Drugs

, Volume 65, Issue 11, pp 1493–1520

Immunological Aetiology of Major Psychiatric Disorders

Evidence and Therapeutic Implications
Review Article

Abstract

Historically, immunological research in psychiatry was based on empirical findings and early epidemiological studies indicating a possible relationship between psychiatric symptoms and acute infectious diseases. However, aetiopathological explanations for psychiatric disorders are no longer closely related to acute infection. Nevertheless, immune hypotheses have been discussed in schizophrenia, affective disorders and infantile autism in the last decades.

Although the variability between the results of the epidemiological studies conducted to date is strikingly high, there is still some evidence that the immune system might play a role in the aetiopathogenesis of these three psychiatric diseases, at least in subgroups of patients. In anxiety disorders immunological research is still very much in its infancy, and the few and inconsistent data of immune changes in these patients are believed to reflect the influence of short- or long-term stress exposure. Nevertheless, there are also some hints raising the possibility that autoimmune mechanisms could interrupt neurotransmission, which would be of significance in certain patients with anxiety and panic disorders. Drug and alcohol (ethanol) dependence are not believed to be primarily influenced by an immunological aetiology. On the other hand, immune reactions due to different drugs of abuse and alcohol may directly or indirectly influence the course of concomitant somatic diseases. In different organic brain disorders the underlying somatic disease is defined as a primary immune or autoimmune disorder, for instance HIV infection or systemic lupus erythematosus (SLE). For other neurodegenerative disorders, such as Alzheimer’s disease, immunoae-tiopathological mechanisms are supported by experimental and clinical studies.

Treatment strategies based on immune mechanisms have been investigated in patients with schizophrenia and affective disorders. Furthermore, some antipsychotics and most antidepressants are known to have direct or indirect effects on the immune system. Different immunotherapies have been used in autism, including transfer factor, pentoxifylline, intravenous immunoglobulins and corticosteroids. Immunosuppressive and/or immunomodulating agents are well established methods for treating the neuropsychiatric sequelae of immune or autoimmune disorders, for example AIDS and SLE. Therapeutic approaches in Alzheimer’s disease also apply immunological methods such as strategies of active/passive immunisation and NSAIDs.

Considering the comprehensive interactive network between mind and body, future research should focus on approaches linking targets of the different involved systems.

References

  1. 1.
    Hofbauer B. Infecto psychica. Österr Med Wschr 1846; 39: 1183–5Google Scholar
  2. 2.
    Wollenberg R. Über psychische Infektion. Arch Psychiatr 1889: 20:62Google Scholar
  3. 3.
    Bruce LC, Peebles AMS. Quantitative and qualitative leucocyte counts in various forms of mental disease. J Ment Sci 1904; 50: 409–17Google Scholar
  4. 4.
    Itten W. Zur Kenntnis hämatologischer Befunde bei einigen Psychosen. Zschr Ges Neurol Psychol 1914; 24: 341CrossRefGoogle Scholar
  5. 5.
    Schultz J. Hämatologische Untersuchungsmethoden im Dienste der Psychiatrie. Dtsch Med Wschr 1913; 39: 1399CrossRefGoogle Scholar
  6. 6.
    Damescheck W. The white blood cells in dementia praecox and dementia paralytica. Arch Neurol Psychiatry 1930; 24: 855Google Scholar
  7. 7.
    Sagel W. Einige Erfahrungen über das weiβe Blutbild und seinen Wert für die Psychiatrie. Zschr Ges Neurol Psychiatr 1930; 125: 436CrossRefGoogle Scholar
  8. 8.
    Feiten DL, Feiten SY, Carlson SL, et al. Noradrenergic and peptidergic innervation of lymphoid tissue. J Immunol 1985; 135: 755–65Google Scholar
  9. 9.
    Friedman EM, Irwin MR. Modulation of immune cell function by the autonomic nervous system. Pharmacol Ther 1997; 73: 1–12CrossRefGoogle Scholar
  10. 10.
    Rook GAW, Hernandez-Pando R, Lightman SL. Hormones, peripherally activated prohormones and regulation of Th1/Th2 balance. Immunol Today 1994; 15: 301–3PubMedCrossRefGoogle Scholar
  11. 11.
    Buckingham JC, Gilies GE, Cowell AM, editors. Stress, stress hormones and the immune system. Chichester: John Wiley Ltd, 1997Google Scholar
  12. 12.
    Savino W, Dardenne M. Immune-endocrine interactions. Immunol Today 1995; 16: 318–22PubMedCrossRefGoogle Scholar
  13. 13.
    Heath RG. Psychoneuroimmunology: an autoimmune patho-genesis for schizophrenia. Psychiatr Med 1990; 8: 95–110PubMedGoogle Scholar
  14. 14.
    Kirch DG. Infection and autoimmunity as etiologic factors in schizophrenia: a review and reappraisal. Schizophr Bull 1993: 19: 355–70PubMedCrossRefGoogle Scholar
  15. 15.
    Menninger K. The schizophrenic syndrome as a product of acute infectious disease. Arch Neurol Psychiatry 1928; 20: 464CrossRefGoogle Scholar
  16. 16.
    Goodall E. The existing cause of certain states, at present classified under ‘schizophrenia’ by psychiatrists may be infection. J Ment Sci 1932; 78: 746Google Scholar
  17. 17.
    Karlsson H, Bachmann S, Schröder J, et al. Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci U S A 2001; 98: 4634–9PubMedCrossRefGoogle Scholar
  18. 18.
    Albrecht P, Torrey EF, Boone E, et al. Raised cytomegalovirus-antibody level in cerebrospinal fluid of schizophrenic patients. Lancet 1980; II(8198): 769–72CrossRefGoogle Scholar
  19. 19.
    Bartova L, Rajcani J, Pogady J. Herpes simplex antibodies in the cerebrospinal fluid of schizophrenic patients. Acta Virol 1987; 31: 443–6PubMedGoogle Scholar
  20. 20.
    Bechter K, Bauer M, Estler HC, et al. Erweiterte kernspintomo-graphische Untersuchungen bei Borna-disease-Virus-seropositiven psychiatrischen Patienten und Kontrollen. Nervenarzt 1994; 65: 169–74PubMedGoogle Scholar
  21. 21.
    DeLisi LE, Smith SB, Harnovit JR, et al. Herpes simplex virus, cytomegalovirus and Epstein-Barr virus antibody titres in sera from schizophrenic patients. Psychol Med 1986; 16: 757–63PubMedCrossRefGoogle Scholar
  22. 22.
    Fukuda R, Sasaki T, Kunugi H, et al. No changes in paired viral antibody titers during the course of acute schizophrenia. Neuropsychobiology 1999; 40: 57–62PubMedCrossRefGoogle Scholar
  23. 23.
    Fux M, Sarov I, Ginot Y, et al. Herpes simplex virus and cytomegalovirus in the serum of schizophrenic patients versus other psychosis and normal controls. Isr J Psychiatry Relat Sci 1992; 29: 33–5PubMedGoogle Scholar
  24. 24.
    Hart DJ, Hearth RG, Sautter Jr FJ, et al. Antiretroviral antibodies: implications for schizophrenia, schizophrenia spectrum disorders and bipolar disorder. Biol Psychiatry 1999; 45: 704–14PubMedCrossRefGoogle Scholar
  25. 25.
    Iwahashi K, Watanabe M, Nakamura K, et al. Clinical investigation of the relationship between Borna disease virus (BDV) infection and schizophrenia in 67 patients in Japan. Acta Psychiatr Scand 1997; 96: 412–5PubMedCrossRefGoogle Scholar
  26. 26.
    King DJ, Cooper SJ, Earle J, et al. A survey of serum antibodies to eight common viruses in psychiatry patients. Br J Psychiatry 1985; 147: 137–44PubMedCrossRefGoogle Scholar
  27. 27.
    King DJ, Cooper SJ, Earle JA, et al. Serum and CSF antibody titres to seven common viruses in schizophrenic patients. Br J Psychiatry 1985; 147: 145–9PubMedCrossRefGoogle Scholar
  28. 28.
    Pandurangi AK, Pelonero AL, Nadel L, et al. Brain structure changes in schizophrenics with high serum titers of antibodies to herpes virus. Schizophr Res 1994; 11: 245–50PubMedCrossRefGoogle Scholar
  29. 29.
    Pelonero AL, Pandurangi AK, Calabrese VP. Autoantibodies to brain lipids in schizophrenia. Am J Psychiatry 1990; 147: 661–2PubMedGoogle Scholar
  30. 30.
    Richt JA, Alexander RC, Herzog S, et al. Failure to detect Borna disease virus infection in peripheral blood leukocytes from humans with psychiatric disorders. J Neurovirol 1997; 3: 174–8PubMedCrossRefGoogle Scholar
  31. 31.
    Rimon R, Nishimi M, Halonen P. Serum and CSF antibody levels to herpes simplex type I, measles and rubella viruses in patients with schizophrenia. Ann Clin Res 1978; 10: 291–3PubMedGoogle Scholar
  32. 32.
    Shrikhande S, Hirsch SR, Coleman JC, et al. Cytomegalovirus and schizophrenia: a test of a viral hypothesis. Br J Psychiatry 1985; 146: 503–6PubMedCrossRefGoogle Scholar
  33. 33.
    Torrey EF, Peterson MR, Brannon WL, et al. Immunoglobins and viral antibodies in psychiatric patients. Br J Psychiatry 1978; 132: 342–8CrossRefGoogle Scholar
  34. 34.
    Torrey EF, Yolken RR, Winfrey CJ. Cytomegalovirus antibody in cerebrospinal fluid of schizophrenic patients detected by enzyme immunoassay. Science 1982; 216: 892–4PubMedCrossRefGoogle Scholar
  35. 35.
    Waltrip RW, Buchanan RW, Carpenter WT, et al. Borna disease virus antibodies and the deficit syndrome of schizophrenia. Schizophr Res 1997; 23: 253–7PubMedCrossRefGoogle Scholar
  36. 36.
    Yamaguchi K, Sawada T, Naraki T, et al. Detection of borna disease virus-reactive antibodies from patients with psychiatric disorders and from horses by electrochemiluminescence immunoassay. Clin Diagn Lab Immunol 1999; 6: 696–700PubMedGoogle Scholar
  37. 37.
    DeLisi LE. Critical overview of current approaches to genetic mechanisms in schizophrenia research. Brain Res Brain Res Rev 2000; 31: 187–92PubMedCrossRefGoogle Scholar
  38. 38.
    DeLisi LE. Is there a viral or immune dysfunction etiology to schizophrenia? Re-evaluation a decade later. Schizophr Res 1996; 22: 1–4PubMedCrossRefGoogle Scholar
  39. 39.
    Pearce BD. Schizophrenia and viral infection during neurodevelopment: a focus on mechanisms. Mol Psychiatry 2001; 6: 634–46PubMedCrossRefGoogle Scholar
  40. 40.
    Jablensky A. Schizophrenia: recent epidemiologic issues. Epidemiol Rev 1995; 17: 10–20PubMedGoogle Scholar
  41. 41.
    Jablensky A, Sartorius N, Ernberg G, et al. Schizophrenia, manifestations, incidence and course in different cultures: a World Health Organization ten-country study. Psychol Med Monogr Suppl 1992; 20: 1–97CrossRefGoogle Scholar
  42. 42.
    Torrey EF. Prevalence studies in schizophrenia. Br J Psychiatry 1987; 150: 598–608PubMedCrossRefGoogle Scholar
  43. 43.
    Baldwin J. Schizophrenia and physical disease. Psychol Med 1979; 9: 611–8PubMedCrossRefGoogle Scholar
  44. 44.
    Spector TD, Silman AJ. Does the negative association between rheumatoid arthritis and schizophrenia provide clues to the etiology of rheumatoid arthritis? Br J Rheumatol 1987; 26: 307–10PubMedCrossRefGoogle Scholar
  45. 45.
    Vinogradov S, Gottesman II, Moises H, et al. Negative association between schizophrenia and rheumatoid arthritis. Schizophr Bull 1991; 17: 669–78PubMedCrossRefGoogle Scholar
  46. 46.
    Eaton WW, Hayward C, Ram R. Schizophrenia and rheumatoid arthritis: a review. Schizophr Res 1992; 6: 181–92PubMedCrossRefGoogle Scholar
  47. 47.
    Rubinstein G. Hypothesis: schizophrenia, rheumatoid arthritis and natural resistance genes. Schizophr Res 1997; 25: 177–81PubMedCrossRefGoogle Scholar
  48. 48.
    Torrey EF, Yolken RH. The schizophrenia: rheumatoid arthritis connection: infectious, immune or both? Brain Behav Immun 2001; 15: 401–10PubMedCrossRefGoogle Scholar
  49. 49.
    Torrey E, Torrey B, Petersen M. Seasonality of schizophrenic births in the United States. Arch Gen Psychiatry 1977; 34: 1065–70PubMedCrossRefGoogle Scholar
  50. 50.
    Watson S, Kucala T, Tilleskjor C. Schizophrenic births seasonality in relation to the incidence of infectious diseases and temperature extremes. Arch Gen Psychiatry 1984; 41: 85–90PubMedCrossRefGoogle Scholar
  51. 51.
    Pulver AE, Kung-Lee Y, Wolniec PS. Season of birth of siblings of schizophrenic patients. Br J Psychiatry 1992; 160: 71–5PubMedCrossRefGoogle Scholar
  52. 52.
    Mednick SA, Huttunen MO, Machon RA. Prenatal influenza infections and adult schizophrenia. Schizophr Bull 1994; 20: 263–7PubMedCrossRefGoogle Scholar
  53. 53.
    Torrey EF, Yolken RH. Familial and genetic mechanisms in schizophrenia. Brain Res Brain Res Rev 2000; 31(2–3): 113–7CrossRefGoogle Scholar
  54. 54.
    Weinberger DR. Schizophrenia: from neuropathology to neurodevelopment. Lancet 1995; 346: 552–7PubMedCrossRefGoogle Scholar
  55. 55.
    Lehmann-Facius H. Über die Liquordiagnose der Schizophrenien. Klin Wochenschr 1937; 16: 1646–8CrossRefGoogle Scholar
  56. 56.
    Kuznetoza NI, Semenov SF. Detection of antibrain antibodies in the sera of patients with neuropsychiatrie disorders. Zh Nevropatol Psikhiatr Im S S Korsakova 1961; 61: 869–73Google Scholar
  57. 57.
    Fessel WJ. Autoimmunity and mental illness. Arch Gen Psychiatry 1962; 6: 320–3PubMedCrossRefGoogle Scholar
  58. 58.
    Fessel WJ. The “antibrain factors” in psychiatric patients sera: I. Further studies with a hemaglutination technique. Arch Gen Psychiatry 1963; 8: 110–7CrossRefGoogle Scholar
  59. 59.
    Heath RG, Krupp IM. Schizophrenia as an immunologie disorder: I. demonstration of antibrain globulins by fluorescent antibody techniques. Arch Gen Psychiatry 1967; 16: 1–9PubMedCrossRefGoogle Scholar
  60. 60.
    DeLisi LE, Weber RJ, Pert CB. Are there antibodies against brain in sera from schizophrenic patient? Review and prospectus. Biol Psychiatry 1985; 20: 110–5PubMedCrossRefGoogle Scholar
  61. 61.
    Pandey RS, Gupta AK, Chaturvede UC. Autoimmune model of schizophrenia with special reference to antibrain antibodies. Biol Psychiatry 1981; 16: 1123–36PubMedGoogle Scholar
  62. 62.
    Rothermundt M, Arolt V, Bayer TA. Review of immunological and immunopathological findings in schizophrenia. Brain Behav Immun 2001; 15: 319–39PubMedCrossRefGoogle Scholar
  63. 63.
    Schwarz MJ, Chiang S, Müller N, et al. T-helper-1 and T-helper-2 responses in psychiatric disorders. Brain Behav Immun 2001; 15: 340–70PubMedCrossRefGoogle Scholar
  64. 64.
    Ganguli R, Brar JS, Rabin BS. Immune abnormalities in schizophrenia: evidence for the autoimmune hypothesis. Harv Rev Psychiatry 1994; 2: 70–83PubMedCrossRefGoogle Scholar
  65. 65.
    Schwarz MJ, Riedel M, Gruber R, et al. Autoantibodies against 60-kDa heat shock protein in schizophrenia. Eur Arch Psychiatry Clin Neurosci 1998; 248: 282–8PubMedCrossRefGoogle Scholar
  66. 66.
    Leykin I, Spivak B, Weizman A, et al. Elevated cellular immune response to human heat-shock protein-60 in schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 1999; 249: 238–46PubMedCrossRefGoogle Scholar
  67. 67.
    Kim YK, Kim L, Lee MS. Relationship between interleukins, neurotransmitters and psychopathology in drug-free male schizophrenics. Schizophr Res 2000; 44: 165–75PubMedCrossRefGoogle Scholar
  68. 68.
    Theodoropoulou S, Spanakos G, Baxevanis CN, et al. Cytokine serum levels, autologous mixed lymphocyte reaction and surface marker analysis in never medicated and chronically medicated schizophrenic patients. Schizophr Res 2001; 47: 13–25PubMedCrossRefGoogle Scholar
  69. 69.
    Müller N, Schlesinger BC, Hadjamu M, et al. Increased frequency of CD8 positive gamma/delta T-lymphocytes (CD8+γ/δ+) in unmedicated schizophrenic patients: relation to impairment of the blood-brain barrier and HLA-DPA* 02011. Schizophr Res 1998; 32: 69–71PubMedCrossRefGoogle Scholar
  70. 70.
    Müller N, Riedel M, Hadjamu M, et al. Increase in expression of adhesion molecule receptors on T helper cells during antipsychotic treatment and relationship to blood-brain barrier permeability in schizophrenia. Am J Psychiatry 1999; 156: 634–6PubMedGoogle Scholar
  71. 71.
    Schwarz MJ, Riedel M, Graber R, et al. Antibodies to heat shock proteins in schizophrenic patients: implications for the mechanism of the disease. Am J Psychiatry 1999; 156: 1103–4PubMedGoogle Scholar
  72. 72.
    Ahokas A, Koskiniemi ML, Vaheri A, et al. Altered white cell count, protein concentration and olioclonal IgG bands in the cerebrospinal fluid of many patients with acute psychiatric disorders. Neuropsychobiology 1985; 14: 1–4PubMedCrossRefGoogle Scholar
  73. 73.
    Kirch DG, Kaufmann CA, Papadopoulos NM, et al. Abnormal cerebrospinal fluid protein indices in schizophrenia. Biol Psychiatry 1985; 20: 1039–46PubMedCrossRefGoogle Scholar
  74. 74.
    Müller N, Ackenheil M. Immunoglobulin and albumin content of cerebrospinal fluid in schizophrenic patients: relationship to negative symptomatology. Schizophr Res 1995; 14: 223–8PubMedCrossRefGoogle Scholar
  75. 75.
    DeLisi LE, Goodman S, Neckers LM, et al. An analysis of lymphocyte subpopulations in schizophrenic patients. Biol Psychiatry 1982; 17: 1003–9PubMedGoogle Scholar
  76. 76.
    Printz DJ, Strauss DH, Goetz R, et al. Elevation of CD5+ B lymphocytes in schizophrenia. Biol Psychiatry 1999; 46:110–8PubMedCrossRefGoogle Scholar
  77. 77.
    McAllister CG, Rapaport MH, Pickar D, et al. Increased numbers of CD5+ B lymphocytes in schizophrenic patients. Arch Gen Psychiatry 1989; 46: 890–4PubMedCrossRefGoogle Scholar
  78. 78.
    Arnason BWG. Autoimmune diseases of the central and peripheral nervous systems. In: Rose NR, Mackay IR, editors. The autoimmune diseases. San Diego (CA): Academic Press, 1998: 571–602Google Scholar
  79. 79.
    Knight J. Possible autoimmune mechanisms in schizophrenia. Integr Psychiatry 1985; 3: 134–7Google Scholar
  80. 80.
    Knight J, Knight A, Ungvari G. Can autoimmune mechanisms account for the genetic predisposition to schizophrenia? Br J Psychiatry 1992; 160: 533–40PubMedCrossRefGoogle Scholar
  81. 81.
    Murray RM, Jones P, O’Callaghan E, et al. Genes, viruses and neurodevelopmental schizophrenia. Arch Gen Psychiatry 1987; 44: 660–9CrossRefGoogle Scholar
  82. 82.
    Abel L, Dessein AJ. The impact of host genetics on susceptibility to human infectious diseases. Curr Opin Immunol 1997; 9: 509–16PubMedCrossRefGoogle Scholar
  83. 83.
    Arolt V, Rothermundt M, Wandinger KP, et al. Decreased in vitro production of interferon-gamma and interleukin-2 in whole blood of patients with schizophrenia during treatment. Mol Psychiatry 2000; 5: 150–8PubMedCrossRefGoogle Scholar
  84. 84.
    Gaughran F, O’Neill E, Sham P, et al. Soluble interleukin 2 receptor levels in families of people with schizophrenia. Schizophr Res 2002; 56: 235–9PubMedCrossRefGoogle Scholar
  85. 85.
    Tanaka KF, Shintani F, Fujii Y, et al. Serum inerleukin-18 levels are elevated in schizophrenia. Psychiatr Res 2000; 96: 75–80CrossRefGoogle Scholar
  86. 86.
    Zhang XY, Zhou DF, Zhang PY, et al. Elevated interleukin-2, interleukin-6 and interleukin-8 serum levels in neuroleptic-free schizophrenia: association with psychopathology. Schizophr Res 2002; 57: 247–58PubMedCrossRefGoogle Scholar
  87. 87.
    Achiron A, Noy S, Lereya J, et al. T-cell subsets in acute psychotic schizophrenic patients. Biol Psychiatry 1994; 35: 27–31PubMedCrossRefGoogle Scholar
  88. 88.
    Bessler H, Eviatar J, Meshulam M, et al. Theophylline-sensitive T-lymphocyte subpopulation in schizophrenic patients. Biol Psychiatry 1987; 22: 1025–8PubMedCrossRefGoogle Scholar
  89. 89.
    Coffey CE, Sullivan JL, Rice JR. T lymphocytes in schizophrenia. Biol Psychiatry 1983; 18: 113–9PubMedGoogle Scholar
  90. 90.
    Dvorakova M, Zvolsky P, Herzog P. Endogenous psychoses and T and B lymphocytes. Folia Haematol Int Mag Klin Morphol Blutforsch 1980; 107: 221–8PubMedGoogle Scholar
  91. 91.
    Ganguli R, Rabin BS, Raghu U, et al. T lymphocytes in schizophrenics and normals and the effects of varying antipsychotic dosage. In: Kurstak LM, editor. Viruses, immunity, and mental disorders. New York: Plenum Medical, 1987: 187–9Google Scholar
  92. 92.
    Ganguli R, Brar JS, Chengappa KMR, et al. Autoimmunity in schizophrenia: a review of recent findings. Ann Med 1993; 25: 489–96PubMedCrossRefGoogle Scholar
  93. 93.
    Henneberg A, Riedl B, Dumke HO, et al. T-lymphocyte sub-populations in schizophrenic patients. Eur Arch Psychiatry Neurol Sci 1990; 239: 283–4PubMedCrossRefGoogle Scholar
  94. 94.
    Masserini C, Vita A, Basile R, et al. Lymphocyte subsets in schizophrenic disorders: relationship with clinical, neuro-morphological and treatment variables. Schizophr Res 1990; 3: 269–75PubMedCrossRefGoogle Scholar
  95. 95.
    Müller N, Ackenheil M, Hofschuster E, et al. Cellular immunity in schizophrenic patients before and during neuroleptic treatment. Psychiatry Res 1991; 37: 147–60PubMedCrossRefGoogle Scholar
  96. 96.
    Nyland H, Naess A, Lunde H. Lymphocyte subpopulations in peripheral blood from schizophrenic patients. Acta Psychiatr Scand 1980; 61: 313–8PubMedCrossRefGoogle Scholar
  97. 97.
    Rogozhnikova OA. Status of the T-lymphocyte system of immunity in patients with newly diagnosed paroxysmal schizophrenia. Zh Nevropatol Psikhiatr Im S S Korsakova 1991; 91: 47–9PubMedGoogle Scholar
  98. 98.
    Saifulina NA, Arkhipov GS, Stepanov AF, et al. T- and B-lymphocytes and their clinico-pathogenetic significance in patients with paranoid schizophrenia. Zh Nevropatol Psikhiatr Im S S Korsakova 1990; 90: 87–90PubMedGoogle Scholar
  99. 99.
    Schindler L, Leroux M, Beck J, et al. Studies of cellular immunity, serum interferon titers and of natural killer cell activity in schizophrenic patients. Acta Psychiatr Scand 1985; 72: 45–9PubMedCrossRefGoogle Scholar
  100. 100.
    Tsukasa S, Shinichiro N, Rimmei F, et al. Changes of immunological functions after acute exacerbation in schizophrenia. Biol Psychiatry 1994; 35: 173–8CrossRefGoogle Scholar
  101. 101.
    Vartanian ME, Koliaskina GI, Lozovsky DV, et al. Aspects of humoral and cellular immunity in schizophrenia. Birth Defects 1978; 14: 339–64PubMedGoogle Scholar
  102. 102.
    Zarrabi MH, Zucker S, Miller T, et al. Immunological and coagulation disorders in chlorpromazine-treated patients. Ann Intern Med 1979; 91: 194–9PubMedGoogle Scholar
  103. 103.
    Sperner-Unterweger B, Whitworth A, Kemmler G, et al. T-cell subsets in schizophrenia: a comparison between drug-naive first episode patients and chronic schizophrenic patients. Schizophr Res 1999; 38: 61–70PubMedCrossRefGoogle Scholar
  104. 104.
    Kronfol Z, Remick DG. Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry 2000; 157: 683–94PubMedCrossRefGoogle Scholar
  105. 105.
    Mehler MF, Kessler JA. Cytokines in brain development and function. Adv Protein Chem 1998; 52: 223–51PubMedCrossRefGoogle Scholar
  106. 106.
    Van Kammern DP, McAllister-Sistilli CG, Kelley ME, et al. Elevated interleukin-6 in schizophrenia. Psychiatry Res 1999; 87: 129–36CrossRefGoogle Scholar
  107. 107.
    Frommberger UH, Bauer J, Haselbauer P, et al. Interleukin-6 (IL-6) plasma levels in depression and schizophrenia: comparison between the acute state and after remission. Eur Arch Psychiatry Clin Neurosci 1997; 247: 228–33PubMedCrossRefGoogle Scholar
  108. 108.
    Naudin J, Capo C, Guisano B, et al. A differential role for interleukin-6 and tumor necrosis factor-alpha in schizophrenia. SchizophrRes 1997; 26: 227–33CrossRefGoogle Scholar
  109. 109.
    Kim YK, Lee MS, Suth KY. Decreased interleukin-2 production in Korean schizophrenic patients. Biol Psychiatry 1998; 43: 701–4PubMedCrossRefGoogle Scholar
  110. 110.
    Lin A, Kenis G, Bignotti S, et al. The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res 1998; 32: 9–15PubMedCrossRefGoogle Scholar
  111. 111.
    Akiyama K. Serum levels of soluble IL-2 receptor a, IL-6 and IL-1 receptor antagonist in schizophrenia before and during neuroleptic administration. Schizophr Res 1999; 37: 97–106PubMedCrossRefGoogle Scholar
  112. 112.
    Maes M, Delange J, Ranjan R, et al. Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs. Psychiatr Res 1997; 66: 1–11CrossRefGoogle Scholar
  113. 113.
    Maes M, Chiavetto LB, Bignotti S, et al. Effects of atypical antipsychotics on the inflammatory response system in schizophrenic patients resistant to treatment with typical neuroleptics. Eur Neuropsychopharmacol 2000; 10: 119–24PubMedCrossRefGoogle Scholar
  114. 114.
    Maes M, Chiavetto LB, Bignotti S, et al. Increased serum interleukin-8 and interleukin-10 in schizophrenic patients resistant to treatment with neuroleptics and the stimulatory effects of clozapine on serum leukemia inhibitory factor receptor. Schizophr Res 2002; 54: 281–91PubMedCrossRefGoogle Scholar
  115. 115.
    Kowalski J, Blada P, Kucia K, et al. Neuroleptics normalize increased release of interleukin-1 β and tumor necrosis factor-α from monocytes in schizophrenia. Schizophr Res 2001; 50: 169–75PubMedCrossRefGoogle Scholar
  116. 116.
    Cazullo CL, Sacchetti E, Galluzzo A, et al. Cytokine profiles in drug-naive schizophrenic patients. Schizophr Res 2001; 47: 292–8CrossRefGoogle Scholar
  117. 117.
    McAllister C, van Kammen DP, Rehn TJ, et al. Increases in CSF levels of interleukin-2 in schizophrenia: effects of recurrence of psychosis and medication status. Am J Psychiatry 1995; 152: 1291–7PubMedGoogle Scholar
  118. 118.
    Bessler H, Levental Z, Karp L, et al. Cytokine production in drug-free and neuroleptic-treated schizophrenic patients. Biol Psychiatry 1995; 38: 297–302PubMedCrossRefGoogle Scholar
  119. 119.
    Ganguli R, Brar JS, Chengappa KR, et al. Mitogen-stimulated interleukin-2 production in never-medicated, first episode schizophrenics: the influence of age of onset and negative symptoms. Arch Gen Psychiatry 1995; 52: 878CrossRefGoogle Scholar
  120. 120.
    Cazzullo CL, Scarone S, Grassi B, et al. Cytokines production in chronic schizophrenia patients with or without paranoid behavior. Prog Neuropsychopharmacol Biol Psychiatry 1998; 22: 947–57PubMedCrossRefGoogle Scholar
  121. 121.
    Wilke I, Arolt V, Rothermundt M, et al. Investigations of cytokine production in whole blood cultures of paranoid and residual schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 1996; 246: 279–84PubMedCrossRefGoogle Scholar
  122. 122.
    Rothermundt M, Arolt V, Weitzsch CH, et al. Production of cytokines in acute schizophrenic psychosis. Biol Psychiatry 1996; 40: 1294–7PubMedCrossRefGoogle Scholar
  123. 123.
    Mittelman BB, Castellanos FX, Jacobson LK, et al. Cerebrospinal fluid cytokines in pediatric neuropsychiatric disease. J Immunol 1997; 159: 2994–9Google Scholar
  124. 124.
    Müller N, Riedel M, Ackenheil M, et al. The role of immune function in schizophrenia: an overview. Eur Arch Psychiatry Clin Neurosci 1999; 249 Suppl. 4: IV/62–8CrossRefGoogle Scholar
  125. 125.
    Maes M, Meltzer HY, Bosnians E. Immune-inflammatory markers in schizophrenia: comparison to normal controls and effects of clozapine. Acta Psychiatr Scand 1994; 89: 346–51PubMedCrossRefGoogle Scholar
  126. 126.
    Maes M, Bosmans E, Calabrese J, et al. Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J Psychiatr Res 1995; 29: 141–52PubMedCrossRefGoogle Scholar
  127. 127.
    Gaughran F, O’Neill E, Cole M, et al. Increased soluble interleukin-2 receptor levels in schizophrenia. Schizophr Res 1998; 29: 263–7PubMedCrossRefGoogle Scholar
  128. 128.
    Zalcman S, Green-Johnson JM, Murray L, et al. Cytokine-specific central monoamine alterations induces by IL-1, -2 and -6. Brain Res 1994; 643: 40–9PubMedCrossRefGoogle Scholar
  129. 129.
    Jarskog LF, Xiao H, Wilkie MB, et al. Cytokine regulation of embryonic rat dopamine and serotonin neuronal survival in vitro. Int J Dev Neurosci 1997; 15: 711–6PubMedCrossRefGoogle Scholar
  130. 130.
    Merrill JE. Tumor necrosis factor alpha, interleukin-1 and related cytokines in brain development: Normal and pathological. Dev Neurosci 1992; 14: 1–10PubMedCrossRefGoogle Scholar
  131. 131.
    Mehler MF, Kessler JA. Hematolymphopoetic and inflammatory cytokines in neural development. Trends Neurosci 1997; 20: 357–65PubMedCrossRefGoogle Scholar
  132. 132.
    Licinio J, Scibyl JP, Altemus M, et al. Elevated CSF levels of interleukin-2 in neuroleptic-free schizophrenic patients. Am J Psychiatry 1993; 150: 1408–10PubMedGoogle Scholar
  133. 133.
    Marx CE, Jarskog F, Lauder JM, et al. Cytokine effects on cortical neuron MAP-2 immunoreactivity: implications for schizophrenia. Biol Psychiatry 2001; 50: 743–9PubMedCrossRefGoogle Scholar
  134. 134.
    Boccio Chiavetto L, Boin F, Zanardini R, et al. Association between promoter polymorphic haplotypes of interleukin-10 gene and schizophrenia. Biol Psychiatry 2002; 51: 480–4CrossRefGoogle Scholar
  135. 135.
    Katila H, Hanninen K, Hurme M. Polymorphisms of the interleukin-1 gene complex in schizophrenia. Mol Psychiatry 1999; 4: 179–81PubMedCrossRefGoogle Scholar
  136. 136.
    Boin F, Zanardini R, Pioli R, et al. Association between-G308A tumor necrosis factor alpha gene polymorphism and schizophrenia. Mol Psychiatry 2001; 6: 79–82PubMedCrossRefGoogle Scholar
  137. 137.
    Buka SL, Tsang MT, Torrey F, et al. Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry 2001; 58: 1032–7PubMedCrossRefGoogle Scholar
  138. 138.
    Brown AS, Schaefer CA, Wyatt RJ, et al. Maternal exposure to respiratory infections and adult schizohrenia spectrum disorders: a prospective birth cohort study. Schizophr Bull 2001; 26: 287–95CrossRefGoogle Scholar
  139. 139.
    Patterson PH. Maternal infection: window on neuroimmune interactions in fetal brain development and mental illness. Curr Opin Neurobiol 2002; 12: 115–8PubMedCrossRefGoogle Scholar
  140. 140.
    Brown AS, Begg MD, Gravenstein S, et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 2004; 61: 774–80PubMedCrossRefGoogle Scholar
  141. 141.
    Van Reeth K. Cytokines in the pathogenesis of influenza. Vet Microbiol 2000; 74: 109–16PubMedCrossRefGoogle Scholar
  142. 142.
    Urakubo A, Jarskog F, Lieberman JA, et al. Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid and fetal brain. Schizohr Res 2001; 47: 27–36CrossRefGoogle Scholar
  143. 143.
    Plata-Salaman CR, Iiyin SE, Gayle D, et al. Persistent Borna disease virus infection of neonatal rats causes brain regional changes of mRNAs for cytokines, cytokine receptor components and neuropeptides. Brain Res Bull 1999; 49: 441–51PubMedCrossRefGoogle Scholar
  144. 144.
    Pearce BD, Valadi NM, Po CL, et al. Viral infection of developing GAB Aergic neurons in a model of hippocampal disinhibition. Neuroreport 2000; 11: 2433–8PubMedCrossRefGoogle Scholar
  145. 145.
    Brown AS, Hooton J, Schaefer CA, et al. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry 2004; 161: 889–95PubMedCrossRefGoogle Scholar
  146. 146.
    Barrelet L, Ferrero F, Szigrthy L, et al. Expressed emotions and first-admission schizophrenia: nine-month follow-up in a French cultural environment. Br J Psychiatry 1990; 156: 357–62PubMedCrossRefGoogle Scholar
  147. 147.
    Dhabhar FS, McEwen BS, Spencer RL. Effects of stress on immune cell distribution: dynamics and hormonal mechanisms. J Immunol 1995; 154: 5511–27PubMedGoogle Scholar
  148. 148.
    Jansen LMC, Gispen-de Wied CC, Gaderman PJ, et al. Blunted Cortisol response to a psychosocial Stressor in schizophrenia. Schizophr Res 1998; 33: 87–94PubMedCrossRefGoogle Scholar
  149. 149.
    Jansen LMC, Gispen-de Wied CC, Kahn RS. Selective impairments in the stress response in schizophrenic patients. Psychopharmacology 2000; 149: 319–25PubMedCrossRefGoogle Scholar
  150. 150.
    Gispen-de Wied CC. Stress in schizophrenia: an integrative view. Eur J Pharmacol 2000; 405: 375–84CrossRefGoogle Scholar
  151. 151.
    Haack M, Hinze-Selch D, Fenzel T, et al. Plasma levels of cytokines and soluble cytokine receptors in psychiatric patients upon hospital admission, effects of confounding factors and diagnosis. J Psychiatr Res 1999; 33: 407–18PubMedCrossRefGoogle Scholar
  152. 152.
    Hinze-Selch D, Pollmächer T. In vitro cytokine secretion in individuals with schizophrenia: results, confounding factors and implications for further research. Brain Behav Immun 2001; 15: 282–318PubMedCrossRefGoogle Scholar
  153. 153.
    Kanner L. Autistic disturbances of affective contact. Nerv Child 1943; 2: 217–50Google Scholar
  154. 154.
    Bayley A, Philips W, Reutter M. Autism: towards an integration of clinical, genetic, neuropsychological and neurobiological perspectives. J Child Psychol Psychiatry 1996; 37: 89–126CrossRefGoogle Scholar
  155. 155.
    Trottier G, Srivastava L, Walker C. Etiology of infantile autism: a review of recent neurological research. J Psychiatry Neurosci 1999; 24: 103–32PubMedGoogle Scholar
  156. 156.
    Veenstra-Vanderweele J, Christian SL, Cook Jr EH. Autism as a paradigmatic complex genetic disorder. Annu Rev Genomics Hum Genet 2004; 5: 379–405PubMedCrossRefGoogle Scholar
  157. 157.
    Korvatska E, Van de Water J, Anders TF, et al. Genetic and immunologic considerations in autism. Neurobiol Dis 2002; 9: 107–25PubMedCrossRefGoogle Scholar
  158. 158.
    Lamb JA, Moore J, Bailey A, et al. Autism: recent molecular genetic advances. Hum Mol Genet 2000; 9: 861–8PubMedCrossRefGoogle Scholar
  159. 159.
    Maestrini E, Paul A, Monaco AP, et al. Identifying autism susceptibility genes. Neuron 2000; 28: 19–24PubMedCrossRefGoogle Scholar
  160. 160.
    VanGent T, Heijnen CJ, Treffers PDA. Autism and the immune system. J Child Psychol Psychiatry 1997; 38: 337–49CrossRefGoogle Scholar
  161. 161.
    Gupta S. Immunological treatments of autism. J Autism Dev Disord 2000; 30: 475–9PubMedCrossRefGoogle Scholar
  162. 162.
    Zimmerman AW. Immunological treatments for autism: in search of reasons for promising approaches. J Autism Dev Disord 2000; 30: 481–4PubMedCrossRefGoogle Scholar
  163. 163.
    Ashwood P, Van de Water J. A review of autism and the immune response. Clin Dev Immunol 2004; 11: 165–74PubMedCrossRefGoogle Scholar
  164. 164.
    Krause I, He XS, Gershwin E, et al. Brief report: immune factors in autism: a critical review. J Autism Dev Disord 2002; 32: 337–45PubMedCrossRefGoogle Scholar
  165. 165.
    Sweeten TL, Posey DJ, McDougle CJ. High blood monocyte counts and neopterin levels in children with autistic disorder. Am J Psychiatry 2003; 160: 1691–3PubMedCrossRefGoogle Scholar
  166. 166.
    Chez MG, Chin K, Hung PC. Immunizations, immunology and autism. Semin Pediatr Neurol 2004; 11: 214–7PubMedCrossRefGoogle Scholar
  167. 167.
    Warren RP, Margaretten NC, Pace NC, et al. Immune abnormalities in patients with autism. J Autism Dev Disord 1986; 16: 189–97PubMedCrossRefGoogle Scholar
  168. 168.
    Warren RP, Foster A, Margaretten NC. Reduced natural killer cell activity in autism. J Am Acad Child Adolsec Psychiatry 1987; 26: 333–5CrossRefGoogle Scholar
  169. 169.
    Plioplys AV, Greaves A, Kazemi K, et al. Lymphocyte function in autism and Rett syndrome. Neuropsychobiology 1994; 29: 12–6PubMedCrossRefGoogle Scholar
  170. 170.
    Denny DR, Frei BW, Gaffney GR. Lymphocyte subsets and interleukin-2 receptors in autistic children. J Autism Dev Disord 1996; 26: 87–97CrossRefGoogle Scholar
  171. 171.
    Harrison KL, Pheasant AE. Analysis of urinary pterins in autism [abstract]. Biochem Soc Trans 1995; 23: 603SPubMedGoogle Scholar
  172. 172.
    Messahal S, Pheasant AE, Pall H, et al. Urinary levels of neopterin and biopterin in autism. Neurosci Lett 1998; 241: 17–20CrossRefGoogle Scholar
  173. 173.
    Gupta S, Aggarwal S, Heads C. Dysregulated immune system in children with autism: beneficial effects of intravenous immune globulin on autistic characteristics. J Autism Dev Disord 1996; 26: 439–52PubMedCrossRefGoogle Scholar
  174. 174.
    Vojdani A, Campbell AW, Anyanwu E, et al. Antibodies to neuron-specific antigens in children with autism: possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A. J Neuroimmunol 2002; 129: 168–77PubMedCrossRefGoogle Scholar
  175. 175.
    Gupta S, Lee T, Aggarval S. Alterations in Th1 and Th2 subsets of CD4+ and CD8+ T-cells in autism. J Neuroimmunol 1998; 14: 499–504Google Scholar
  176. 176.
    Jyonouchi H, Sun SN, Le H. Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J Neuroimmunol 2001; 120: 170–9PubMedCrossRefGoogle Scholar
  177. 177.
    Warren RP, Singh VK, Averett RE, et al. Immunogenetic studies in autism and related disorders. Mol Chem Neuropathol 1996; 28: 77–81PubMedCrossRefGoogle Scholar
  178. 178.
    Torres AR, Maciulis A, Stubbs EG, et al. The transmission disequilibrium test suggests that HLA-DR4 and DR13 are linked to autism spectrum disorder. Hum Immunol 2002; 63: 311–6PubMedCrossRefGoogle Scholar
  179. 179.
    Ferrante P, Saresella M, Guerini FR, et al. Significant association of HLA A2-DR11 and CD4 naive decrease in autistic children. Biomed Pharmacother 2003; 57: 372–4PubMedCrossRefGoogle Scholar
  180. 180.
    Warren RP, Singh VK, Cole P, et al. Increased frequency of the null allele at the complement C4B locus in autism. Clin Exp Immunol 1991; 83: 438–40PubMedCrossRefGoogle Scholar
  181. 181.
    Warren RP, Sing P, Cole P, et al. Possible association of the extended MHC haplotype B44-SC30-DR4 with autism. Immunogenetics 1992; 36: 203–7PubMedCrossRefGoogle Scholar
  182. 182.
    Broadley SA, Dean J, Sawcer SJ, et al. Autoimmune disease in first-degree relatives of patients with multiple sclerosis. Brain 2000; 123: 1102–11PubMedCrossRefGoogle Scholar
  183. 183.
    Prahalad S, Shear ES, Ghompson D, et al. Increased prevalence of familial autoimmunity in simplex and multiplex families with juvenile rheumatoid arthritis. Arthritis Rheum 2002; 46: 1851–6PubMedCrossRefGoogle Scholar
  184. 184.
    Sweeten TL, Bowyer SL, Posey DJ, et al. Increased prevalence of familial autoimmunity in probands with pervasive development disorders. Pediatrics 2003; 112: 420–4CrossRefGoogle Scholar
  185. 185.
    Comi AM, Zimmerman AW, Frye VH, et al. Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism. J Child Neurol 1999; 14: 388–94PubMedCrossRefGoogle Scholar
  186. 186.
    Singh VK, Warren RP, Odell JD, et al. Antibodies to myelin basic protein in children with autistic behaviour. Brain Behav Immunol 1993; 7: 97–103CrossRefGoogle Scholar
  187. 187.
    Singh VK, Fudenberg HH, Emerson D, et al. Immunodiagnosis and immunotherapy in autistic children. Ann N Y Acad Sci 1988; 540: 602–4PubMedCrossRefGoogle Scholar
  188. 188.
    Todd RD, Ciaranello RD. Demonstration if inter- and intraspecies differences in serotonin binding sites by antibodies from an autistic child. Proc Nat Acad Sci U S A 1985; 82: 612–6CrossRefGoogle Scholar
  189. 189.
    Cook Jr EH, Perry BD, Dawson G, et al. Receptor inhibition by immunoglobulins: specific inhibition by autistic children, their relatives and control subjects. J Autism Dev Disord 1993; 23: 67–78PubMedCrossRefGoogle Scholar
  190. 190.
    Yuwiler A, Shih JC, Chen CH, et al. Hyperserotoninemia and antiserotonin antibodies in autism and other disorders. J Autism Dev Disord 1992; 22: 33–45PubMedCrossRefGoogle Scholar
  191. 191.
    Connolly AM, Chez MG, Pestronk A, et al. Serum antibodies to brain in Landau-Kleffner variant, autism, and other neurologic disorder. J Pediatr 1999; 134: 607–13PubMedCrossRefGoogle Scholar
  192. 192.
    Silva SC, Correia C, Fesel C, et al. Autoantibody repertoires to brain tissue in autism nuclear families. J Neuroimmunol 2004; 152: 176–82PubMedCrossRefGoogle Scholar
  193. 193.
    Singh VK, Jensen RL. Elevated levels of measles antibodies in children with autism. Pediatr Neurol 2003; 28: 292–4PubMedCrossRefGoogle Scholar
  194. 194.
    Vojdani A, Bazargan M, Vojdani E, et al. Heat shock protein and gliadin peptide promote development of peptidase antibodies in children with autism and patients with autoimmune disease. Clin Diagn Lab Immun 2004; 11: 515–24Google Scholar
  195. 195.
    Muscat C, Bertotto A, Agea E, et al. Expression and functional role of 1F7 (CD26) antigen on peripheral blood and synovial fluid cells in rheumatoid arthritis patients. Clin Exp Immunol 1994; 98: 252–6PubMedCrossRefGoogle Scholar
  196. 196.
    Nakao H, Eguchi K, Kawakami A, et al. Increment of Tal positive cells in peripheral blood from patients with rheumatoid arthritis. J Rheumatol 1989; 16: 904–14PubMedGoogle Scholar
  197. 197.
    Binstock T. Intra-monocyte pathogens delineate autism subgroups. Med Hypotheses 2001; 56: 523–31PubMedCrossRefGoogle Scholar
  198. 198.
    Ciaranello AL, Ciaranello RD. The neurobiology of infantile autism. Annu Rev Neurosci 1995; 18: 101–28PubMedCrossRefGoogle Scholar
  199. 199.
    Hornig M, Weissenbock H, Horscroft N, et al. An infection-based model of neurodevelopmental damage. Proc Natl Acad Sci U S A 1999; 96: 12102–7PubMedCrossRefGoogle Scholar
  200. 200.
    Pletnikov MV, Moran TH, Carbone KM. Borne disease virus infection of the neonatal rat: developmental brain injury model of autism spectrum disorders. Front Biosci 2002; 7: d593–607PubMedCrossRefGoogle Scholar
  201. 201.
    Gimpl G, Fahrenhol F. The oxytocin receptor system structure, function and regulation. Physiol Rev 2001; 81: 629–83PubMedGoogle Scholar
  202. 202.
    Young MR, Kut JL, Coogan MP, et al. Stimulation of splenic T-lymphocyte function by endogenous serotonin and by low-dose exogenous serotonin. Immunology 1993; 80: 395–400PubMedGoogle Scholar
  203. 203.
    Kut JL, Young MR, Crayton JW, et al. Regulation of murine T-lymphocyte function by spleen cell-derived and exogenous serotonin. Immunopharmacol Immunotoxicol 1992; 14: 783–96PubMedCrossRefGoogle Scholar
  204. 204.
    Chugani DC, Muzik O, Rothermel R, et al. Altered serotonin synthesis in the dentatothalamocortical pathways in autistic boys. Ann Neurol 1997; 42: 666–9PubMedCrossRefGoogle Scholar
  205. 205.
    Modahl C, Green L, Feind D, et al. Plasma oxytocin levels in autistic children. Biol Psychiatry 1998; 43: 270–7PubMedCrossRefGoogle Scholar
  206. 206.
    Green L, Fein D, Modahl C, et al. Oxytocin and autistic disorder: alterations in peptide forms. Biol Psychiatry 2001; 50: 609–13PubMedCrossRefGoogle Scholar
  207. 207.
    Wakefield AJ, Murch SH, Anthony A, et al. Ileal-lymphoid-nodular, hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 1998; 351: 637–41PubMedCrossRefGoogle Scholar
  208. 208.
    Turner M, Barnby G, Bailey A. Genetic clues to the biological basis of autism. Mol Med Today 2000; 6: 238–44PubMedCrossRefGoogle Scholar
  209. 209.
    Binstock T. Intra-monocyte pathogens delineate autism subgroups. Med Hypotheses 2001; 56: 523–31PubMedCrossRefGoogle Scholar
  210. 210.
    Money J, Bobrow NA, Clark FC. Autism and autoimmune disease: a family study. J Autism Child Schizophr 1971; 1: 146–60PubMedCrossRefGoogle Scholar
  211. 211.
    Burger RA, Warren RP. Possible immunogenetic basis for autism. Ment Retard Dev Disabil Res Rev 1998; 4: 137–41CrossRefGoogle Scholar
  212. 212.
    Croonenberghs J, Bosmans E, Deboutte D, et al. Activation of the inflammatory response in autism. Neuropsychobiology 2002; 45: 1–6PubMedCrossRefGoogle Scholar
  213. 213.
    Wakefield AJ, Pulestron JM, Montgomery SM, et al. Review article: the concept of entero-colonic encephalopathology, autism and opioid receptor ligands. Aliment Pharmacol Ther 2002; 16: 636–74CrossRefGoogle Scholar
  214. 214.
    Halsey NA, Hyman SL. Conference writing panel, measles-mumps-rubella vaccine and autistic spectrum disorder: report from the new challenges in childhood immunizations conference convened in Oak Brook, Illinois. June 12–13, 2000. Pediatrics 2001; 107: E84PubMedCrossRefGoogle Scholar
  215. 215.
    Madsen KM, Hviid A, Vestergaard M, et al. A population-based study of measles, mumps, and rubella vaccination and autism. N Engl J Med 2002; 347: 1477–82PubMedCrossRefGoogle Scholar
  216. 216.
    Taylor B, Miller E, Lingam R, et al. Measles, mumps and rubella vaccination and bowel problems or developmental regression in children with autism: population study. BMJ 2002; 324: 393–6PubMedCrossRefGoogle Scholar
  217. 217.
    Makela A, Nuorti JP, Peltola H. Neurologic disorders after measles-mumps-rubella vaccination. Pediatrics 2002; 110: 957–63PubMedCrossRefGoogle Scholar
  218. 218.
    Taylor B, Miller E, Farrington CP, et al. Autism and measles, mumps and rubella vaccine: no epidemiological evidence for a causal association. Lancet 1999; 353: 2026–9PubMedCrossRefGoogle Scholar
  219. 219.
    Hviid A, Stellfeld M, Wohlfahrt J, et al. Association between thimerosal-containing vaccine and autism. JAMA 2003; 290: 1763–6PubMedCrossRefGoogle Scholar
  220. 220.
    Stehr-Green P, Tull P, Stellfeld M, et al. Autism and thimerosal-containing vaccines: lack of consistent evidence for an association. Am J Prev Med 2003; 25: 101–6PubMedCrossRefGoogle Scholar
  221. 221.
    Murch SH, Anthony A, Casson DH, et al. Retraction of an interpretation. Lancet 2004; 363: 750PubMedCrossRefGoogle Scholar
  222. 222.
    Zorilla EP, Luborsky L, McKay JR, et al. The Relationship of depression and Stressors to immunological assays: a meta-analytic review. Brain Behav Immun 2001; 15: 199–226CrossRefGoogle Scholar
  223. 223.
    Herbert TB, Cohen S. Depression and immunity: a meta-analytic review. Psychol Bull 1993; 113: 472–86PubMedCrossRefGoogle Scholar
  224. 224.
    Weisse CS. Depression and immunocompetence: a review of the literature. Psychol Bull 1992; 111: 475–89PubMedCrossRefGoogle Scholar
  225. 225.
    Zorilla EP, Cannon TD, Kessler J, et al. Leukocyte differentials predict short-term clinical outcome following antipsychotic treatment in schizophrenia. Biol Psychiatry 1998; 43: 887–96CrossRefGoogle Scholar
  226. 226.
    Schleifer SJ, Keller SE, Meyerson AT, et al. Lymphocyte function in major depressive disorder. Arch Gen Psychiatry 1984; 41: 484–6PubMedCrossRefGoogle Scholar
  227. 227.
    Irwin M. Immune correlates of depression. In: Dantzer R, Woll-man EE, Yirmiya R, editors. Cytokines, stress and depression. New York: Kluwer Academic/Plenum Publishers, 1999: 1–24CrossRefGoogle Scholar
  228. 228.
    Sluzewska A. Indicators of immune activation in depressed patients. In: Dantzer R, Wollman EE, Yirmiya R, editors. Cytokines, stress and depression. New York: Kluwer Academic/Plenum Publishers, 1999: 59–73CrossRefGoogle Scholar
  229. 229.
    Maes M. Major depression and activation of the inflammatory response system. In: Dantzer R, Wollman EE, Yirmiya R, editors. Cytokines, stress and depression. New York: Kluwer Academic/Plenum Publishers, 1999: 25–46CrossRefGoogle Scholar
  230. 230.
    Kemeny ME, Weiner H, Taylor SE, et al. Repeated bereavement, depressed mood, and immune parameters in HIV seropositive and seronegative gay men. Health Psychol 1994; 13: 14–24PubMedCrossRefGoogle Scholar
  231. 231.
    Crook TH, Miller NW. The challenge of Alzheimer’s disease. Am Psychol 1985; 40: 1245–50PubMedCrossRefGoogle Scholar
  232. 232.
    Fiore J, Becker J, Coppel DB. Social network interactions: a buffer or a stress? Am J Community Psychol 1983; 11: 423–9PubMedCrossRefGoogle Scholar
  233. 233.
    Olff M. Stress, depression and immunity: the role of defense and coping styles. Psychiatry Res 1999; 85: 7–15PubMedCrossRefGoogle Scholar
  234. 234.
    Barefoot JC, Brummett BH, Helms MJ, et al. Depressive symptoms and survival of patients with coronary artery disease. Psychosom Med 2000; 62: 790–5PubMedGoogle Scholar
  235. 235.
    Wulsin LR, Vaillant GE, Wells VE. A systematic review of the mortality of depression. Psychosom Med 1999; 61: 6–17PubMedGoogle Scholar
  236. 236.
    Glassman AH, Shapiro PA. Depression and the course of coronary artery disease. Am J Psychiatry 1998; 155: 4–11PubMedGoogle Scholar
  237. 237.
    Lesperance F, Frasure-Smith N, Juneau M, et al. Depression and 1-year prognosis in unstable angina. Arch Intern Med 2000, 60Google Scholar
  238. 238.
    Musselman DL, Evans DL, Nemeroff CB. The relationship of depression to cardiovascular disease: epidemiology, biology and treatment. Arch Gen Psychiatry 1998; 55: 580–92PubMedCrossRefGoogle Scholar
  239. 239.
    Kagan J, Snidman N, Julia-Sellers M, et al. Temperament and allergic symptoms. Psychosom Med 1991; 53: 332–40PubMedGoogle Scholar
  240. 240.
    Parker JC, Smarr KL, Angelone EO, et al. Psychological factors, immunologic activation and disease activity in rheumatoid arthritis. Arthritis Care Res 1992; 5: 196–201PubMedCrossRefGoogle Scholar
  241. 241.
    Cohen S, Doyle WJ, Skoner DP. Psychological stress, cytokine production, and severity of upper respiratory illness. Psychosom Med 1999; 61: 175–80PubMedGoogle Scholar
  242. 242.
    Cohen S, Tyrrell DA, Smith AP. Psychological stress and susceptibility to the common cold. N Engl J Med 1991; 325: 606–56PubMedCrossRefGoogle Scholar
  243. 243.
    Cohen S, Williamson G. Stress and infectious disease in humans. Psychol Bull 1991; 109: 5–24PubMedCrossRefGoogle Scholar
  244. 244.
    Kiecolt-Glaser JK, Glaser R, Gravenstein S, et al. Chronic stress alters the immune response to influenza virus vaccine in older adults. Proc Natl Acad Sci U S A 1996; 93: 3043–7PubMedCrossRefGoogle Scholar
  245. 245.
    Stein M, Miller AH, Trestman RL. Depression, the immune system and health and illness. Arch Gen Psychiatry 1991; 48: 171–7PubMedCrossRefGoogle Scholar
  246. 246.
    Jung W, Irwin M. Reduction of natural killer cytotoxic activity in major depression, interaction between depression and cigarette smoking. Psychosom Med 1999; 61: 263–70PubMedGoogle Scholar
  247. 247.
    Dinan T. Glucocorticoids and the genesis of depressive illness: a psychobiological model. Br J Psychiatry 1994; 164: 365–71PubMedCrossRefGoogle Scholar
  248. 248.
    Tilders FJH, Schmidt ED. Cross-sensitization between immune and non-immune Stressors: a role in the etiology of depression? In: Dantzer R, Wollman EE, Yirmiya R, editors. Cytokines, stress and depression. New York: Kluwer Academic/Plenum Publishers, 1999: 179–97CrossRefGoogle Scholar
  249. 249.
    Smith RS. The macrophage theory of depression. Med Hypothesis 1991; 35: 298–306CrossRefGoogle Scholar
  250. 250.
    Maes M, Meltzer H, Bosmans E, et al. Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J Affect Disord 1995; 34: 301–9PubMedCrossRefGoogle Scholar
  251. 251.
    Maes M, Smith R, Scharpé S. The monocyte-T-lymphocyte hypothesis of major depression. Psychoneuroendocrinology 1995; 20: 11–6CrossRefGoogle Scholar
  252. 252.
    Herrmann C, Brand-Driehorst S, Kaminsky B, et al. Diagnostic groups and depressed mood as predictors of 22-month mortality in medical inpatients. Psychosom Med 1998; 60: 570–7PubMedGoogle Scholar
  253. 253.
    Leonard BE, Song C. Changes in the immune system in rodent models of depression. Int J Neuropsychopharmacol 2002; 5: 345–6PubMedCrossRefGoogle Scholar
  254. 254.
    Licinio J, Wong ML. The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-response systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatry 1999; 4: 317–27PubMedCrossRefGoogle Scholar
  255. 255.
    Vitkovic L, Konsman JP, Bockaert J, et al. Cytokine signals propagate through the brain. Mol Psychiatry 2000; 5: 605–15CrossRefGoogle Scholar
  256. 256.
    Carpenter LL, Heninger GR, Malison RT, et al. Cerebrospinal fluid interleukin (IL)-6 unipolar major depression. J Affect Disord 2004; 79: 285–9PubMedCrossRefGoogle Scholar
  257. 257.
    Irwin M. Psychoneuroimmunology of depression: clinical implications. Brain Behav Immunity 2002; 16: 1–16CrossRefGoogle Scholar
  258. 258.
    Song C, Leonard BE. Fundamentals of psychoimmunology. New York: J Wiley & Sons Ltd, 2000Google Scholar
  259. 259.
    Widner B, Laich A, Sperner-Unterweger B, et al. Neopterin production, tryptophan degradation, and mental depression: what is the link? Brain Behav Immunity 2002; 16: 590–5CrossRefGoogle Scholar
  260. 260.
    Maes M, Bosmans E, Meltzer HY, et al. Interleukin-1β: a putative mediator of HPA-axis hyperactivity in major depression? Am J Psychiatry 1993; 150: 1189–93PubMedGoogle Scholar
  261. 261.
    Song C, Lin A, Bonaccorso S, et al. The inflammatory response system and the availability of plasma tryptophan in patients with primary sleep disorders and major depression. J Affect Disord 1998; 49: 211–9PubMedCrossRefGoogle Scholar
  262. 262.
    Murr C, Widner B, Sperner-Unterweger B, et al. Immune reaction links disease progression in cancer patients with depression. Med Hypothesis 2000; 55(2): 137–40CrossRefGoogle Scholar
  263. 263.
    Guillemin GJ, Kerr SJ, Brew BJ. Involvement of quinolinic acid in AIDS dementia complex. Neurotox Res 2005; 7: 103–23PubMedCrossRefGoogle Scholar
  264. 264.
    Huengsberg M, Winer JB, Gompels M, et al. Serum kynurenineto-tryptophan ration increase with progressive disease in HIV-infected patients. Clin Chem 1998; 44: 858–62PubMedGoogle Scholar
  265. 265.
    Hansen AM, Driussi C, Turner V, et al. Tissue distribution of indoleamine 2,3-dioxygenase in normal and malaria-infected tissue. Redox Rep 2000; 5: 112–5PubMedCrossRefGoogle Scholar
  266. 266.
    Corcos M, Guilboud O, Hjalmarsson L, et al. Cytokines and depression: an analogic approach. Biomed Pharmacother 2002; 56: 105–10PubMedCrossRefGoogle Scholar
  267. 267.
    Van Amsterdam JGC, Opperhuizen A. Nitric oxide and biopterin in depression and stress. Psychiatry Res 1999; 85: 33–8PubMedCrossRefGoogle Scholar
  268. 268.
    Karatinos J, Rosse RB, Deutsch SI. The nitric oxide pathway: potential implications for treatment of neuropsychiatric disorders. Clin Neuropharmacol 1995; 18: 482–99PubMedCrossRefGoogle Scholar
  269. 269.
    Park KG, Hayes PD, Garlick PJ, et al. Stimulation of lymphocyte natural cytotoxicity by L-arginine. Lancet 1991; 337: 645–6PubMedCrossRefGoogle Scholar
  270. 270.
    Xiao L, Eneroth PH, Qureshi GA. Nitric oxide synthase pathway may mediate human natural killer cell cytotoxicity. Scand J Immunol 1995; 42: 505–11PubMedCrossRefGoogle Scholar
  271. 271.
    Anisman H, Ravindran AV, Griffiths J, et al. Interleukin-1β production in dysthymia before and after pharmacotherapy. Biol Psychiatry 1999; 46: 1649–55PubMedCrossRefGoogle Scholar
  272. 272.
    Rothermundt M, Arolt V, Peters M, et al. Inflammatory markers in major depression and melancholia. J Affect Disord 2001; 63: 93–102PubMedCrossRefGoogle Scholar
  273. 273.
    Cassidy F, Wilson WH, Caroll BJ. Leukocytosis and hypoalbuminemia in mixed bipolar states: evidence for immune activation. Acta Psychiatr Scand 2002; 105: 60–4PubMedCrossRefGoogle Scholar
  274. 274.
    Liu HC, Yang YY, Chou Y, et al. Immunologic variables in acute mania of bipolar disorder. J Neuroimmunol 2004; 150: 116–22PubMedCrossRefGoogle Scholar
  275. 275.
    Breunis MN, Kupla RW, Nolen WA, et al. High numbers of circulating activated t-cells and raised levels of serum IL-2 receptor in bipolar disorder. Biol Psychiatry 2003; 53: 157–65PubMedCrossRefGoogle Scholar
  276. 276.
    Padmos RC, Bekris L, Knijff EM, et al. A high prevalence of organ-specific autoimmunity in patients with bipolar disorder. Biol Psychiatry 2004; 56: 476–82PubMedCrossRefGoogle Scholar
  277. 277.
    Dickerson FB, Boronow JJ, Stellings C, et al. Infection with herbes simplex virus type 1 is associated with cognitive deficits in bipolar disorder. Biol Psychiatry 2004; 55: 588–93PubMedCrossRefGoogle Scholar
  278. 278.
    Stastny J, Konstantinidis A, Schwarz MJ, et al. Effects of tryptophan depletion and catecholamine depletion on immune parameters in patients with seasonal affective disorder in remission with light therapy. Biol Psychiatry 2003; 53: 332–7PubMedCrossRefGoogle Scholar
  279. 279.
    Haekstra R, Fekkes D, Van De Wetering BJM, et al. Effect of light therapy on biopterin, neopterin and tryptophan in patients with seasonal affective disorder. Psychiatr Res 2003; 120: 37–42CrossRefGoogle Scholar
  280. 280.
    Ravindran AV, Griffiths J, Merali Z, et al. Influence of acute tryptophan depletion on mood and immune measures in healthy males. Psychoneuroendocrinology 1999; 24: 99–113PubMedCrossRefGoogle Scholar
  281. 281.
    Irwin M. Neuroimmunology of disordered sleep in depression and alcoholism. Neuropsychopharmacology 2001; 25: S45–9PubMedCrossRefGoogle Scholar
  282. 282.
    Irwin M, Clark C, Lennedy B, et al. Nocturnal catecholamines and immune function in insomniacs, depressed patients, and control subjects. Brain Behav Immunity 2003; 17: 365–72CrossRefGoogle Scholar
  283. 283.
    Miller GE, Cohen S, Herbert TB. Pathways linking major depression and immunity in ambulatory female patients. Psychosom Med 1999; 61: 850–60PubMedGoogle Scholar
  284. 284.
    Koh KB, Lee BK. Reduced lymphocyte proliferation and interleukin-2 production in anxiety disorders [abstract]. Psychosom Med 1996; 58: 80Google Scholar
  285. 285.
    Zorilla E, Redei E, Derubeis RJ. Reduces cytokine levels in T-cell function in healthy males: relation to individual differences in subclinical anxiety. Brain Behav Immunity 1994; 8: 293–312CrossRefGoogle Scholar
  286. 286.
    Andreoli A, Keller SE, Rabaeus M, et al. Immunity, major depression and panic disorder comorbidity. Biol Psychiatry 1992; 31: 869–908CrossRefGoogle Scholar
  287. 287.
    Brambilla F, Bellodi L, Perna G, et al. Psychoimmunoendocrine aspects of panic disorder. Neuropsychobiology 1992; 26: 12–22PubMedCrossRefGoogle Scholar
  288. 288.
    Schleifer SJ, Keller SE, Scott BJ, et al. Lymphocyte function in panic disorder [abstract]. Biol Psychiatry 1990; 27 Suppl. 9a: 66aGoogle Scholar
  289. 289.
    Marazziti D, Ambrogi F, Vanacore R, et al. Immune cell imbalance in major depressive and panic disorders. Neuropsychobiology 1992; 26: 23–6PubMedCrossRefGoogle Scholar
  290. 290.
    Rapaport MH, Stein MB. A preliminary study of serum cytokine and soluble interleukin-2 receptors in patients with panic disorder. Anxiety 1994; 1: 22–5PubMedGoogle Scholar
  291. 291.
    Rapaport MH. Circulating lymphocyte phenotypic surface markers in anxiety disorder patients and normal volunteers. Biol Psychiatry 1998; 43: 458–63PubMedCrossRefGoogle Scholar
  292. 292.
    Koh KB. The relationship between stress and natural killer-cellactivity in medical college students. Korean J Psychosom Med 1993; 3: 3–10Google Scholar
  293. 293.
    Koh KB. Emotion and immunity. J Psychosom Res 1998; 45(2): 107–15PubMedCrossRefGoogle Scholar
  294. 294.
    Atanackovic D, Kroger H, Serke S, et al. Immune parameters in patients with anxiety or depression during psychotherapy. J Affect Disord 2004; 81: 201–9PubMedCrossRefGoogle Scholar
  295. 295.
    Coplan JD, Tamir H, Calaprice D, et al. Plasma anti-serotonin and serotonin anti-idiotypic antibodies are elevated in panic disorder. Neuropsychopharmacology 1999; 20: 386–91PubMedCrossRefGoogle Scholar
  296. 296.
    Watson R, Borgs P, Wite M, et al. Alcohol, immunomodulation, and disease. Alcohol Alcohol 1994; 29: 131–9PubMedGoogle Scholar
  297. 297.
    O’Hanlon M, Salter S, Scull D, et al. Neopterin levels in alcohol-dependent patients. Ann Clin Biochem 1996; 33: 536–9PubMedGoogle Scholar
  298. 298.
    Santos-Perez JL, Diez-Ruiz A, Luna-Casado L, et al. T-cell activation, expression of adhesion molecules and response to ethanol in alcoholic cirrhosis. Immunol Lett 1996; 50: 179–83PubMedCrossRefGoogle Scholar
  299. 299.
    Cook RT. Alcohol abuse, alcoholism and damage to the immune system: a review. Alcohol Clin Exp Res 1998; 22: 1927–42PubMedGoogle Scholar
  300. 300.
    Cook RT, Garvey MJ, Booth BM, et al. Activated CD-8 cells and HLA DR expression alcoholics without liver disease. J Clin Immunol 1991; 11: 246–53PubMedCrossRefGoogle Scholar
  301. 301.
    Irwin M, Caldwell C, Smith TL, et al. Major depression disorder, alcoholism and reduced natural killer cell cytotoxicity: role of severity of depressive symptoms and alcohol consumption. Arch Gen Psychiatry 1990; 47: 713–9PubMedCrossRefGoogle Scholar
  302. 302.
    Motivala SJ, Dang J, Obradovic T, et al. Leptin and cellular and innate immunity in abstinent alcoholics and controls. Alcohol Clin Exp Res 2003; 27: 1819–24PubMedCrossRefGoogle Scholar
  303. 303.
    Gonzalez-Quintela A, Gude F, Boquete O, et al. Association of alcohol consumption with total serum immunoglobin E levels and allergic sensitization in an adult population-based survey. Clin Exp Allergy 2003; 33: 199–205PubMedCrossRefGoogle Scholar
  304. 304.
    Dominguez-Santalla MJ, Vidal C, Vinuela J, et al. Increased serum IgE in alcoholics: relationship with Th1/Th2 cytokine production by stimulated blood mononuclear cells. Alcohol Clin Exp Res 2001; 25: 1198–205PubMedCrossRefGoogle Scholar
  305. 305.
    Charpentier B, Franco D, Paci L, et al. Deficient natural killer cell activity in alcohol cirrhosis. Clin Exp Immunol 1984; 58: 107–15PubMedGoogle Scholar
  306. 306.
    Cook RT, Vandersteen D, Ballas ZK, et al. Ethanol and natural killer cells: I. Activity and immunophenotype in alcohol humans. Alcohol Clin Exp Res 1997; 21: 974–87PubMedCrossRefGoogle Scholar
  307. 307.
    Kronfol Z, Nair M, Hill E, et al. Immune function in alcoholism: a controlled study. Alcohol Clin Exp Res 1993; 17: 279–83PubMedCrossRefGoogle Scholar
  308. 308.
    Schleifer SJ, Keller SE, Shiflett S, et al. Immune changes in alcohol-dependent patients without medical disorder. Alcohol Clin Exp Res 1999; 23: 1199–206PubMedCrossRefGoogle Scholar
  309. 309.
    Szabo G, Mandreka P, Catalano D. Inhibition of superantigen-induced cell proliferation and monocyte IL-1 beta, TNF-alpha, and IL-6 production by acute ethanol treatment. J Leukoc Biol 1995; 58: 342–50PubMedGoogle Scholar
  310. 310.
    Szabo G, Mandrekar P, Girouard L, et al. Regulation of human monocyte functions and acute ethanol treatment: decreased tumor necrosis factor-alpha, interleukin-lbetta and elevated interleukin-10 and transforming growth factor production. Alcohol Clin Exp Res 1996; 20: 900–7PubMedCrossRefGoogle Scholar
  311. 311.
    Batey R, Cao Q, Masden G, et al. Decreased tumor necrosis factor-alpha and interleukin-1 alpha production from intrahepatic mononuclear cells in chronic ethanol consumption and upregulation by endotoxin. Alcohol Clin Exp Res 1998; 22: 150–6PubMedCrossRefGoogle Scholar
  312. 312.
    Jerrells TR, Sibley DA, Slukvin II, et al. Effects of ethanol consumption on mucosal and systemic T-cell dependent immune responses to pathogenic microorganisms. Alcohol Clin Exp Res 1998; 22 (5 Suppl.): 212S–5SPubMedCrossRefGoogle Scholar
  313. 313.
    Rivier C. Effect of acute alcohol treatment on the release of ACTH, corticosterone, and pro-inflammatory cytokines in response to endotoxin. Alcohol Clin Exp Res 1999; 23: 673–82PubMedCrossRefGoogle Scholar
  314. 314.
    Friedman H. Alcohol effects on cytokine responses by immunocytes. Alcohol Clin Exp Res 1998; 22: 184S–7PubMedCrossRefGoogle Scholar
  315. 315.
    Zisman DA, Strieter RM, Kunkel SL, et al. Ethanol feeding impairs innate immunity and alters the expression of Th1- and Th2-phenotype cytokines in murine Klebsiella pneumonia. Alcohol Clin Exp Res 1998; 22: 621–7PubMedCrossRefGoogle Scholar
  316. 316.
    Omidvari K, Casey R, Nelson S, et al. Alveolar macrophage release of tumor necrosis factor in chronic alcoholics without liver disease. Alcohol Clin Exp Res 1998; 22: 567–72PubMedCrossRefGoogle Scholar
  317. 317.
    Laso F, Lapena P, Madruga JI, et al. Alterations in tumor necrosis factor-alpha, interferon-gamma, and interleukin-6 production by natural killer cell-enriched peripheral blood mononuclear cells in chronic alcoholism: relationship with liver disease and ethanol intake. Alcohol Clin Exp Res 1997; 21: 1226–31PubMedGoogle Scholar
  318. 318.
    Song C, Lin A, De Jong R, et al. Cytokines in detoxified patients with chronic alcoholism without liver disease: increased monocytic cytokine production. Biol Psychiatry 1999; 45: 1212–6PubMedCrossRefGoogle Scholar
  319. 319.
    Nicolaou C, Chatzipanagioutou S, Tzivos D, et al. Serum cytokine concentration in alcohol-dependent individuals without liver disease. Alcohol 2004; 32: 243–7PubMedCrossRefGoogle Scholar
  320. 320.
    Irwin M, Miller C. Decreased natural killer cells responses and altered interleukin-6 and interleukin-10 production in alcoholism: an interaction between alcohol dependence and African-American ethnicity. Alcohol Clin Exp Res 2000; 24: 560–9PubMedCrossRefGoogle Scholar
  321. 321.
    Irwin M. Effects of sleep and sleep loss on immunity and cytokines. Brain Behav Immun 2002; 16: 503–12PubMedCrossRefGoogle Scholar
  322. 322.
    Irwin M, Rinetti G. Disordered sleep, nocturnal cytokines and immunity: interactions between alcohol dependence and African-American Ethnicity. Alcohol 2004; 32: 53–61PubMedCrossRefGoogle Scholar
  323. 323.
    Redwine L, Dang J, Hall M, et al. Disordered sleep, nocturnal cytokines and immunity in alcoholics. Psychosom Med 2003; 65: 75–85PubMedCrossRefGoogle Scholar
  324. 324.
    MacGregor RR. Alcohol and immune defence. JAMA 1986; 256: 1474–9PubMedCrossRefGoogle Scholar
  325. 325.
    MacGregor RR, Lourin DB. Alcohol and infection. Curr Clin Top Infect Dis 1997; 17: 291–315PubMedGoogle Scholar
  326. 326.
    Nalpas B, Pol S, Thepot V, et al. ESBRA 1997 award lecture: relationship between excessive alcohol dringing and viral infections. Alcohol Alcohol 1998; 33: 202–6PubMedGoogle Scholar
  327. 327.
    Frank J, Witte K, Schrödl W, et al. Chronic alcoholism causes deleterious conditioning of innate immunity. Alcohol Alcohol 2004; 39: 386–92PubMedGoogle Scholar
  328. 328.
    Diaz LE, Montera A, Conzalez-Gross M, et al. Influence of alcohol consumption on immunological status: a review. Eur J Clin Nutr 2002; 56 Suppl. 3: S50–3PubMedCrossRefGoogle Scholar
  329. 329.
    Jerrells TR. Role of activated CD8+ cells in the initiation and continuation of hepatic damage. Alcohol 2002; 27: 47–52PubMedCrossRefGoogle Scholar
  330. 330.
    McClain CJ, Hill DB, Song Z, et al. Monocyte activation in alcoholic liver disease. Alcohol 2002; 27: 53–61PubMedCrossRefGoogle Scholar
  331. 331.
    Friedman H, Newton C, Klein TW. Microbial infections, immunomodulation, and drugs of abuse. Clin Microbiol Rev 2003: 16: 209–19PubMedCrossRefGoogle Scholar
  332. 332.
    Friedman H. Drugs of abuse as possible co-factors in AIDS progression: summary of panel discussion. Adv Exp Med Biol 1996; 402: 225–8PubMedCrossRefGoogle Scholar
  333. 333.
    Pruett SB, Han YC, Fuchs BA. Morphine suppresses primary humoral immune responses by a predominantly indirect mechanism. J Pharmacol Exp Ther 1992; 262: 923–8PubMedGoogle Scholar
  334. 334.
    Sci Y, Mclntyre T, Fide E, et al. Inhibition of calcium mobilization is an early event in opiate-induced immunosuppression. FASEB J 1991; 5: 2194–9Google Scholar
  335. 335.
    Shavit Y, Depaulis A, Martin FC, et al. Involvement of brain opiate receptors in the immune-suppressive effect of morphine. Proc Natl Acad Sci U S A 1986; 83: 7114–7PubMedCrossRefGoogle Scholar
  336. 336.
    Massi P, Fuzio D, Vigano D, et al. Relative involvement of cannabinoid CB(1) and CB(2) receptors in the Delta(9)-tetrahydrocannabinol-induced inhibition of natural killer activity. Eur J Pharmacol 2000; 387: 343–7PubMedCrossRefGoogle Scholar
  337. 337.
    Lee SF, Newton C, Widen R, et al. Differential expression of cannabinoid CB2 receptor mRNA in mouse immune cell sub-populations and following B cell stimulation. Eur J Pharmacol 2001; 423: 235–41PubMedCrossRefGoogle Scholar
  338. 338.
    Pellegrino TC, Dunn KL, Bayer BM. Mechanisms of cocaine-induced decreases in immune cell function. Int Immunopharmacol 2001; 1: 665–75PubMedCrossRefGoogle Scholar
  339. 339.
    Roy S, Balasubramanian S, Sumandeep S, et al. Morphine directs T cells toward T(H2) differentiation. Surgery 2001; 130: 304–9PubMedCrossRefGoogle Scholar
  340. 340.
    Hermosillo-Romo D, Brey RL. Diagnosis and management of patients with neuropsychiatrie systemic lupus erythematosus (NPSLE). Best Pract Res Clin Rheumatol 2002; 16: 229–44PubMedCrossRefGoogle Scholar
  341. 341.
    Hermosillo-Romo D, Brey RL. Neuropsychiatrie involvement in systemic lupus erythematosus. Curr Rheumatol Rep 2002; 4: 337–44PubMedCrossRefGoogle Scholar
  342. 342.
    Weiner SM, Peter HH. Neuropsychiatrie involvement in systemic lupus erythematosus. Part 1: clinical presentation and pathogenesis. Med Klin (Munich) 2002; 97: 730–7CrossRefGoogle Scholar
  343. 343.
    Sacktor NC. Advances in the treatment of HIV dementia. AIDS Read 1999; 9: 57–60PubMedGoogle Scholar
  344. 344.
    Albright AV, Soldan SS, Gonzalez-Scarano F. Pathogenesis of human immunodeficiency virus-induces neurological disease. J Neurovirol 2003; 9: 222–7PubMedGoogle Scholar
  345. 345.
    Wersinger C, Sidhu A. Inflammation and Parkinson’s disease. Curr Drug Targets Inflamm Allergy 2002; 1: 221–42PubMedCrossRefGoogle Scholar
  346. 346.
    Selkoe DJ, Schenk D. Alzheimer disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 2003; 43: 545–84PubMedCrossRefGoogle Scholar
  347. 347.
    Polvikoski T, Sulkava R, Haltia M, et al. Apolipoporotein E, dementia, and cortical deposition of β-amyloid protein. N Engl J Med 1995; 333: 1242–7PubMedCrossRefGoogle Scholar
  348. 348.
    Blasko I, Grubek-Loebenstein B. Role of the immune system in the pathogenesis, prevention and treatment of Alzheimer’s disease. Drugs Aging 2003; 2: 101–13CrossRefGoogle Scholar
  349. 349.
    Leonard BE. The immune system, depression and the action of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25: 767–80PubMedCrossRefGoogle Scholar
  350. 350.
    Ringheim GE, Conant K. Neurodegenerative disease and the neuroimmune axis (Alzheimer’s and Parkinson’s disease, and viral infections). J Neuroimmunol 2004; 147: 43–9PubMedCrossRefGoogle Scholar
  351. 351.
    Lahiri DK, Nall C. Promoter activity of the gene encoding the beta-amyloid precursor protein is up-regulated by growth factors, phorbol ester, retinoic acid and interleukin-1. Mol Brain Res 1995; 32: 233–40PubMedCrossRefGoogle Scholar
  352. 352.
    Ringheim GE, Szczepanik AM, Burgher KL, et al. Transcriptional inhibition of the Alzheimer’s disease beta-amyloid precursor protein by interferon-gamma. Biochem Biophys Res Commun 1996; 224: 246–51PubMedCrossRefGoogle Scholar
  353. 353.
    Blasko I, Marx F, Steiner E, et al. TNF-alpha plus IFN-gamma induce the production of Alzheimer beta-amyloid peptides and decrease the secretion of APPs. FASEB J 1999; 13: 63–8PubMedGoogle Scholar
  354. 354.
    Blasko I, Veerhius R, Stamper-Kountchev M, et al. Costimulatory effects of interferon-gamma and interleukin-1 beta or tumor necrosis factor alpha on the synthesis of A-beta-1-40 and A-beta-1-42 by human astrocytes. Neurobiol Dis 2000; 7: 682–9PubMedCrossRefGoogle Scholar
  355. 355.
    Breitner JCS, Welsh KA, Helms MJ, et al. Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol Aging 1995; 16: 523–30PubMedCrossRefGoogle Scholar
  356. 356.
    Stewart WF, Kawas C, Corrada M, et al. Risk of Alzheimer’s disease and duration of NSAID use. Neurology 1997; 48: 626–32PubMedCrossRefGoogle Scholar
  357. 357.
    Itzhaki RF, Wozniak MA. Alzheimer’s disease, the neuroimmune axis and viral infection. J Neuroimmunol 2004; 156: 1–2PubMedCrossRefGoogle Scholar
  358. 358.
    Müller N, Riedel M, Scheppack C, et al. Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am J Psychiatry 2002; 159: 1029–34PubMedCrossRefGoogle Scholar
  359. 359.
    Levine J, Susnovski M, Handzel ZT, et al. Treatment of schizophrenia with an immunosuppressant. Lancet 1994; 34: 59–60CrossRefGoogle Scholar
  360. 360.
    Maes M, Christophe A, Bosnians E, et al. In humans, serum polyunsaturated fatty acid levels predict the response of proin-flammatory cytokines to psychologic stress. Biol Psychiatry 2000; 47: 910–20PubMedCrossRefGoogle Scholar
  361. 361.
    Zhang XY, Zhou DF, Cao LY, et al. Changes in serum interleukin-2, -6 and -8 levels before and during treatment with risperidone and haloperidol: relationship to outcome in schizophrenia. J Clin Psychiatry 2004; 65: 940–7PubMedCrossRefGoogle Scholar
  362. 362.
    Gupta S. Immunological treatments for autism. J Autism Dev Disord 2000; 30: 475–9PubMedCrossRefGoogle Scholar
  363. 363.
    Fudenberg HH, Singh VK, Emerson D, et al. Immunotherapy for autistic syndrome. J Neuroimmunol 1987; 16: 58CrossRefGoogle Scholar
  364. 364.
    Gupta S, Rimland B, Shilling PD. Pentoxyfylline: a brief review and rationale for its possible use in the treatment of autism. J Child Neurol 1996; 11: 501–4PubMedCrossRefGoogle Scholar
  365. 365.
    Plioplys AV. Intravenous immunoglobulin treatment of children with autism. J Child Neurol 1998; 13: 79–82PubMedCrossRefGoogle Scholar
  366. 366.
    DelGiudice-Asch G, Simon L, Schmeidler J, et al. Brief report: a pilot open clinical trial of intravenous immunoglobulin in childhood autism. J Autism Dev Disord 1999; 29: 157–60PubMedCrossRefGoogle Scholar
  367. 367.
    Mott SH, Weinstein SL, Conry JA, et al. Pervasive developmental disorder/autism versus Landau-Kleffner syndrome: steroid-responsive encephalopathy characterized by language and social interactive impairment [abstract]. Ann Neurol 1996; 40:332Google Scholar
  368. 368.
    Matarazzo EB. Treatment of late onset autism as a consequence of probable autoimmune processes related to chronic bacterial infection. World J Biol Psychiatry 2002; 3: 162–6PubMedCrossRefGoogle Scholar
  369. 369.
    Deleplanque B, Neveu PJ. Immunological effects of neuropsychiatric substance. In: Guenounou M, editor. Forum on immunomodulators. Paris: John Libbey Eurotext, 1995: 287–302Google Scholar
  370. 370.
    Melia KR, Duman RS. Involvement of corticotropin-releasing factor in chronic stress regulation of the main noradrenergic system. Proc Natl Acad Sci U S A 1991; 88: 8382–6PubMedCrossRefGoogle Scholar
  371. 371.
    Smith MA, Makino S, Altemus M, et al. Stress and antidepressants differentially regulate neurotrophin 3mRNA expression in the locus coeruleus. Proc Natl Acad Sci U S A 1995; 92: 8788–92PubMedCrossRefGoogle Scholar
  372. 372.
    Xia Z, De Poere JW, Nassberger L. TCA’ s inhibit IL-1, IL-6 and TNF release in human blood monocytes in IL-2 and interferon in T-cells. Immunopharmacol 1996; 34: 27–37CrossRefGoogle Scholar
  373. 373.
    Maes M, Song C, Lin A, et al. Immune and clinical correlates of psychological stress: induced production of interferon-gamma and IL-10 in humans. In: Plotnikoff NP, editor. Cytokines, stress and immunity. Boca Raton (FL): CRC-Press, 1999:106–13Google Scholar
  374. 374.
    Suzuki E, Shintani F, Kamba S, et al. Induction of interleukin-1 beta and interleukin-1 receptor antagonist mRNA by chronic treatment with various psychotropics is widespread areas of rat brain. Neurosci Lett 1996; 215: 201–4PubMedCrossRefGoogle Scholar
  375. 375.
    Rylett RJ, Williams LF. Role of neurotrophic factor in cholinergic-neurone function in the adult and aged CNS. Trends Neurosci 1994; 17: 486–90PubMedCrossRefGoogle Scholar
  376. 376.
    Cellerino A, Maffei L. The action of neurotrophins in the development and plasticity of the visual cortex. Prog Neurobiol 1996; 49: 53–71PubMedGoogle Scholar
  377. 377.
    Berardi N, Pizzorusso T, Maffei L. Critical periods during sensory development. Curr Opin Neurobiol 2000; 10: 138–45PubMedCrossRefGoogle Scholar
  378. 378.
    Angelucci F, Mathe AA, Aloe L. Neutrotrophic factors in CNS disorders: findings in rodent models of depression and schizophrenia. Prog Brain Res 2004; 146: 151–65PubMedCrossRefGoogle Scholar
  379. 379.
    Rajakumar N, Leung LS, Ma J, et al. Altered neurotrophin receptor function in the developing prefrontal cortex leads to adult-onset dopaminergic hyperresponsivity and impaired prepulse inhibition of acoustic startle. Biol Psychiatry 2004; 55: 797–803PubMedCrossRefGoogle Scholar
  380. 380.
    Pirildar S, Gonul AS, Taneli F, et al. Low serum levels of brain-derived neurotrophic factor in patients with schizophrenia do not elevate after antipsychotic treatment. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 709–13PubMedCrossRefGoogle Scholar
  381. 381.
    Durany N, Thome J. Neurotrophic factors and the pathophysiology of schizophrenic psychoses. Eur Psychiatry 2004; 19(6): 326–37PubMedCrossRefGoogle Scholar
  382. 382.
    Besser M, Wank R. Clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neutrophin-3 mRNS by human immune cells and Thl/Th2-polarized expression of their receptors. J Immunol 1998; 162: 6303–6Google Scholar
  383. 383.
    Wank R. Schizophrenia and other mental disorders require long-term adoptive immunotherapy. Med Hypotheses 2002; 59: 154–8PubMedCrossRefGoogle Scholar
  384. 384.
    Castrén E. Neurotrophins as mediators of drug effects on mood, addiction, and neuroprotection. Mol Neurobiol 2004; 29: 289–301PubMedCrossRefGoogle Scholar
  385. 385.
    Manji HK, Quiroz JA, Sporn J, et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 2003; 53: 707–42PubMedCrossRefGoogle Scholar
  386. 386.
    Horrobin DF. Essential fatty acids, psychiatric disorders and neuropathies. In: Horrobin DF, editor. Omega-6 essential fatty acids: pathophysiology and roles in clinical medicine. New York: Wiley-Liss, 1990: 305–20Google Scholar
  387. 387.
    Peet M, Morphy B, Shay J, et al. Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol Psychiatry 1998; 43: 315–9PubMedCrossRefGoogle Scholar
  388. 388.
    Maes M, Christophe A, Delanghe J, et al. Lowered (ω3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatr Res 1999; 85: 275–91CrossRefGoogle Scholar
  389. 389.
    Stoll AL, Severus E, Freeman M, et al. Omega 3 fatty acids in bipolar disorders. Arch Gen Psychiatry 1999; 56: 407–12PubMedCrossRefGoogle Scholar
  390. 390.
    Edwards R, Peet M, Shay J, et al. Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J Affect Disord 1998; 48: 149–55PubMedCrossRefGoogle Scholar
  391. 391.
    Logan AC. Neurobehavioral aspects of omega-3 fatty acids: possible mechanisms and therapeutic value in major depression. Altern Med Rev 2003; 8: 410–25PubMedGoogle Scholar
  392. 392.
    Wu A, Ying Z, Gomez-Pinilla F. Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma 2004; 21: 1457–67PubMedCrossRefGoogle Scholar
  393. 393.
    Zavala F. Benzodiazepines, anxiety and immunity. Pharmacol Ther 1997; 75: 199–216PubMedCrossRefGoogle Scholar
  394. 394.
    Nagy LE. Recent insights into the role of the innate immune system in the development of alcoholic liver disease. Exp Biol Med 2003; 228: 882–90Google Scholar
  395. 395.
    Friedman H, Newton C, Klein TW. Microbial infections, immunomodulation, and drugs of abuse. Clin Microbiol Rev 2003: 16: 209–19PubMedCrossRefGoogle Scholar
  396. 396.
    Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999; 400: 173–7PubMedCrossRefGoogle Scholar
  397. 397.
    Bard F, Cannon C, Barbour R, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000; 6: 916–9PubMedCrossRefGoogle Scholar
  398. 398.
    Senior K. Dosing in phase II trial of Alzheimer’s vaccine suspended. Lancet Neurol 2002; 1(1): 3PubMedCrossRefGoogle Scholar
  399. 399.
    Schenk D. Opinion: Amyloid-beta immunotherapy for Alzheimer’s disease: the end of the beginning. Nat Rev Neurosci 2002; 3: 824–8PubMedCrossRefGoogle Scholar
  400. 400.
    Hock C, Konietzko U, Papassotiropoulos A, et al. Generation of antibodies specific for beta-amyloid by vaccination of patients with Alzheimer disease. Nat Med 2002; 8: 1270–5PubMedCrossRefGoogle Scholar
  401. 401.
    Nicoll JAR, Wilkinson D, Holmes C, et al. Neuropathology of human Alzheimer disease after iimmunization with amyloid-beta peptide: a case report. Nat Med 2003; 9: 448–52PubMedCrossRefGoogle Scholar
  402. 402.
    Monsonego A, Weiner H. Immunotherapeutic approaches to Alzheimer’s disease. Science 2003; 302: 834–8PubMedCrossRefGoogle Scholar
  403. 403.
    Dodel RC, Hampel H, Du Y. Immunotherapy for Alzheimer’s disease. Lancet Neurol 2003; 2: 215–20PubMedCrossRefGoogle Scholar
  404. 404.
    Heppner FL, Gandy S, McLaurin JA. Current concepts and future prospects for Alzheimer disease vaccines. Alzheimer Dis Assoc Disord 2004; 18: 38–43PubMedCrossRefGoogle Scholar
  405. 405.
    Breitner JC, Zandi PP. Do nonsteroidal anti-inflammatory drugs reduce the risk of Alzheimer’s disease? N Engl J Med 2001; 345: 1567–8PubMedCrossRefGoogle Scholar
  406. 406.
    in t’Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 2001; 345: 1515–21CrossRefGoogle Scholar
  407. 407.
    Anthony JC, Breitner JC, Zandi PP, et al. Reduced prevalence of AD in users of NSAIDs and H2 receptor antagonists: the Cache Country study. Neurology 2000; 54: 2066–71PubMedCrossRefGoogle Scholar
  408. 408.
    VanGool WA, Aisen PS, Eikelenboom P. Anti-inflammatory therapy in Alzheimer’s disease: is hope still alive? J Neurol 2003; 250: 788–92CrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2005

Authors and Affiliations

  1. 1.Department of Biological PsychiatryInnsbruck University ClinicsInnsbruckAustria

Personalised recommendations