCrossRefGoogle Scholar
  112. 112.
    Mogensen CE, Neldam S, Tikkanen I, et al. Randomised controlled trial of dual blockade of renin-angiotensin system in patients with hypertension, microalbuminuria, and non-insulin dependent diabetes: the candesartan and lisinopril microalbuminuria (CALM) study. BMJ 2000; 321(7274): 1440–4PubMedCrossRefGoogle Scholar
  113. 113.
    Krimholtz MJ, Karalliedde J, Thomas S, et al. Targeting albumin excretion rate in the treatment of the hypertensive diabetic patient with renal disease. J Am Soc Nephrol 2005; 16 Suppl. 1: 42–7CrossRefGoogle Scholar
  114. 114.
    Rossing K, Christensen PK, Jensen BR, et al. Dual blockade of the renin-angiotensin system in diabetic nephropathy: a randomized double-blind crossover study. Diabetes Care 2002; 25(1): 95–100PubMedCrossRefGoogle Scholar
  115. 115.
    Rossing K, Schjoedt KJ, Jensen BR, et al. Enhanced renoprotective effects of ultrahigh doses of irbesartan in patients with type 2 diabetes and microalbuminuria. Kidney Int 2005; 68(3): 1190–8PubMedCrossRefGoogle Scholar
  116. 116.
    Deferrari G, Ravera M, Berruti V. Treatment of diabetic nephropathy in its early stages. Diabetes Metab Res Rev 2003; 19(2): 101–14PubMedCrossRefGoogle Scholar
  117. 117.
    Rossing P, Hommel E, Smidt UM, et al. Impact of arterial blood pressure and albuminuria on the progression of diabetic nephropathy in IDDM patients. Diabetes 1993; 42(5): 715–9PubMedCrossRefGoogle Scholar
  118. 118.
    Ghavamian M, Gutch CF, Kopp KF, et al. The sad truth about hemodialysis in diabetic nephropathy. JAMA 1972; 222(11): 1386–9PubMedCrossRefGoogle Scholar
  119. 119.
    Atkins RC, Briganti EM, Lewis JB, et al. Proteinuria reduction and progression to renal failure in patients with type 2 diabetes mellitus and overt nephropathy. Am J Kidney Dis 2005; 45(2): 281–7PubMedCrossRefGoogle Scholar
  120. 120.
    de Zeeuw D, Remuzzi G, Parving HH, et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int 2004; 65(6): 2309–20PubMedCrossRefGoogle Scholar
  121. 121.
    Wilmer WA, Hebert LA, Lewis EJ, et al. Remission of nephrotic syndrome in type 1 diabetes: long-term follow-up of patients in the Captopril Study. Am J Kidney Dis 1999; 34(2): 308–14PubMedCrossRefGoogle Scholar
  122. 122.
    Parving HH, Andersen AR, Smidt UM, et al. Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet 1983; 1(8335): 1175–9PubMedCrossRefGoogle Scholar
  123. 123.
    Mogensen CE. Long-term antihypertensive treatment inhibiting progression of diabetic nephropathy. Br Med J (Clin Res Ed) 1982; 285(6343): 685–8CrossRefGoogle Scholar
  124. 124.
    Weidmann P, Boehlen LM, de Courten M. Effects of different antihypertensive drugs on human diabetic proteinuria. Nephrol Dial Transplant 1993; 8(7): 582–4PubMedGoogle Scholar
  125. 125.
    Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 1993; 329(20): 1456–62Google Scholar
  126. 126.
    Ferder L, Daccordi H, Martello M, et al. Angiotensin converting enzyme inhibitors versus calcium antagonists in the treatment of diabetic hypertensive patients. Hypertension 1992; 19 (2 Suppl.): 11237–42CrossRefGoogle Scholar
  127. 127.
    Nielsen S, Schmitz A, Rehling M, et al. Systolic blood pressure relates to the rate of decline of glomerular filtration rate in type II diabetes. Diabetes Care 1993; 16(11): 1427–32PubMedCrossRefGoogle Scholar
  128. 128.
    Parving HH, Rossing P. The use of anti-hypertensive agents in prevention and treatment of diabetic nephropathy. Carl Ping Nephrol Hyper 1994; 3: 292–300CrossRefGoogle Scholar
  129. 129.
    Lebovitz HE, Wiegmann TB, Cnaan A, et al. Renal protective effects of enalapril in hypertensive NIDDM: role of baseline albuminuria. Kidney Int Suppl 1994; 45: S150–5PubMedCrossRefGoogle Scholar
  130. 130.
    Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345(12): 861–9PubMedCrossRefGoogle Scholar
  131. 131.
    Jacobsen P, Andersen S, Rossing K, et al. Dual blockade of the renin-angiotensin system versus maximal recommended dose of ACE inhibition in diabetic nephropathy. Kidney Int 2003; 63(5): 1874–80PubMedCrossRefGoogle Scholar
  132. 132.
    Jacobsen P, Andersen S, Rossing K, et al. Dual blockade of the renin-angiotensin system in type 1 patients with diabetic nephropathy. Nephrol Dial Transplant 2002; 17(6): 1019–24PubMedCrossRefGoogle Scholar
  133. 133.
    Rossing K, Jacobsen P, Pietraszek L, et al. Renoprotective effects of adding angiotensin II receptor blocker to maximal recommended doses of ACE inhibitor in diabetic nephropathy: a randomized double-blind crossover trial. Diabetes Care 2003; 26(8): 2268–74PubMedCrossRefGoogle Scholar
  134. 134.
    Morales E, Valero MA, Leon M, et al. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am J Kidney Dis 2003; 41(2): 319–27PubMedCrossRefGoogle Scholar
  135. 135.
    Praga M, Hernandez E, Andres A, et al. Effects of body-weight loss and captopril treatment on proteinuria associated with obesity. Nephron 1995; 70(1): 35–41PubMedCrossRefGoogle Scholar
  136. 136.
    Baba T, Murabayashi S, Tomiyama T, et al. Uncontrolled hypertension is associated with a rapid progression of nephropathy in type 2 diabetic patients with proteinuria and preserved renal function. Tohoku J Exp Med 1990; 161(4): 311–8PubMedCrossRefGoogle Scholar
  137. 137.
    Ravid M, Brosh D, Levi Z, et al. Use of enalapril to attenuate decline in renal function in normotensive, normoalbuminuric patients with type 2 diabetes mellitus: a randomized, controlled trial. Ann Intern Med 1998; 128 (12 Pt 1): 982–8PubMedGoogle Scholar
  138. 138.
    Kopf D, Schmitz H, Beyer J, et al. A double-blind trial of perindopril and nitrendipine in incipient diabetic nephropathy. Diabetes Nutr Metab 2001; 14(5): 245–52PubMedGoogle Scholar
  139. 139.
    Barnett A. Preventing renal complications in type 2 diabetes: results of the diabetics exposed to telmisartan and enalapril trial. J Am Soc Nephrol 2006; 17 (4 Suppl. 2): S132–5PubMedCrossRefGoogle Scholar
  140. 140.
    Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345(12): 851–60PubMedCrossRefGoogle Scholar
  141. 141.
    Rahman M, Pressel S, Davis BR, et al. Renal outcomes in high-risk hypertensive patients treated with an angiotensin-con-verting enzyme inhibitor or a calcium channel blocker vs a diuretic: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med 2005; 165(8): 936–46PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  1. 1.Danielle Alberti Memorial Centre for Diabetic Complications, Wynn DomainBaker Heart Medical Research InstituteMelbourneAustralia
  2. 2.Department of Epidemiology & Preventive MedicineMonash UniversityMelbourneAustralia

Personalised recommendations