Drugs

, Volume 65, Issue 18, pp 2675–2717 | Cite as

Ropivacaine

A Review of its Use in Regional Anaesthesia and Acute Pain Management
  • Dene Simpson
  • Monique P. Curran
  • Vicki Oldfield
  • Gillian M. Keating
Adis Drug Evaluation

Summary

Abstract

Ropivacaine (Naropin®) is the pure S(−)-enantiomer of propivacaine, and is a long-acting amide local anaesthetic agent, eliciting nerve block via reversible inhibition of sodium ion influx in nerve fibres.

Ropivacaine is a well tolerated regional anaesthetic effective for surgical anaesthesia as well as the relief of postoperative and labour pain. The efficacy of ropivacaine is similar to that of bupivacaine and levobupivacaine for peripheral nerve blocks and, although it may be slightly less potent than bupivacaine when administered epidurally or intrathecally, equi-effective doses have been established. Clinically adequate doses of ropivacaine appear to be associated with a lower incidence or grade of motor block than bupivacaine. Thus ropivacaine, with its efficacy, lower propensity for motor block and reduced potential for CNS toxicity and cardiotoxicity, appears to be an important option for regional anaesthesia and for the management of postoperative and labour pain.

Pharmacological Properties

Like other local anaesthetics, ropivacaine elicits nerve block via reversible inhibition of sodium ion influx in nerve fibres. The pKa of ropivacaine is similar to that of bupivacaine and levobupivacaine (≈8.2) but, unlike racemic bupivacaine, ropivacaine is the pure S(−)-enantiomer of propivacaine. It has lower lipid solubility and is less likely than bupivacaine to penetrate large, myelinated motor fibres. The degree of ropivacaine-induced sensory and motor block are dose- and age-dependent.

Despite the lower potency (based on minimum local anaesthetic concentrations) of ropivacaine than bupivacaine or levobupivacaine at lower doses, such as those used for epidural or intrathecal analgesia, ropivacaine has similar efficacy to these agents at higher doses such as those used for peripheral nerve block.

As with other local anaesthetics, ropivacaine has the potential to induce cardiovascular toxicity (e.g. arrhythmias and reduced myocardial conductivity and contractility) and CNS toxicity (e.g. seizures) at high plasma concentrations such as those occurring after large doses or inadvertent intravascular administration. It has a significantly higher threshold for cardiovascular and CNS toxicity than bupivacaine in animals and healthy volunteers.

Ropivacaine displays linear and dose-proportional pharmacokinetics up to 80mg (when administered intravenously). Absorption from the epidural space is complete and biphasic; the first phase (half-life [t;] 14 minutes) is followed by a slower second phase (t; 4.2 hours). Ropivacaine is extensively protein bound and crosses the placenta during epidural administration for Caesarean section. It is metabolised in the liver and excreted in the urine.

Therapeutic Efficacy

Randomised, double-blind, comparative clinical trials in adults have demonstrated the efficacy of ropivacaine in providing a profound sensory and motor block suitable for anaesthesia and a sensory/motor block profile suitable for postoperative or labour pain when administered by various routes (principally epidural or intrathecal administration and peripheral nerve block).

For epidurally administered surgical anaesthesia, ropivacaine and bupivacaine have similar efficacy, whereas with epidural administration for postoperative or labour analgesia, where doses required are lower than those needed for anaesthesia, ropivacaine has a shorter-lasting sensory block as well as a lower incidence/ degree of motor block than bupivacaine; equipotent doses have been established.

The duration of analgesia was less with ropivacaine than bupivacaine when administered intrathecally for anaesthesia or labour pain relief, but the duration of sensory block is still adequate for anaesthesia and the quicker regression of the motor block encourages mobilisation and recovery.

Peripheral nerve block for anaesthesia in orthopaedic surgery and for postoperative pain relief requires the use of relatively high doses of regional anaesthetic agents and the potency differences between ropivacaine and bupivacaine that were evident with epidural or intrathecal administration were not observed with this route of administration.

Ropivacaine and levobupivacaine are generally similarly effective for the above indications and routes of administration.

In children aged <12 years, ropivacaine provided effective postoperative pain relief when administered as a caudal or lumbar epidural injection, as a continuous epidural infusion or as a peripheral nerve block. The analgesic efficacy of ropivacaine was similar to that of bupivacaine and levobupivacaine; however, postoperative motor blockade was significantly less in ropivacaine than in bupivacaine recipients.

Tolerability

Ropivacaine is generally well tolerated regardless of the route of administration. Adverse events that occurred in ≥5% of patients in clinical trials who received ropivacaine 0.125–1% via various routes of administration for surgery, labour, Caesarean section, postoperative pain management, peripheral nerve block or local infiltration were hypotension (32%), nausea (17%), vomiting (7%), brady-cardia (6%) and headache (5%). Epidural administration of ropivacaine for surgery produced dose-dependent adverse events similar to those observed with equal doses of bupivacaine. Ropivacaine is generally well tolerated in the fetus or neonate following maternal epidural administration. The incidence of cardiovascular and CNS toxicity as a result of inadvertent intravascular injection of ropivacaine appears to be low.

The tolerability of ropivacaine in children (aged from 1 month to 15 years) appears to be at least similar to that of bupivacaine or levobupivacaine and is generally good, regardless of the route of administration. The most frequently occurring adverse events were nausea and vomiting.

References

  1. 1.
    Hansen TG. Ropivacaine: a pharmacological review. Expert Rev Neurother 2004 Sep; 4(5): 781–91PubMedCrossRefGoogle Scholar
  2. 2.
    McClellan KJ, Faulds D. Ropivacaine: an update of its use in regional anaesthesia. Drugs 2000 Nov; 60: 1065–93PubMedCrossRefGoogle Scholar
  3. 3.
    AstraZeneca. Global Leaders in Anaesthesia; global prescribing information [online]. Available from URL: http://www.anaesthesia-az.com [Accessed 2005 Jul 18]
  4. 4.
    Rosenberg PH, Heinonen E. Differential sensitivity of A and C nerve fibres to long-acting amide local anaesthetics. Br J Anaesth 1983; 55: 163–7PubMedCrossRefGoogle Scholar
  5. 5.
    Bader AM, Datta S, Flanagan H, et al. Comparison of bupivacaine- and ropivacaine-induced conduction blockade in the isolated rabbit vagus nerve. Anesth Analg 1989; 68: 724–7PubMedCrossRefGoogle Scholar
  6. 6.
    Kindler CH, Paul M, Zou H, et al. Amide local anaesthetics potently inhibit the human tandem pore domain background K+ channel TASK-2 (KCNK5). J Pharmacol Exp Ther 2003; 306(1): 84–92PubMedCrossRefGoogle Scholar
  7. 7.
    Polley LS, Columb MO, Naughton NN, et al. Relative analgesic potencies of levobupivacaine and ropivacaine for epidural analgesia in labor. Anesthesiology 2003 Dec; 99(6): 1354–8PubMedCrossRefGoogle Scholar
  8. 8.
    Capogna G, Celleno D, Fusco P, et al. Relative potencies of bupivacaine and ropivacaine for analgesia in labour. Br J Anaesth 1999; 82(3): 371–3PubMedCrossRefGoogle Scholar
  9. 9.
    Camorcia M, Capogna G, Columb MO. Minimum local analgesic doses of ropivacaine, levobupivacaine, and bupivacaine for intrathecal labor analgesia. Anesthesiology 2005 Mar; 102(3): 646–50PubMedCrossRefGoogle Scholar
  10. 10.
    Lacassie HJ, Columb MO, Lacassie HP, et al. The relative motor blocking potencies of epidural bupivacaine and ropivacaine in labor. Anesth Analg 2002 Jul; 95: 204–8PubMedCrossRefGoogle Scholar
  11. 11.
    Sia AT, Goy RW, Lim Y, et al. A comparison of median effective doses of intrathecal levobupivacaine and ropivacaine for labor analgesia. Anesthesiology 2005 Mar; 102(3): 651–6PubMedCrossRefGoogle Scholar
  12. 12.
    Benhamou D, Ghosh C, Mercier FJ. A randomized sequential allocation study to determine the minimum effective analgesic concentration of levobupivacaine and ropivacaine in patients receiving epidural analgesia for labor. Anesthesiology 2003 Dec; 99(6): 1383–6PubMedCrossRefGoogle Scholar
  13. 13.
    Camorcia M, Capogna G, Lyons G, et al. Epidural test dose with levobupivacaine and ropivacaine: determination of ED(50) motor block after spinal administration. Br J Anaesth 2004 Jun; 92(6): 850–3PubMedCrossRefGoogle Scholar
  14. 14.
    Casati A, Fanelli G, Magistris L, et al. Minimum local anesthetic volume blocking the femoral nerve in 50% of cases: a double-blinded comparison between 0.5% ropivacaine and 0.5% bupivacaine. Anesth Analg 2001 Jan; 92: 205–8PubMedCrossRefGoogle Scholar
  15. 15.
    Knudsen K, Beckman Suurkula M, Blomberg S, et al. Central nervous and cardiovascular effects of i.V. infusions of ropivacaine, bupivacaine and placebo in volunteers. Br J Anaesth 1997 May; 78(5): 507–14CrossRefGoogle Scholar
  16. 16.
    Scott DB, Lee A, Fagan D, et al. Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg 1989; 69: 563–9PubMedGoogle Scholar
  17. 17.
    Stewart J, Kellett N, Castro D. The central nervous system and cardiovascular effects of levobupivacaine and ropivacaine in healthy volunteers. Anesth Analg 2003 Aug; 97(2): 412–6PubMedCrossRefGoogle Scholar
  18. 18.
    Atanassoff PG, Hartmannsgruber MWB. Central nervous system side effects are less important after iv regional anesthesia with ropivacaine 0.2% compared to lidocaine 0.5% in volunteers. Can J Anesth 2002 Feb; 49: 169–72PubMedCrossRefGoogle Scholar
  19. 19.
    Dory P, Dewinde P, Vanderick B, et al. The comparative toxicity of ropivacaine and bupivacaine at equipotent doses in rats. Anesth Analg 2000; 91: 1489–92CrossRefGoogle Scholar
  20. 20.
    Ohmura S, Kawada M, Ohta T, et al. Systemic toxicity and resuscitation in bupivacaine-, levobupivacaine- or ropiva-caine-infused rats. Anesth Analg 2001; 93: 743–8PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang S, Yao S, Li Q. Effects of ropivacaine and bupivacaine on rabbit myocardial energetic metabolism and mitochondria oxidation. J Huazhong Univ Sci Technolog Med Sci 2003; 23(2): 178–9PubMedCrossRefGoogle Scholar
  22. 22.
    Sztark F, Malgat M, Dabadie P, et al. Comparison of the effects of bupivacaine and ropivacaine on heart cell mitochondrial bioenergetics. Anesthesiology 1998; 88: 1340–9PubMedCrossRefGoogle Scholar
  23. 23.
    Kawano T, Oshita S, Takahashi A, et al. Molecular mechanisms of the inhibitory effects of bupivacaine, levobupivacaine, and ropivacaine on sarcolemmal adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Anesthesiology 2004 Aug; 101(2): 390–8PubMedCrossRefGoogle Scholar
  24. 24.
    Paternoster DM, Micaglio M, Tambuscio, et al. The effects of epidural analgesia and uterine contractions on fetal oxygen saturation during the first stage of labour. Int J Obstet Anesth 2001 Apr; 10(2): 103–7PubMedCrossRefGoogle Scholar
  25. 25.
    Lee BB, Kee WDN, Wong ELY, et al. Dose-response study of epidural ropivacaine for labor analgesia. Anesthesiology 2001 May; 94: 767–72PubMedCrossRefGoogle Scholar
  26. 26.
    Zaric D. The effect of continuous lumbar epidural infusion of ropivacaine (0.1%, 0.2% and 0.3%) and 0.25% bupivacaine on sensory and motor block in volunteers. Reg Anesth 1996; 21(1): 14–25PubMedGoogle Scholar
  27. 27.
    Camorcia M, Capogna G, Lyons G, et al. The relative motor blocking potencies of intrathecal ropivacaine: effects of concentration. Anesth Analg 2004 Jun; 98(6): 1779–82PubMedCrossRefGoogle Scholar
  28. 28.
    Simon MJG, Veering BT, Stienstra R, et al. The effects of age on neural blockade and hemodynamic changes after epidural anesthesia with ropivacaine. Anesth Analg 2002 May; 94: 1325–30PubMedCrossRefGoogle Scholar
  29. 29.
    Deng XM, Xiao WJ, Tang GZ, et al. The minimum local anesthetic concentration of ropivacaine for caudal analgesia in children. Anesth Analg 2002 Jun; 94: 1465–8PubMedGoogle Scholar
  30. 30.
    Weber A, Fournier R, Riand N, et al. Duration of analgesia is similar when 15, 20, 25 and 30 mL of ropivacaine 0.5% are administered via a femoral catheter: Can J Anaesth 2005 Apr; 52 (4): 390–6Google Scholar
  31. 31.
    Graf BM, Zausig Y, Zink W. Current status and clinical relevance of studies of minimum local anaesthetic concentration (MLAC). Current Opinion in Anaesthesiology 2005; 18: 241–5PubMedCrossRefGoogle Scholar
  32. 32.
    Berritta C, Camorcia M, Capogna G, et al. The relative motor blocking potencies of intrathecal bupivacaine, ropivacaine and levobupivacaine [abstract no. A584]. Eur J Anaesthesiol 2005; 22: 153CrossRefGoogle Scholar
  33. 33.
    Aveline C, El Metaoua S, Masmoudi A, et al. The effect of clonidine on the minimum local analgesic concentration of epidural ropivacaine during labor. Anesth Analg 2002 Sep; 95: 735–40PubMedGoogle Scholar
  34. 34.
    Palm S, Gertzen W, Ledowski T, et al. Minimum local analgesic dose of plain ropivacaine vs. ropivacaine combined with sufentanil during epidural analgesia for labour. Anaesthesia 2001 Jun; 56: 526–9Google Scholar
  35. 35.
    Graf BM. The cardiotoxicity of local anesthetics: the place of ropivacaine. Curr Top Med Chem 2001 Aug; 1(3): 207–14PubMedCrossRefGoogle Scholar
  36. 36.
    Graf BM, Abraham I, Eberbach N, et al. Differences in cardiotoxicity of bupivacaine and ropivacaine are the result of physicochemical and stereoselective properties. Anesthesiology 2002 Jun; 96(6): 1427–34PubMedCrossRefGoogle Scholar
  37. 37.
    Santos A, DeArmas PI,.Systemic toxicity of levobupivacaine, bupivacaine and ropivacaine during continuous intravenous infusion to nonpregnant and pregnant ewes. Anesthesiology 2001; 95: 1256–64PubMedCrossRefGoogle Scholar
  38. 38.
    Cederholm I, Evers H, Lofstrom JB, et al. Skin blood flow after intradermal injection of ropivacaine in various concentrations with and without epinephrine evaluated by laser doppler flowmetry. Reg Anesth 1992; 17: 322–8PubMedGoogle Scholar
  39. 39.
    Gonzalez T, Arias C, Caballero R, et al. Effects of levobupivacine, ropivacaine and bupivacaine on HERG channels: stereoselective bupivacaine block. Br J Pharmacol 2002; 137: 1269–79PubMedCrossRefGoogle Scholar
  40. 40.
    Porter JM, Crowe B, Cahill M, et al. The effects of ropivacaine hydrochloride on platelet function: an assessment using the platelet function analyser (PFA-100). Anaesthesia 2001 Jan; 56: 15–8PubMedCrossRefGoogle Scholar
  41. 41.
    Volk T, Schenk M, Voigt K, et al. Postoperative epidural anesthesia preserves lymphocyte, but not monocyte, immune function after major spine surgery. Anesth Analg 2004 Apr; 98(4): 1086–92PubMedCrossRefGoogle Scholar
  42. 42.
    Mikawa K, Akamatsu H, Nishina K, et al. Effects of ropivacaine on human neutrophil function: comparison with bupivacaine and lidocaine. Eur J Anaesthesiol 2003 Feb; 20: 104–10PubMedCrossRefGoogle Scholar
  43. 43.
    Batai I, Kerenyi M, Falvai J, et al. Bacterial growth in ropivacaine hydrochloride. Anesth Analg 2002 Mar; 94(3): 729–31PubMedCrossRefGoogle Scholar
  44. 44.
    Kampe S, Poetter C, Buzello S, et al. Ropivacaine 0.1% with sufentanil 1 microg/mL inhibits in vitro growth of Pseudomonas aeruginosa and does not promote multiplication of Staphylococcus aureus. Anesth Analg 2003 Aug; 97(2): 409–11PubMedCrossRefGoogle Scholar
  45. 45.
    Porter JM, Kelleher N, Flynn R, et al. Epidural ropivacaine hydrochloride during labour: protein binding, placental transfer and neonatal outcome. Anaesthesia 2001 May; 56: 418–23PubMedCrossRefGoogle Scholar
  46. 46.
    Irestedt L, Emanuelsson BM, Ekblom A, et al. Ropivacaine 7.5 mg/ml for elective caesarean section: a clinical and pharmacokinetic comparison of 150 mg and 187.5 mg. Acta Anaesthesiol Scand 1997 Oct; 41(9): 1149–56PubMedCrossRefGoogle Scholar
  47. 47.
    AstraZeneca. Naropin® (ropivacaine HCl) injection; prescribing information (USA) [online]. Available from URL: http://ww-w.astrazeneca-us.com [Accessed 2005 Nov 14]
  48. 48.
    Wank W, Buttner J, Rissler Maier K, et al. Pharmacokinetics and efficacy of 40 ml ropivacaine 7.5 mg/ml (300 mg), for axillary brachial plexus block: an open pilot study. Eur J Drug Metab Pharmacokinet 2002; 27(1): 53–9PubMedCrossRefGoogle Scholar
  49. 49.
    Emanuelsson BM, Persson J, Alm C, et al. Systemic absorption and block after epidural injection of ropivacaine in healthy volunteers. Anesthesiology 1997 Dec; 87(6): 1309–17PubMedCrossRefGoogle Scholar
  50. 50.
    Burm AG, Stienstra R, Brouwer RP, et al. Epidural infusion of ropivacaine for postoperative analgesia after major orthopedic surgery: pharmacokinetic evaluation. Anesthesiology 2000 Aug; 93(2): 395–403PubMedCrossRefGoogle Scholar
  51. 51.
    Ala-Kokko TI, Alahuhta S, Jouppila P, et al. Feto-maternal distribution of ropivacaine and bupivacaine after epidural administration for cesarean section. Int J Obstet Anesth 1997 Jul; 6(3): 147–52PubMedCrossRefGoogle Scholar
  52. 52.
    Leonard SA, Flynn R, Kelleher N, et al. Addition of epinephrine to epidural ropivacaine during labour: effects on onset and duration of action, efficacy, and systemic absorption of ropivacaine. Int J Obstet Anesth 2002 Jul; 11: 180–4PubMedCrossRefGoogle Scholar
  53. 53.
    Ekstrom G, Gunnarsson UB. Ropivacaine, a new amide-type local anesthetic agent, is metabolized by cytochromes P450 1A and 3A in human liver microsomes. Drug Metab Dispos 1996 Sep; 24(9): 955–61PubMedGoogle Scholar
  54. 54.
    Halldin MM, Bredberg E, Angelin B, et al. Metabolism and excretion of ropivacaine in humans. Drug Metab Dispos 1996 Sep; 24(9): 962–8PubMedGoogle Scholar
  55. 55.
    Kopacz DJ, Emanuelsson BM, Thompson GE, et al. Pharmacokinetics of ropivacaine and bupivacaine for bilateral intercostal blockade in healthy male volunteers. Anesthesiology 1994 Nov; 81(5): 1139–48PubMedCrossRefGoogle Scholar
  56. 56.
    Arvidsson T, Bruce HF, Halldin MM. Lack of metabolic racemisation of ropivacaine, determined by liquid chromatography using a chiral AGP column. Chirality 1995; 7(4): 272–7PubMedCrossRefGoogle Scholar
  57. 57.
    Bosenberg AT, Thomas J, Lopez T, et al. Plasma concentrations of ropivacaine following a single-shot caudal block of 1, 2 and 3 mg/kg in children. Acta Anaesthesiol Scand 2001 Nov; 45: 1276–80PubMedCrossRefGoogle Scholar
  58. 58.
    Karmakar MK, Aun CS, Wong EL. Ropivacaine undergoes slower systemic absorption from the caudal epidural space in children than bupivacaine. Anesth Analg 2002 Feb; 94(2): 259–65PubMedGoogle Scholar
  59. 59.
    Lonnqvist PA, Westrin P, Larsson BA, et al. Ropivacaine pharmacokinetics after caudal block in 1–8 year old children. Br J Anaesth 2000 Oct; 85: 506–11PubMedCrossRefGoogle Scholar
  60. 60.
    Ala-Kokko TI, Partanen A, Karinen J, et al. Pharmacokinetics of 0.2% ropivacaine and 0.2% bupivacaine following caudal blocks in children. Acta Anaesthesiol Scand 2000 Oct; 44: 1099–102PubMedCrossRefGoogle Scholar
  61. 61.
    Habre W, Bergesio R, Johnson C, et al. Pharmacokinetics of ropivacaine following caudal analgesia in children. Paediatr Anaesth 2000; 10(2): 143–7PubMedCrossRefGoogle Scholar
  62. 62.
    McCann ME, Sethna NF, Mazoit JX, et al. The pharmacokinetics of epidural ropivacaine in infants and young children. Anesth Analg 2001 Oct; 93: 893–7PubMedCrossRefGoogle Scholar
  63. 63.
    Hansen TG, Ilett KF, Lim SI, et al. Pharmacokinetics and clinical efficacy of long-term epidural ropivacaine infusion in children. Br J Anaesth 2000 Sep; 85: 347–53PubMedCrossRefGoogle Scholar
  64. 64.
    Ala-Kokko TI, Karinen J, Raiha E, et al. Pharmacokinetics of 0.75% ropivacaine and 0.5% bupivacaine after ilioinguinal-iliohypogastric nerve block in children. Br J Anaesth 2002 Sep; 89(3): 438–41PubMedGoogle Scholar
  65. 65.
    Hansen TG, Ilett KF, Reid C, et al. Caudal ropivacaine in infants: population pharmacokinetics and plasma concentrations. Anesthesiology 2001 Apr; 94: 579–84PubMedCrossRefGoogle Scholar
  66. 66.
    Van Obbergh LJ, Roelants FA, Veyckemans F, et al. In children, the addition of epinephrine modifies the pharmacokinetics of ropivacaine injected caudally. Can J Anesth 2003 Jun-2003 31; 50(6): 593–8PubMedCrossRefGoogle Scholar
  67. 67.
    Jokinen MJ, Ahonen J, Neuvonen PJ, et al. The effect of erythromycin, fluvoxamine, and their combination on the pharmacokinetics of ropivacaine. Anesth Analg 2000 Nov; 91: 1207–12PubMedGoogle Scholar
  68. 68.
    Jokinen MJ, Olkkola KT, Ahonen J, et al. Effect of ciprofloxacin on the pharmacokinetics of ropivacaine. Eur J Clin Pharmacol 2003 Feb; 58: 653–7PubMedGoogle Scholar
  69. 69.
    Arlander E, Ekstrom G, Alm C, et al. Metabolism of ropivacaine in humans is mediated by CYP1A2 and to a minor extent by CYP3A4: an interaction study with fluvoxamine and ketoconazole as in vivo inhibitors. Clin Pharmacol Ther 1998 Nov; 64(5): 484–91PubMedCrossRefGoogle Scholar
  70. 70.
    Jokinen MJ, Ahonen J, Neuvonen PJ, et al. Effect of clarithromycin and itraconazole on the pharmacokinetics of ropivacaine. Pharmacol Toxicol 2001 Apr; 88: 187–91PubMedCrossRefGoogle Scholar
  71. 71.
    Jokinen MJ, Olkkola KT, Ahonen J, et al. Effect of rifampin and tobacco smoking on the pharmacokinetics of ropivacaine. Clin Pharmacol Ther 2001 Oct; 70: 344–50PubMedGoogle Scholar
  72. 72.
    Peduto VA, Baroncini S, Montanini S, et al. A prospective, randomized, double-blind comparison of epidural levobupivacaine 0.5% with epidural ropivacaine 0.75% for lower limb procedures. Eur J Anaesthesiol 2003 Dec; 20(12): 979–83PubMedCrossRefGoogle Scholar
  73. 73.
    Bachmann-Mennenga B, Veit G, Biscoping J, et al. Epidural ropivacaine 1% with and without sufentanil addition for Caesarean section. Acta Anaesthesiol Scand 2005 Apr; 49(4): 525–31PubMedCrossRefGoogle Scholar
  74. 74.
    Bachmann-Mennenga B, Veit G, Steinicke B, et al. Efficacy of sufentanil addition to ropivacaine epidural anaesthesia for Caesarean section. Acta Anaesthesiol Scand 2005 Apr; 49(4): 532–7PubMedCrossRefGoogle Scholar
  75. 75.
    Crosby E, Sandier A, Finucane B, et al. Comparison of epidural anaesthesia with ropivacaine 0.5% and bupivacaine 0.5% for Caesarian section. Can J Anaesth 1998; 45(11): 1066–71PubMedCrossRefGoogle Scholar
  76. 76.
    Bjornstad E, Smedvig JP, Bjerkreim T, et al. Epidural ropivacaine 7.5 mg/ml for elective Caesarean section: a double-blind comparison of efficacy and tolerability with bupivacaine. Acta Anaesthesiol Scand 1999; 43: 603–8CrossRefGoogle Scholar
  77. 77.
    McGlade DP, Kalpoka MV, Mooney PH, et al. Comparison of 0.5% ropivacaine and 0.5% bupivacaine in lumbar epidural anaesthesia for lower limb orthopaedic surgery. Anaesth Intens Care 1997; 25: 262–6Google Scholar
  78. 78.
    Wolff AP, Hasselstrom L, Kerkamp HE, et al. Extradural ropivacaine and bupivacaine in hip surgery. Br J Anaesth 1995; 74: 458–60PubMedCrossRefGoogle Scholar
  79. 79.
    Fettes PD, Hocking G, Peterson MK, et al. Comparison of plain and hyperbaric solutions of ropivacaine for spinal anaesthesia. Br J Anaesth 2005 Jan; 94(1): 107–11PubMedCrossRefGoogle Scholar
  80. 80.
    Casati A, Moizo E, Marchetti C, et al. A prospective, randomized, double-blind comparison of unilateral spinal anesthesia with hyperbaric bupivacaine, ropivacaine, or levobupivacaine for inguinal herniorrhaphy. Anesth Analg 2004 Nov; 99(5): 1387–92PubMedCrossRefGoogle Scholar
  81. 81.
    Whiteside JB, Burke D, Wildsmith JA. A comparison of 0.5% ropivacaine (5% glucose) with 0.5% bupivacaine (8% glucose) when used to provide spinal anaesthesia for elective surgery. Reg Anesth Pain Med 2001 Mar 30; 26 Suppl.: 69Google Scholar
  82. 82.
    Buckenmaier IIICC, Nielsen KC, Pietrobon R, et al. Small-dose intrathecal lidocaine versus ropivacaine for anorectal surgery in an ambulatory setting. Anesth Analg 2002 Nov; 95: 1253–7PubMedCrossRefGoogle Scholar
  83. 83.
    Kallio H, Snail EV, Tuomas CA, et al. Comparison of hyperbaric and plain ropivacaine 15 mg in spinal anaesthesia for lower limb surgery. Br J Anaesth 2004 Nov; 93(5): 664–9PubMedCrossRefGoogle Scholar
  84. 84.
    Kallio H, Snail E-VT, Kero MP, et al. A comparison of intrathecal plain solutions containing ropivacaine 20 or 15 mg versus bupivacaine 10 mg. Anesth Analg 2004 Sep; 99(3): 713–7PubMedCrossRefGoogle Scholar
  85. 85.
    Gautier P, De Kock M, Huberty L, et al. Comparison of the effects of intrathecal ropivacaine, levobupivacaine, and bupivacaine for caesarean section. Br J Anaesth 2003 Nov; 91(5): 684–9PubMedCrossRefGoogle Scholar
  86. 86.
    Khaw KS, Ngan Kee WD, Wong M, et al. Spinal ropivacaine for cesarean delivery: a comparison of hyperbaric and plain solutions. Anesth Analg 2002 Mar; 94(3): 680–5PubMedCrossRefGoogle Scholar
  87. 87.
    Chung CJ, Choi SR, Yeo KH, et al. Hyperbaric spinal ropivacaine for cesarean delivery: a comparison to hyperbaric bupivacaine. Anesth Analg 2001 Jul; 93: 157–61PubMedCrossRefGoogle Scholar
  88. 88.
    Danelli G, Fanelli G, Berti M, et al. Spinal ropivacaine or bupivacaine for cesarean delivery: a prospective, randomized, double-blind comparison. Reg Anesth Pain Med 2004 May-2004 30; 29(3): 221–6PubMedGoogle Scholar
  89. 89.
    Cappelleri G, Aldegheri G, Danelli G, et al. Spinal anesthesia with hyperbaric levobupivacaine and ropivacaine for outpatient knee arthroscopy: a prospective, randomized, double-blind study. Anesth Analg 2005 Jul; 101(1): 77–82PubMedCrossRefGoogle Scholar
  90. 90.
    Gautier PE, de Kock MvSA,. Intrathecal ropivacaine for ambulatory surgery. A comparison between intrathecal bupivacaine and intrathecal ropivacaine for knee arthroscopy. Anesthesiology 1999; 91(5): 1239–45PubMedCrossRefGoogle Scholar
  91. 91.
    Chung CJ, Yun SH, Hwang GB, et al. Intrathecal fentanyl added to hyperbaric ropivacaine for cesarean delivery. Reg Anesth Pain Med 2002 Nov-2002 31; 27: 600–3PubMedGoogle Scholar
  92. 92.
    De Kock M, Gautier P, Fanard L, et al. Intrathecal ropivacaine and clonidine for ambulatory knee arthroscopy: a dose-response study. Anesthesiology 2001 Apr; 94: 574–8PubMedCrossRefGoogle Scholar
  93. 93.
    Hofmann-Kiefer K, Herbrich C, Seebauer A, et al. Ropivacaine 7.5 mg/ml versus bupivacaine 5 mg/ml for interscalene brachial plexus block: a comparative study. Anaesth Intensive Care 2002 Jun; 30: 331–7PubMedGoogle Scholar
  94. 94.
    Casati A, Borghi B, Fanelli G, et al. Interscalene brachial plexus anesthesia and analgesia for open shoulder surgery: a randomized, double-blinded comparison between levobupivacaine and ropivacaine. Anesth Analg 2003 Jan; 96: 253–9PubMedGoogle Scholar
  95. 95.
    Cline E, Franz D, Polley RD, et al. Analgesia and effectiveness of levobupivacaine compared with ropivacaine in patients undergoing an axillary brachial plexus block. AANA J 2004 Oct; 72(5): 339–45PubMedGoogle Scholar
  96. 96.
    Vaghadia H, Chan V, Ganapathy S, et al. A multicentre trial of ropivacaine 7.5 mg/ml(−l) vs bupivacaine 5 mg/ml (−) for supraclavicular brachial plexus anesthesia. Can J Anesth 1999; 46(10): 946–51PubMedCrossRefGoogle Scholar
  97. 97.
    Raeder JC, Drosdahl S, Klaastad O, et al. Axillary brachial plexus block with ropivacaine 7.5 mg/mL: a comparative study with bupivacaine 5 mg/mL. Acta Anaesthesiol Scand 1999; 43(8): 794–8PubMedCrossRefGoogle Scholar
  98. 98.
    Liisanantti O, Luukkonen J, Rosenberg PH. High-dose bupivacaine, levobupivacaine and ropivacaine in axillary brachial plexus block. Acta Anaesthesiol Scand 2004 May; 48(5): 601–6PubMedCrossRefGoogle Scholar
  99. 99.
    Klein SM, Greengrass RA, Steele SM, et al. Comparison of 0.5% bupivacaine, 0.5% ropivacaine, and 0.75% ropivacaine for interscalene brachial plexus block. Anesth Analg 1998; 87: 1316–9PubMedGoogle Scholar
  100. 100.
    Bertini L, Tagariello V, Mancini S, et al. 0.75% and 0.5% ropivacaine for axillary brachial plexus block; a clinical comparison with 0.5% bupivacaine. Reg Anesth Pain Med 19999; 24 (6): 514–8Google Scholar
  101. 101.
    McGlade DP, Kalpokas MV, Mooney PH, et al. A comparison of 0.5% ropivacaine and 0.5% bupivacaine for axillary brachial plexus anaesthesia. Anaesth Intensive Care 1998; 26(5): 515–20PubMedGoogle Scholar
  102. 102.
    ElSaied AH, Steyn MP, Ansermino JM. Clonidine prolongs the effect of ropivacaine for axillary brachial plexus blockade. Can J Anesth 2000 Oct; 47: 962–7CrossRefGoogle Scholar
  103. 103.
    Erlacher W, Schuschnig C, Koinig H, et al. Clonidine as adjuvant for mepivacaine, ropivacaine and bupivacaine in axillary, perivascular brachial plexus block. Can J Anesth 2001 Jun; 48: 522–5PubMedCrossRefGoogle Scholar
  104. 104.
    Fanelli G, Casati A, Beccaria P, et al. A double-blind comparison of ropivacaine, bupivacaine, and mepivacaine during sciatic and femoral nerve blockade. Anesth Analg 1998; 87: 597–600PubMedGoogle Scholar
  105. 105.
    Casati A, Fanelli G, Borghi B, et al. Ropivacaine or 2% mepivacaine for lower limb peripheral nerve blocks. Anesthesiology 1999; 90(4): 1047–52PubMedCrossRefGoogle Scholar
  106. 106.
    Casati A, Borghi B, Fanelli G, et al. A double-blinded, randomized comparison of either 0.5% levobupivacaine or 0.5% ropivacaine for sciatic nerve block. Anesth Analg 2002 Apr; 94(4): 987–90PubMedCrossRefGoogle Scholar
  107. 107.
    Ernberg M, Kopp S. Ropivacaine for dental anesthesia: a dose-finding study. J Oral Maxillofac Surg 2002 Sep; 60: 1004–10PubMedCrossRefGoogle Scholar
  108. 108.
    Kennedy M, Reader A, Beck M, et al. Anesthetic efficacy of ropivacaine in maxillary anterior infiltration. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001 Apr; 91: 406–12PubMedCrossRefGoogle Scholar
  109. 109.
    Huha T, Ala-Kokko TI, Salomaki T, et al. Clinical efficacy and pharmacokinetics of 1% ropivacaine and 0.75% bupivacaine in peribulbar anaesthesia for cataract surgery. Anaesthesia 1999; 54: 137–41PubMedCrossRefGoogle Scholar
  110. 110.
    Corke PJ, Baker J, Cammack R. Comparison of 1 % ropivacaine and a mixture of 2% lignocaine and 0.5% bupivacaine for peribulbar anaesthesia in cataract surgery. Anaesth Intens Care 1999; 27: 249–52Google Scholar
  111. 111.
    Gillart T, Barrau P, Bazin JE, et al. Lidocaine plus ropivacaine versus lidocaine plus bupivacaine for peribulbar anaesthesia by single medial injection. Anaesth Analg 1999; 89: 1192–6CrossRefGoogle Scholar
  112. 112.
    Woodward DK, Leung ATS, Tse MWI, et al. Peribulbar anaesthesia with 1% ropivacaine and hyaluronidase 300 IU ml−1: comparison with 0.5% bupivacaine/2% lidocaine and hyaluronidase 50 IU ml−1. Br J Anaesth 2000 Oct; 85: 618–20PubMedCrossRefGoogle Scholar
  113. 113.
    Perello A, George J, Skelton V, et al. A double-blind randomised comparison of ropivacaine 0.5%, bupivacaine 0.375% — lidocaine 1% and ropivacaine 0.5% — lidocaine 1% mixtures for cataract surgery. Anaesthesia 2000 Oct; 55: 1003–7PubMedCrossRefGoogle Scholar
  114. 114.
    Nociti JR, Mateus Serzedo PS, Zuccolotto EB, et al. Ropivacaine in peribulbar block: a comparative study with bupivacaine. Acta Anaesthesiol Scand 1999; 43: 799–802PubMedCrossRefGoogle Scholar
  115. 115.
    McLure HA, Rubin AP, Westcott M, et al. A comparison of 1 % ropivacaine with a mixture of 0.75% bupivacaine and 2% lignocaine for peribulbar anaesthesia. Anaesthesia 1999; 54: 1178–82PubMedCrossRefGoogle Scholar
  116. 116.
    Nicholson G, Sutton B, Hall GM. Ropivacaine for peribulbar anesthesia. Reg Anesth Pain Med 1999; 24(4): 337–40PubMedGoogle Scholar
  117. 117.
    Olmez G, Cakmak SS, Caca I, et al. Intraocular pressure and quality of blockade in peribulbar anesthesia using ropivacaine or lidocaine with adrenaline: a double-blind randomized study. Tohoku J Exp Med 2004 Nov; 204(3): 203–8PubMedCrossRefGoogle Scholar
  118. 118.
    Brodner G, Mertes N, van Aken H, et al. Epidural analgesia with local anesthetics after abdominal surgery: earlier motor recovery with 0.2% ropivacaine than 0.175% bupivacaine. Anesth Analg 1998; 88: 128–33Google Scholar
  119. 119.
    Jayr C, Beaussier M, Gustafsson U, et al. Continuous epidural infusion of ropivacaine for postoperative analgesia after major abdominal surgery: comparative study with i.v. PCA morphine. Br J Anaesth 1998; 81: 887–92CrossRefGoogle Scholar
  120. 120.
    Pouzeratte Y, Delay JM, Brunat G, et al. Patient-controlled epidural analgesia after abdominal surgery: ropivacaine versus bupivacaine. Anesth Analg 2001 Dec; 93: 1587–92PubMedCrossRefGoogle Scholar
  121. 121.
    Scott DA, Blake D, Buckland M, et al. A comparison of epidural ropivacaine infusion alone and in combination with 1, 2 and 4mcg/ml fentanyl for seventy-two hours of postoperative analgesia after major abdominal surgery. Anesth Analg 1999; 88: 857–64PubMedGoogle Scholar
  122. 122.
    Senard M, Joris JL, Ledoux D, et al. A comparison of 0.1 % and 0.2% ropivacaine and bupivacaine combined with morphine for postoperative patient-controlled epidural analgesia after major abdominal surgery. Anesth Analg 2002 Aug; 95: 444–9PubMedGoogle Scholar
  123. 123.
    Wulf H, Biscoping J, Beland B, et al. Ropivacaine epidural anesthesia and analgesia versus general anesthesia and intravenous patient-controlled analgesia with morphine in the perioperative management of hip replacement. Anesth Analg 1999; 89: 111–9PubMedGoogle Scholar
  124. 124.
    Forster JG, Rosenberg PH. Small dose of clonidine mixed with low-dose ropivacaine and fentanyl for epidural analgesia after total knee arthroplasty. Br J Anaesth 2004 Nov; 93(5): 670–7PubMedCrossRefGoogle Scholar
  125. 125.
    McClelland AM, Beckett N, Milligan KR. Post operative analgesia following total hip replacement surgery: a comparison of levobupivacaine and ropivacaine via epidural infusion [abstract no. S-344]. Anesth Analg 2002 Feb; 94Google Scholar
  126. 126.
    Dobrydnjov I, Axelsson K, Gupta A, et al. Improved analgesia with clonidine when added to local anesthetic during combined spinal-epidural anesthesia for hip arthroplasty: a double-blind, randomized and placebo-controlled study. Acta Anaesthesiol Scand 2005 Apr; 49(4): 538–45PubMedCrossRefGoogle Scholar
  127. 127.
    Bertini L, Mancini S, Di Benedetto P, et al. Postoperative analgesia by combined continuous infusion and patient-controlled epidural analgesia (PCEA) following hip replacement: ropivacaine versus bupivacaine. Acta Anaesthesiol Scand 2001 Jul; 45: 782–5PubMedCrossRefGoogle Scholar
  128. 128.
    Muldoon T, Milligan K, Quinn P, et al. Comparison between extradural infusion of ropivacaine or bupivacaine for the prevention of postoperative pain after total knee arthoplasty. Br J Anaesth 1998; 80: 680–1PubMedCrossRefGoogle Scholar
  129. 129.
    Lorenzini C, Moreira LB, Ferreira MBC. Efficacy of ropivacaine compared with ropivacaine plus sufentanil for postoperative analgesia after major knee surgery. Anaesthesia 2002 May; 57: 424–8PubMedCrossRefGoogle Scholar
  130. 130.
    Borgeat A, Kalberer F, Jacob H, et al. Patient-controlled interscalene analgesia with ropivacaine 0.2% versus bupivacaine 0.15% after major open shoulder surgery: the effects on hand motor function. Anesth Analg 2001 Jan; 92: 218–23PubMedCrossRefGoogle Scholar
  131. 131.
    Borgeat A, Tewes E, Biasca N, et al. Patient-controlled interscalene analgesia with ropivacaine after major shoulder surgery: PCIA vs PCA. Br J Anaesth 1998; 81: 603–5PubMedCrossRefGoogle Scholar
  132. 132.
    Eroglu A, Uzunlar H, Sener M, et al. A clinical comparison of equal concentration and volume of ropivacaine and bupivacaine for interscalene brachial plexus anesthesia and analgesia in shoulder surgery. Reg Anesth Pain Med 2004 Nov-2004 31; 29(6): 539–43PubMedGoogle Scholar
  133. 133.
    Casati A, Magistris L, Fanelli G, et al. Small-dose clonidine prolongs postoperative analgesia after sciatic-femoral nerve block with 0.75% ropivacaine for foot surgery. Anesth Analg 2000; 91: 388–92PubMedGoogle Scholar
  134. 134.
    Landau R, Schiffer E, Morales M, et al. The dose-sparing effect of clonidine added to ropivacaine for labor epidural analgesia. Anesth Analg 2002 Sep; 95: 728–34PubMedGoogle Scholar
  135. 135.
    Ilfeld BM, Morey TE, Thannikary LJ, et al. Clonidine added to a continuous interscalene ropivacaine perineural infusion to improve postoperative analgesia: a randomized, double-blind, controlled study. Anesth Analg 2005 Apr; 100(4): 1172–8PubMedCrossRefGoogle Scholar
  136. 136.
    Ilfeld BM, Morey TE, Wright TW, et al. Continuous interscalene brachial plexus block for postoperative pain control at home: a randomized, double-blinded, placebo-controlled study. Anesth Analg 2003 Apr; 96(4): 1089–95PubMedCrossRefGoogle Scholar
  137. 137.
    McNamee DA, Convery PN, Milligan KR. Total knee replacement: a comparison of ropivacaine and bupivacaine in combined femoral and sciatic block. Acta Anaesthesiol Scand 2001 Apr; 45: 477–81PubMedCrossRefGoogle Scholar
  138. 138.
    Casati A, Vinciguerra F, Cappelleri G, et al. Levobupivacaine 0.2% or 0.125% for continuous sciatic nerve block: a prospective, randomized, double-blind comparison with 0.2% ropivacaine. Anesth Analg 2004 Sep; 99(3): 919–23PubMedCrossRefGoogle Scholar
  139. 139.
    Johansson B, Hallerback B, Stubberod A, et al. Preoperative local infiltration with ropivacaine for postoperative pain relief after inguinal hernia repair. Eur J Surg 1997; 163: 371–8PubMedGoogle Scholar
  140. 140.
    Mulroy MF, Burgess FW, Emanuelsson B-M. Ropivacaine 0.25% and 0.5%, but not 0.125%, provide effective wound infiltration analgesia after outpatient hernia repair, but with sustained plasma drug levels. Reg Anesth Pain Med 1999; 24(2): 136–41PubMedGoogle Scholar
  141. 141.
    Pettersson N, Berggren P, Larsson M, et al. Pain relief by wound infiltration with bupivacaine or high-dose ropivacaine after inguinal hernia repair. Reg Anesth Pain Med 1999; 24(6): 569–75PubMedGoogle Scholar
  142. 142.
    Updike GM, Manolitsas TP, Cohn DE, et al. Pre-emptive analgesia in gynecologic surgical procedures: preoperative wound infiltration with ropivacaine in patients who undergo laparotomy through a midline vertical incision. Am J Obstet Gynecol 2003 Apr; 188: 901–5PubMedCrossRefGoogle Scholar
  143. 143.
    Bisgaard T, Klarskov B, Kristiansen VB, et al. Multi-regional local anaesthetic infiltration during laparoscopic cholecystectomy in patients receiving multi-modal prophylactic analgesia: A randomised, double-blinded, placebo-controlled study. Anesth Analg 1999; 89(4): 1017–24PubMedGoogle Scholar
  144. 144.
    Papagiannopoulou P, Argiriadou H, Georgiou M, et al. Preincisional local infiltration of levobupivacaine vs ropivacaine for pain control after laparoscopic cholecystectomy. Surg Endosc 2003 Dec; 17(12): 1961–4PubMedCrossRefGoogle Scholar
  145. 145.
    Callesen T, Hjort D, Mogensen T, et al. Combined field block and i.p. instillation of ropivacaine for pain management after laparoscopic sterilisation. Br J Anaesth 1999; 82(4): 586–90Google Scholar
  146. 146.
    Apostolopoulos K, Labropoulou E, Samaan R, et al. Ropivacaine compared to lidocaine for tonsillectomy under local anaesthesia. Eur Arch Otorhinolaryngol 2003 Aug; 260(7): 355–7PubMedCrossRefGoogle Scholar
  147. 147.
    Fredman B, Shapiro A, Zohar E, et al. The analgesic efficacy of patient-controlled ropivacaine instillation after cesarean delivery. Anesth Analg 2000 Dec; 91: 1436–40PubMedCrossRefGoogle Scholar
  148. 148.
    Johansson A, Axelson J, Ingvar C, et al. Preoperative ropivacaine infiltration in breast surgery. Acta Anaesthesiol Scand 2000 Oct; 44: 1093–8PubMedCrossRefGoogle Scholar
  149. 149.
    Horn EP, Schroeder F, Wilhelm S, et al. Wound infiltration and drain lavage with ropivacaine after major shoulder surgery. Anaesth Analg 1999; 89: 1461–6Google Scholar
  150. 150.
    Gottschalk A, Burmeister MA, Radtke P, et al. Continuous wound infiltration with ropivacaine reduces pain and analgesic requirement after shoulder surgery. Anesth Analg 2003 Oct; 97(4): 1086–91PubMedCrossRefGoogle Scholar
  151. 151.
    Vinson-Bonnet B, Coltat JC, Fingerhut A, et al. Local infiltration with ropivacaine improves immediate postoperative pain control after hemorrhoidal surgery. Dis Colon Rectum 2002 Jan; 45: 104–8PubMedCrossRefGoogle Scholar
  152. 152.
    Axelsson K, Nordenson U, Johanzon E, et al. Patient-controlled regional analgesia (PCRA) with ropivacaine after arthroscopic subacromial decompression. Acta Anaesthesiol Scand 2003 Sep; 47(8): 993–1000PubMedCrossRefGoogle Scholar
  153. 153.
    Kakagia D, Fotiadis S, Tripsiannis G. Comparative efficacy of ropivacaine and bupivacaine infiltrative analgesia in otoplasty. Ann Plast Surg 2005 Apr; 54(4): 409–11PubMedCrossRefGoogle Scholar
  154. 154.
    Marret E, Gentili M, Bonnet MP, et al. Intra-articular ropivacaine 0.75% and bupivacaine 0.50% for analgesia after arthroscopic knee surgery: a randomized prospective study. Arthroscopy 2005 Mar; 21(3): 313–6PubMedCrossRefGoogle Scholar
  155. 155.
    Franceschi F, Rizzello G, Cataldo R, et al. Comparison of morphine and ropivacaine following knee arthroscopy. Arthroscopy 2001 May-2001 30; 17: 477–80PubMedCrossRefGoogle Scholar
  156. 156.
    Bosenberg A, Thomas J, Lopez T, et al. The efficacy of caudal ropivacaine 1, 2 and 3 mg/ml for postoperative analgesia in children. Paediatr Anaesth 2002 Jan; 12: 53–8PubMedCrossRefGoogle Scholar
  157. 157.
    Astuto M, Disma N, Arena C. Levobupivacaine 0.25% compared with ropivacaine 0.25% by the caudal route in children. Eur J Anaesthesiol 2003 Oct; 20(10): 826–30PubMedCrossRefGoogle Scholar
  158. 158.
    Da Conceicao MJ, Coelho L. Caudal anaesthesia with 0.375% ropivacaine or 0.375% bupivacaine in paediatric patients. Br J Anaesth 1998 Apr; 80(4): 507–8PubMedCrossRefGoogle Scholar
  159. 159.
    Da Conceicao MJ, Coelho L, Khalil M. Ropivacaine 0.25% compared with bupivacaine 0.25% by the caudal route. Paediatr Anaesth 1999; 9(3): 229–33PubMedGoogle Scholar
  160. 160.
    Ivani G, DE Negri P, Lonnqvist PA, et al. Caudal anesthesia for minor pediatric surgery: a prospective randomized comparison of ropivacaine 0.2% vs levobupivacaine 0.2%. Paediatr Anaesth 2005 Jun; 15(6): 491–4PubMedCrossRefGoogle Scholar
  161. 161.
    Ivani G, Lampugnani E, Torre M, et al. Comparison of ropivacaine with bupivacaine for paediatric caudal block. Br J Anaesth 1998 Aug; 81(2): 247–8PubMedCrossRefGoogle Scholar
  162. 162.
    Khalil S, Campos C, Farag AM, et al. Caudal block in children: ropivacaine compared with bupivacaine. Anesthesiology 1999 Nov; 91(5): 1279–84PubMedCrossRefGoogle Scholar
  163. 163.
    Locatelli B, Ingelmo P, Sonzogni V, et al. Randomized, double-blind, phase III, controlled trial comparing levobupivacaine 0.25%, ropivacaine 0.25% and bupivacaine 0.25% by the caudal route in children. Br J Anaesth 2005 Mar; 94(3): 366–71PubMedCrossRefGoogle Scholar
  164. 164.
    Lee HM, Sanders GM. Caudal ropivacaine and ketamine for postoperative analgesia in children. Anaesthesia 2000 Aug; 55(8): 806–10PubMedCrossRefGoogle Scholar
  165. 165.
    Gunes Y, Secen M, Ozcengiz D, et al. Comparison of caudal ropivacaine, ropivacaine plus ketamine and ropivacaine plus tramadol administration for postoperative analgesia in children. Paediatr Anaesth 2004 Jul; 14(7): 557–63PubMedCrossRefGoogle Scholar
  166. 166.
    Ivani G, Lampugnani E, De Negri P, et al. Ropivacaine vs bupivacaine in major surgery in infants. Can J Anaesth 1999 May; 46 (5 Pt 1): 467–9PubMedCrossRefGoogle Scholar
  167. 167.
    Thornton KL, Sacks MD, Hall R, et al. Comparison of 0.2% ropivacaine and 0.25% bupivacaine for axillary brachial plexus blocks in paediatric hand surgery. Paediatr Anaesth 2003 Jun; 13(5): 409–12PubMedCrossRefGoogle Scholar
  168. 168.
    Giannoni C, White S, Enneking FK, et al. Ropivacaine with or without clonidine improves pediatric tonsillectomy pain. Otolaryngol Head Neck Surg 2001 Oct; 127: 1265–70Google Scholar
  169. 169.
    Park AH, Pappas AL, Fluder E, et al. Effect of perioperative administration of ropivacaine with epinephrine on postoperative pediatric adenotonsillectomy recovery. Arch Otolaryngol Head Neck Surg 2004 Apr; 130(4): 459–64PubMedCrossRefGoogle Scholar
  170. 170.
    Antok E, Bordet F, Duflo F, et al. Patient-controlled epidural analgesia versus continuous epidural infusion with ropivacaine for postoperative analgesia in children. Anesth Analg 2003 Dec; 97(6): 1608–11PubMedCrossRefGoogle Scholar
  171. 171.
    De Negri P, Ivani G, Tirri T, et al. A comparison of epidural bupivacaine, levobupivacaine, and ropivacaine on postoperative analgesia and motor blockade. Anesth Analg 2004 Jul; 99(1): 45–8PubMedCrossRefGoogle Scholar
  172. 172.
    Halpern SH, Breen TW, Campbell DC, et al. A multicenter, randomized, controlled trial comparing bupivacaine with ropivacaine for labor analgesia. Anesthesiology 2003 Jun; 98: 1431–5PubMedCrossRefGoogle Scholar
  173. 173.
    Lee BB, Ngan Kee WD, Ng FF, et al. Epidural infusions of ropivacaine and bupivacaine for labor analgesia: a randomized, double-blind study of obstetric outcome. Anesth Analg 2004 Apr; 98(4): 1145–52PubMedCrossRefGoogle Scholar
  174. 174.
    Lim Y, Ocampo CE, Sia AT. A comparison of duration of analgesia of intrathecal 2.5 mg of bupivacaine, ropivacaine, and levobupivacaine in combined spinal epidural analgesia for patients in labor. Anesth Analg 2004 Jan; 98(1): 235–9PubMedCrossRefGoogle Scholar
  175. 175.
    Benhamou D, Hamza J, Eledam J-J, et al. Continuous extradural infusion of ropivacaine 2mg ml-1 for pain relief during labour. Br J Anaesth 1997; 78: 748–50PubMedCrossRefGoogle Scholar
  176. 176.
    Beilin Y, Galea M, Zahn J, et al. Epidural ropivacaine for the inititation of labor epidural analgesia: a dose finding study. Anesth Analg 1999; 88: 1340–50PubMedGoogle Scholar
  177. 177.
    Cascio MG, Gaiser RR, Camann WR, et al. Comparative evaluation of four different infusion rates of ropivacaine (2mg/mL) for epidural labour analgesia. 1998; 23(6): 548–53Google Scholar
  178. 178.
    Atienzar MC, Palanca JM, Borras R, et al. Ropivacaine 0.1% with fentanyl 2 microg mL(−l) by epidural infusion for labour analgesia. Eur J Anaesthesiol 2004 Oct; 21(10): 770–5PubMedGoogle Scholar
  179. 179.
    Lee BB, Ngan Kee WD, Lau WM, et al. Epidural infusions for labor analgesia: a comparison of 0.2% ropivacaine, 0.1% ropivacaine, and 0.1% ropivacaine with fentanyl. Reg Anesth Pain Med 2002 Jan 28; 27: 31–6PubMedGoogle Scholar
  180. 180.
    Ledin Eriksson S, Gentele C, Olofsson CH. PCEA compared to continuous epidural infusion in an ultra-low-dose regimen for labor pain relief: a randomized study. Acta Anaesthesiol Scand 2003 Oct; 47(9): 1085–90PubMedCrossRefGoogle Scholar
  181. 181.
    Bremerich DH, Waibel HJ, Mierdl S, et al. Comparison of continuous background infusion plus demand dose and demand-only parturient-controlled epidural analgesia (PCEA) using ropivacaine combined with sufentanil for labor and delivery. Int J Obstet Anesth 2005 Apr; 14(2): 114–20PubMedCrossRefGoogle Scholar
  182. 182.
    Supandji M, Sia AT, Ocampo CE. 0.2% Ropivacaine and levobupivacaine provide equally effective epidural labour analgesia. Can J Anaesth 2004 Nov; 51(9): 918–22PubMedCrossRefGoogle Scholar
  183. 183.
    Purdie NL, McGrady EM. Comparison of patient-controlled epidural bolus administration of 0.1% ropivacaine and 0.1% levobupivacaine, both with 0.0002% fentanyl, for analgesia during labour. Anaesthesia 2004 Feb; 59(2): 133–7PubMedCrossRefGoogle Scholar
  184. 184.
    Camorcia M, Capogna G. Epidural levobupivacaine, ropivacaine and bupivacaine in combination with sufentanil in early labour: a randomized trial. Eur J Anaesthesiol 2003 Aug; 20 (No. 8): 636–9PubMedCrossRefGoogle Scholar
  185. 185.
    Gogarten W, Van de Velde M, Soetens E, et al. A multicentre trial comparing different concentrations of ropivacaine plus sufentanil with bupivacaine plus sufentanil for patient-controlled epidural analgesia in labour. Eur J Anaesthesiol 2004 Jan; 21(1): 38–45PubMedGoogle Scholar
  186. 186.
    Fischer C, Blanie P, Jaouen E, et al. Ropivacaine, 0.1% plus sufentanil, 0.5 mcg/ml, versus bupivacaine, 0.1% plus sufentanil, 0.5 mcg/ml, using patient-controlled epidural analgesia for labour. Anesthesiology 2000; 92(6): 1588–93PubMedCrossRefGoogle Scholar
  187. 187.
    Evron S, Glezerman M, Sadan O, et al. Patient-controlled epidural analgesia for labor pain: effect on labor, delivery and neonatal outcome of 0.125% bupivacaine vs 0.2% ropivacaine. Int J Obstet Anesth 2004 Jan; 13(1): 5–10PubMedCrossRefGoogle Scholar
  188. 188.
    Dresner M, Freeman J, Calow C, et al. Ropivacaine 0.2% versus bupivacaine 0.1 % with fentanyl: a double blind comparison for analgesia during labour. Br J Anaesth 2000 Dec; 85: 826–9PubMedCrossRefGoogle Scholar
  189. 189.
    Levin A, Datta S, Camann WR. Intrathecal ropivacaine for labor anagesia: a comparison with bupivacaine. Anesth Analg 1998; 87: 624–7PubMedGoogle Scholar
  190. 190.
    Soni AK, Miller CG, Pratt SD, et al. Low dose intrathecal ropivacaine with or without sufentanil provides effective analgesia and does not impair motor strength during labour: a pilot study. Can J Anesth 2001 Jul 31; 48: 677–80PubMedCrossRefGoogle Scholar
  191. 191.
    Hughes D, Hill D, Fee JPH. Intrathecal ropivacaine or bupivacaine with fentanyl for labour. Br J Anaesth 2001 Nov; 87: 733–7PubMedCrossRefGoogle Scholar
  192. 192.
    Zink W, Graf BM. Benefit-risk assessment of ropivacaine in the management of postoperative pain. Drug Saf 2004; 27(14): 1093–114PubMedCrossRefGoogle Scholar
  193. 193.
    Selander D, Sjovall J, Waldenlind L, et al. Accidental i.v. injections of ropivacaine: clinical experience of six cases [abstract]. Reg Anaesth 1997; 22(2S): 70Google Scholar
  194. 194.
    Klein SM, Pierce T, Rubin Y, et al. Successful rescuscitation after ropivacaine-induced ventricular fibrillation. Anesth Analg 2003; 97: 901–3PubMedCrossRefGoogle Scholar
  195. 195.
    Writer WD, Stienstra R, Eddleston JM, et al. Neonatal outcomes and mode of delivery after epidural analgesia with ropivacaine and bupivacaine: a prospective meta-analysis. Br J Anaesth 1998; 81: 713–7PubMedCrossRefGoogle Scholar
  196. 196.
    Wang RD, Dangler LA, Greengrass RA, et al. Update on ropivacaine. Expert Opinion on Pharmacotherapy 2001; 2(12): 2051–63PubMedCrossRefGoogle Scholar
  197. 197.
    Casati A, Putzu M. Bupivacaine, levobupivacaine and ropivacaine: are they clinically different? Best Pract Res Clin Anaesthesiol 2005 Jun; 19(2): 247–68PubMedCrossRefGoogle Scholar
  198. 198.
    Kuczkowski KM. Levobupivacaine and ropivacaine: the new choices for labor analgesia. Int J Clin Pract 2004 Jun; 58(6): 604–5PubMedCrossRefGoogle Scholar
  199. 199.
    Capogna G. Ropivacaine and bupivacaine in obstetric analgesia. Eur J Anaesthesiol 2002 Apr; 19(4): 237–9PubMedGoogle Scholar
  200. 200.
    Stienstra R. The place of ropivacaine in anesthesia. Acta Anaesthesiol Belg 2003; 54(2): 141–8PubMedGoogle Scholar
  201. 201.
    Lew E, Vloka JD, Hadzic A. Ropivacaine for peripheral nerve blocks: Are there advantages? Techniques in Regional Anesthesia & Pain Management 2001; 5(2): 56–9CrossRefGoogle Scholar
  202. 202.
    Ilfield BM, Kayser Enneking F. Continuous peripheral nerve blocks at home: a review. Anesth Analg 2005; 100: 1822–33CrossRefGoogle Scholar
  203. 203.
    Polley LS, Columb MO. Ropivacaine and bupivacaine: concentrating on dosing! Anesth Analg 2003 May; 96: 1251–3PubMedCrossRefGoogle Scholar
  204. 204.
    Merson N. A comparison of motor block between ropivacaine and bupivacaine for continuous labor epidural analgesia. AANA J 2001 Feb; 69(1): 54–8PubMedGoogle Scholar
  205. 205.
    AstraZeneca. Naropin (ropivacaine HCl): product monograph. Södertälje, Sweden: AstraZeneca Anaesthesia Group, 2004 SepGoogle Scholar

Copyright information

© Adis Data Information BV 2005

Authors and Affiliations

  • Dene Simpson
    • 1
  • Monique P. Curran
    • 1
  • Vicki Oldfield
    • 1
  • Gillian M. Keating
    • 1
  1. 1.Adis International LimitedMairangi Bay, AucklandNew Zealand

Personalised recommendations