Drugs

, Volume 64, Issue 24, pp 2793–2811

Structure-Modifying Capacity of Anti-Tumour Necrosis Factor-α Therapy in Ankylosing Spondylitis

  • Filip De Keyser
  • Dominique Baeten
  • Filip Van den Bosch
  • Elli Kruithof
  • Gust Verbruggen
  • Herman Mielants
  • Eric Veys
Review Article

Abstract

Spondylarthropathies (SpA) present mainly with spondylitis, pauciarticular peripheral arthritis and enthesopathy. Ankylosing spondylitis (AS) is the prototype disease in this concept. Other entities include reactive arthritis, arthritis in patients with inflammatory bowel disease, some forms of psoriatic arthritis and undifferentiated SpA.

NSAIDs are the classical cornerstone of medical therapy in patients with SpA. The effect of these drugs on disease progression, more specifically the ankylosis, is uncertain. Sulfasalazine can be combined with NSAIDs, particularly if peripheral arthritis symptoms persist. However, this combination therapy is not effective for the spondylitis symptoms. Indeed, AS is one of the rheumatic diseases for which no real disease-modifying antirheumatic treatment is available.

Challenges in chronic autoimmune arthritis have changed dramatically, especially since biotechnological compounds became available. These compounds allow for a specific intervention in the immune cascade underlying the disease. Tumour necrosis factor (TNF)-α antagonists (monoclonal antibodies such as infliximab, or soluble receptors such as etanercept) are the first representative drugs in this category. Open-label studies have shown the efficacy of these new targeted drugs, which has been confirmed by controlled studies, at least in the short term. Improvements in several clinical parameters, function, quality of life, biological parameters, histopathological synovial characteristics and magnetic resonance imaging, have all been observed. As a result of these favourable results, anti-TNFα therapy has been approved for the treatment of AS and should be considered for patients with severe axial symptoms and elevated serological markers of inflammatory activity who have responded inadequately to conventional nonsteroidal therapy.

There is evidence that this new therapeutic approach has a disease- and even structure-modifying effect in SpA. In this context, structure modification should not only be seen as inhibition of bone and cartilage destruction but more broadly as modulation of tissue histology.

Some questions remain unanswered, such as the long-term efficacy and safety of anti-TNFα therapy, the extent of structural benefit and the cost effectiveness. However, despite these concerns, anti-TNFα therapy represents a major therapeutic advancement in the treatment of AS.

References

  1. 1.
    Boulware D, Arnett F, Cush J, et al. The seronegative spondyloarthropathies. In: Koopman W, Boulware D, Heudebert G, editors. Clinical primer of rheumatology. Philiadelphia (PA): Lippincott Williams & Wilkins, 2003: 127–63Google Scholar
  2. 2.
    Braun J, Bollow M, Eggens U, et al. Use of dynamic magnetic resonance imaging with fast imaging in the detection of early and advanced sacroiliitis in spondylarthropathy patients. Arthritis Rheum 1994; 37: 1039–45PubMedCrossRefGoogle Scholar
  3. 3.
    Francois RJ, Braun J, Khan MA. Entheses and enthesitis: a histopathologic review and relevance to spondyloarthritides. Curr Opin Rheumatol 2001; 13: 255–64PubMedCrossRefGoogle Scholar
  4. 4.
    van der Heijde D, Wanders A, Spoorenberg A, et al. Structural damage assessed on radiographs in patients with ankylosing spondylitis steadily increases over time [abstract]. Arthritis Rheum 2003; 48: S175Google Scholar
  5. 5.
    De Keyser F, Elewaut D, De Vos M, et al. Bowel inflammation and the spondyloarthropathies. Rheum Dis Clin North Am 1998; 24: 785–813PubMedCrossRefGoogle Scholar
  6. 6.
    Mielants H, Veys EM, De Vos M, et al. The evolution of the spondyloarthropathies in relation to gut histology. I: clinical aspects. J Rheumatol 1995; 22: 2266–72PubMedGoogle Scholar
  7. 7.
    Mielants H, Veys EM, Cuvelier C, et al. The evolution of spondyloarthropathies in relation to gut histology. III: relation between gut and joint. J Rheumatol 1995; 22: 2273–8PubMedGoogle Scholar
  8. 8.
    De Vos M, Mielants H, Cuvelier C, et al. Long-term evolution of gut inflammation in patients with spondyloarthropathy. Gastroenterology 1996; 110: 1696–703PubMedCrossRefGoogle Scholar
  9. 9.
    Feltkamp TE, Ringrose JH. Acute anterior uveitis and spondyloarthropathies. Curr Opin Rheumatol 1998; 10: 314–8PubMedCrossRefGoogle Scholar
  10. 10.
    Banares A, Hernandez-Garcia C, Fernandez-Gutierrez B, et al. Eye involvement in the spondyloarthropathies. Rheum Dis Clin North Am 1998; 24: 771–84PubMedCrossRefGoogle Scholar
  11. 11.
    Colmegna I, Cuchacovich R, Espinoza L. HLA-B27-associated reactive arthritis: pathogenetic and clinical considerations. Clin Microbiol Rev 2004; 17: 348–69PubMedCrossRefGoogle Scholar
  12. 12.
    Kahn MF, Chamot AM. SAPHO syndrome. Rheum Dis Clin North Am 1992; 18: 225–46PubMedGoogle Scholar
  13. 13.
    Taurog JD, Maika SD, Satumtira N, et al. Inflammatory disease in HLA-B27 transgenic rats. Immunol Rev 1999; 169: 209–23PubMedCrossRefGoogle Scholar
  14. 14.
    Taurog JD, Richardson JA, Croft JT, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 1994; 180: 2359–64PubMedCrossRefGoogle Scholar
  15. 15.
    Hermann E, Yu D, Meyer zum Buschenfelde KH, et al. HLA-B27-restricted CD8 T cells derived from synovial fluids of patients with reactive arthritis and ankylosing spondylitis. Lancet 1993; 342: 645–50Google Scholar
  16. 16.
    Lopez-Larrea C, Gonzales S, Martinez-Borra J. The role of HLA-B27 polymorphism and molecular mimicry in spondylarthropathy. Mol Med Today 1998; 4: 540–9PubMedCrossRefGoogle Scholar
  17. 17.
    Laitio P, Virtala M, Salmi M, et al. HLA-B27 modulates intracellular survival of Salmonella enteritides in human monocytic cells. Eur J Immunol 1997; 27: 1331–8PubMedCrossRefGoogle Scholar
  18. 18.
    Ikawa T, Ikeda M, Yamaguchi A, et al. Expression of arthritiscausing HLA-B27 on Hela cells promotes induction of c-fos in response to in vitro invasion by Salmonella typhimurium. J Clin Invest 1998; 101: 263–72PubMedCrossRefGoogle Scholar
  19. 19.
    Colbert RA. HLA-B27 misfolding: a solution to the spondyloarthropathy conundrum? Mol Med Today 2000; 6: 224–30PubMedCrossRefGoogle Scholar
  20. 20.
    Mear JP, Schreiber KL, Munz C, et al. Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol 1999; 163: 6665–70PubMedGoogle Scholar
  21. 21.
    Baeurle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 1994; 12: 141–79CrossRefGoogle Scholar
  22. 22.
    Penttinen MA, Holmberg CI, Sistonen L, et al. HLA-B27 modulates nuclear factor kappaB activation in human monocytic cells exposed to lipopolysaccharide. Arthritis Rheum 2002; 46: 2172–80PubMedCrossRefGoogle Scholar
  23. 23.
    Allen RL, O'Callaghan CA, McMichael AJ, et al. Cutting edge: HLA-B27 can form novel beta 2-microgoblin-free heavy chain homodimer structure. J Immunol 1999; 162: 5045–8PubMedGoogle Scholar
  24. 24.
    Khare SD, Hansen J, Luthra HS, et al. HLA-B27 heavy chains contribute to spontaneous inflammatory disease in B27/human beta2-microglobulin (beta2m) double transgenic mice with disrupted mouse beta2m. J Clin Invest 1996; 98: 2746–55PubMedCrossRefGoogle Scholar
  25. 25.
    Wanders A, van der Heijde D, Landewé R, et al. Inhibition of radiographic progression in ankylosing spondylitis by continuous use of NSAIDs [abstract]. Arthritis Rheum 2003; 48: S233Google Scholar
  26. 26.
    Dougados M, van der Linden S, Leirisalo-Repo M, et al. Sulfasalazine in the treatment of spondylarthropathy: a randomized, multicenter, double-blind, placebo-controlled study. Arthritis Rheum 1995; 38: 618–27PubMedCrossRefGoogle Scholar
  27. 27.
    Maini R, St Clair E, Breedveld F, et al. Infliximab versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 1999; 354: 1932–9PubMedCrossRefGoogle Scholar
  28. 28.
    Lipsky P, van der Heijde D, St Clair E, et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis: anti-TNF trial in rheumatoid arthritis with concomitant therapy study group. N Engl J Med 2000; 343: 1594–602PubMedCrossRefGoogle Scholar
  29. 29.
    Moreland L, Cohen S, Baumgartner S, et al. Long-term safety and efficacy of etanercept in patients with rheumatoid arthritis. J Rheumatol 2001; 28: 1238–44PubMedGoogle Scholar
  30. 30.
    van de Putte L, Rau R, Breedveld F, et al. Efficacy and safety of the fully human anti-TNFα monoclonal antibody adalimumab (D2E7) in DMARD refractory patients with rheumatoid arthritis: a 12 week, phase II study. Ann Rheum Dis 2003; 62: 1168–77PubMedCrossRefGoogle Scholar
  31. 31.
    Gratacos J, Collado A, Filella X, et al. Serum cytokines (IL-6, TNF-alpha, IL-1 beta and IFN-gamma) in ankylosing spondylitis: a close correlation between serum IL-6 and disease activity and severity. Br J Rheumatol 1994; 33: 927–31PubMedCrossRefGoogle Scholar
  32. 32.
    Braun J, Bollow M, Neure L, et al. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum 1995; 38: 499–505PubMedCrossRefGoogle Scholar
  33. 33.
    Demetter P, De Vos M, Van Damme N, et al. Focal up-regulation of E-cadherin-catenin complex in inflamed bowel mucosa but reduced expression in ulcer-associated cell lineage. Am J Clin Pathol 2000; 114: 364–70PubMedGoogle Scholar
  34. 34.
    Demetter P, Baeten D, De Keyser F, et al. Subclinical gut inflammation in spondyloarthropathy patients is associated with upregulation of the E-cadherin/catenin complex. Ann Rheum Dis 2000; 59: 211–6PubMedCrossRefGoogle Scholar
  35. 35.
    Present D. The efficacy of infliximab in Crohn's disease: healing of fistulae. Aliment Pharmacol Ther 1999; 13 Suppl. 4: 23–8PubMedCrossRefGoogle Scholar
  36. 36.
    Sands BE, Anderson FH, Bernstein CN, et al. Infliximab maintenance therapy for fistulizing Crohn's disease. N Engl J Med 2004; 350: 876–85PubMedCrossRefGoogle Scholar
  37. 37.
    Van Damme N, De Keyser F, Demetter P, et al. The proportion of Th1 cells, which prevail in gut mucosa, is decreased in inflammatory bowel syndrome. Clin Exp Immunol 2001; 125: 383–90PubMedCrossRefGoogle Scholar
  38. 38.
    Van Damme N, De Vos M, Baeten D, et al. Flow cytometric analysis of gut mucosal lymphocytes supports an impaired Th1 cytokine profile in spondyloarthropathy. Ann Rheum Dis 2001; 60: 495–9PubMedCrossRefGoogle Scholar
  39. 39.
    Hoffman I, Demetter P, Peeters H, et al. Anti-Saccharomyces cerevisiae antibodies are elevated in ankylosing spondylitis and undifferentiated spondylo-arthropathy. Ann Rheum Dis 2003; 62: 455–9PubMedCrossRefGoogle Scholar
  40. 40.
    Marzo-Ortega H, McGonagle D, O'Connor P, et al. Efficacy of etanercept for treatment of Crohn's related spondyloarthritis but not colitis. Ann Rheum Dis 2003; 62: 74–6PubMedCrossRefGoogle Scholar
  41. 41.
    Van den Bosch F, Kruithof E, De Vos M, et al. Crohn's disease associated with spondyloarthropathy: effect of TNF-alpha blockade with infliximab on articular symptoms. Lancet 2000; 356: 1821–2PubMedCrossRefGoogle Scholar
  42. 42.
    Van den Bosch F, Kruithof E, Baeten D, et al. Effects of a loading regimen of three infusions of chimeric monoclonal antibody to tumour necrosis factor alpha (infliximab) in spondyloarthropathy: an open pilot study. Ann Rheum Dis 2000; 59: 428–33PubMedCrossRefGoogle Scholar
  43. 43.
    Brandt J, Haibel H, Cornely D, et al. Successful treatment of active ankylosing spondylitis with the anti-tumor necrosis factor alpha monoclonal antibody infliximab. Arthritis Rheum 2000; 43: 1346–52PubMedCrossRefGoogle Scholar
  44. 44.
    Stone M, Salonen D, Lax M, et al. Clinical and imaging correlates of response to treatment with infliximab in patients with ankylosing spondylitis. J Rheumatol 2001; 28: 1605–14PubMedGoogle Scholar
  45. 45.
    Breban M, Vignon E, Claudepierre P, et al. Efficacy of infliximab in refractory ankylosing spondylitis; results of a six-month open-label study. Rheumatology (Oxford) 2002; 41(11): 1280–5CrossRefGoogle Scholar
  46. 46.
    Maksymowych WP, Jhangri GS, Lambert RG, et al. Infliximab in ankylosing spondylitis: a prospective observational inception cohort analysis of efficacy and safety. J Rheumatol 2002; 29: 959–65PubMedGoogle Scholar
  47. 47.
    Brandt J, Haibel H, Reddig J, et al. Successful short term treatment of severe undifferentiated spondyloarthropathy with the anti-tumor necrosis factor-α monoclonal antibody infliximab. J Rheumatol 2002; 29: 118–22PubMedGoogle Scholar
  48. 48.
    Van den Bosch F, Kruithof E, Baeten D, et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (infliximab) versus placebo in active spondyloarthropathy. Arthritis Rheum 2002; 46: 755–65CrossRefGoogle Scholar
  49. 49.
    Braun J, Brandt J, Listing J, et al. Treatment of active ankylosing spondylitis with infliximab: a randomised controlled multicentre trial. Lancet 2002; 359: 1187–93PubMedCrossRefGoogle Scholar
  50. 50.
    Kruithof E, Van den Bosch F, Baeten D, et al. Repeated infusions of infliximab, a chimeric anti-TNFα monoclonal antibody, in patients with active spondyloarthropathy: one year follow up. Ann Rheum Dis 2002; 61: 207–12PubMedCrossRefGoogle Scholar
  51. 51.
    Braun J, Brandt J, Listing J, et al. Long-term efficacy and safety of infliximab in the treatment of ankylosing spondylitis. Arthritis Rheum 2003; 48: 2224–33PubMedCrossRefGoogle Scholar
  52. 52.
    Cohen JS. Clinical and laboratory improvement in ankylosing spondylitis after treatment with etanercept. J Clin Rheumatol 2000; 6: 221–4PubMedCrossRefGoogle Scholar
  53. 53.
    Marzo-Ortega H, McGonagle D, O'Connor P, et al. Efficacy of etanercept in the treatment of the entheseal pathology in resistant spondylarthropathy. Arthritis Rheum 2001; 44: 2112–7PubMedCrossRefGoogle Scholar
  54. 54.
    Gorman JD, Sack KE, Davis JC. Treatment of ankylosing spondylitis by inhibition of tumor necrosis factor α. N Engl J Med 2002; 346: 1349–56PubMedCrossRefGoogle Scholar
  55. 55.
    Brandt J, Khariouzov A, Listing J, et al. Six-month results of a double-blind, placebo-controlled trial of etanercept treatment in patients with active ankylosing spondylitis. Arthritis Rheum 2003; 48: 1667–75PubMedCrossRefGoogle Scholar
  56. 56.
    Davis Jr JC, Van Der Heijde D, Braun J, et al. Recombinant human tumor necrosis factor receptor (etanercept) for treating ankylosing spondylitis: a randomized, controlled trial. Enbrel Ankylosing Spondylitis Study Group. Arthritis Rheum 2003; 48: 3230–6PubMedCrossRefGoogle Scholar
  57. 57.
    Baeten D, Kruithof E, Van den Bosch F, et al. Systematic safety follow up in a cohort of 107 patients with spondyloarthropathy treated with infliximab: a new perspective on the role of host defence in the pathogenesis of the disease? Ann Rheum Dis 2003; 62: 829–34PubMedCrossRefGoogle Scholar
  58. 58.
    Keane J, Gershon S, Wise RP, et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 2001; 345: 1098–104PubMedCrossRefGoogle Scholar
  59. 59.
    Bean AG, Roach DR, Briscoe H, et al. Structural deficiencies in granuloma formation in TNE gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J Immunol 1999; 162: 3504–11PubMedGoogle Scholar
  60. 60.
    Roach DR, Bean AG, Demangel C, et al. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol 2002; 168: 4620–7PubMedGoogle Scholar
  61. 61.
    Zganiacz A, Santosuosso M, Wang J, et al. TNF-α is a critical negative regulator of type 1 immune activation during intracellular bacterial infection. J Clin Invest 2004; 113: 401–13PubMedGoogle Scholar
  62. 62.
    Ehlers S, Kutsch S, Ehlers EM, et al. Lethal granuloma desintegration in mycobacteria-infected TNFRp55-deficient mice is dependent on T cells and IL-12. J Immunol 2000; 165: 483–92PubMedGoogle Scholar
  63. 63.
    Baeten D, De Keyser F, Veys EM, et al. TNFα independent disease mechansims in rheumatoid arthritis: a histopathological study on the effect of infliximab on rheumatoid nodules. Ann Rheum Dis 2004; 63: 489–93PubMedCrossRefGoogle Scholar
  64. 64.
    Netea MG, Radstake T, Joosten LA, et al. Salmonella septicemia in rheumatoid arthritis patients receiving anti-tumor necrosis factor therapy: association with decreased interferongamma production and toll-like receptor 4 expression. Arthritis Rheum 2003; 48: 1853–7PubMedCrossRefGoogle Scholar
  65. 65.
    Brown SL, Greene MH, Gershon SK, et al. Tumor necrosis factor antagonist therapy and lymphoma development: twenty-six cases reported to the Food and Drug Administration. Arthritis Rheum 2002; 46: 3151–8PubMedCrossRefGoogle Scholar
  66. 66.
    Wolfe F, Michaud K. Lymphoma in rheumatoid arthritis: the effect of methotrexate and anti-tumor necrosis factor therapy in 18,572 patients. Arthritis Rheum 2004; 50: 1740–51PubMedCrossRefGoogle Scholar
  67. 67.
    Genovese MC, Bathon JM, Martin RW, et al. Etanercept versus methotrexate in patients with early rheumatoid arthritis: two-year radiographic and clinical outcomes. Arthritis Rheum 2002; 46: 1443–50PubMedCrossRefGoogle Scholar
  68. 68.
    Braun J, Baraliakos X, Golder W, et al. Magnetic resonance imaging examinations of the spine in patients with ankylosing spondylitis, before and after successful therapy with infliximab: evaluation of a new scoring system. Arthritis Rheum 2003; 48: 1126–36PubMedCrossRefGoogle Scholar
  69. 69.
    Demis E, Roux C, Breban M, et al. Infliximab in spondylarthropathy: influence on bone density. Clin Exp Rheumatol 2002; 20: S185–6PubMedGoogle Scholar
  70. 70.
    Allali F, Breban M, Porcher R, et al. Increase in bone mineral density of patients with spondyloarthropathy treated with anti-tumour necrosis factor alpha. Ann Rheum Dis 2003; 62: 347–9PubMedCrossRefGoogle Scholar
  71. 71.
    Baeten D, Van Damme N, Van den Bosch F, et al. Impaired Th1 cytokine production in spondyloarthropathy is restored by anti-TNFalpha. Ann Rheum Dis 2001; 60: 750–5PubMedCrossRefGoogle Scholar
  72. 72.
    Rudwaleit M, Siegert S, Yin Z, et al. Low T cell production of TNFα and IFNγ in ankylosing spondylitis: its relation to HLA-B27 and influence of the TNF-308 gene polymorphism. Ann Rheum Dis 2001; 60: 36–42PubMedCrossRefGoogle Scholar
  73. 73.
    Cope AP, Liblau RS, Yang XD, et al. Chronic tumor necrosis factor alters T cell responses by attentuating T cell receptor signaling. J Exp Med 1997; 185: 1573–84PubMedCrossRefGoogle Scholar
  74. 74.
    Braun J, Xiang J, Brandt J, et al. Treatment of spondyloarthropathies with antibodies against tumour necrosis factor α: first clinical and laboratory experiences. Ann Rheum Dis 2000; 59 Suppl. 1: i85–95PubMedCrossRefGoogle Scholar
  75. 75.
    Zou J, Rudwaliet M, Brandt J, et al. Up regulation of the production of tumour necrosis factor alpha and interferon gamma by T cells in ankylosing spondylitis during treatment with etanercept. Ann Rheum Dis 2003; 62: 561–4PubMedCrossRefGoogle Scholar
  76. 76.
    Zou J, Rudwaleit M, Brandt J, et al. Down-regulation of the nonspecific and antigen-specific T cell cytokine response in ankylosing spondylitis during treatment with infliximab. Arthritis Rheum 2003; 48: 780–9PubMedCrossRefGoogle Scholar
  77. 77.
    Baeten D, Vandooren B, De Rycke L, et al. The effect of infliximab treatment on T cell cytokine responses in spondyloarthropathy. Arthritis Rheum 2004; 50: 1015–6PubMedCrossRefGoogle Scholar
  78. 78.
    Baeten D, Kruithof E, Van den Bosch F, et al. Immunomodulatory effects of anti-tumor necrosis factor alpha therapy on synovium in spondyloarthropathy: histologic findings in eight patients from an open-label pilot study. Arthritis Rheum 2001; 44: 186–95PubMedCrossRefGoogle Scholar
  79. 79.
    Kruithof E, Baeten D, Van Den Bosch F, et al. Histological evidence that infliximab treatment leads to downregulation of inflammation and tissue remodelling of the synovial membrane in spondyloarthropathy. Ann Rheum Dis. In pressGoogle Scholar
  80. 80.
    Baeten D, Demetter P, Cuvelier CA, et al. Macrophages expressing the scavenger receptor 163: a link between immune laterations of the gut and synovial inflammation in spondyloarthropathy. J Pathol 2002; 196: 343–50PubMedCrossRefGoogle Scholar
  81. 81.
    Baeten D, Moller HJ, Delanghe J, et al. Association of CD163+ macrophages and local production of soluble CD163 with decreased lymphocyte activation in spondylorthropathy synovitis. Arthritis Rheum 2004; 50: 1611–23PubMedCrossRefGoogle Scholar
  82. 82.
    De Rycke L, Baeten D, Foell D, et al. Serum MRP8/MRP14 as a biomarker for inflammation in autoimmune arthritis [abstract]. Arthritis Res Ther 2004; 6: 101CrossRefGoogle Scholar
  83. 83.
    Pasparakis M, Alexopoulou L, Episkopou V, et al. Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and the maturation of the humoral immune response. J Exp Med 1996; 184: 1397–11PubMedCrossRefGoogle Scholar
  84. 84.
    Fu Y-X, Molina H, Matsumoto M, et al. Lymphotoxin-α (LTα) supports development of splenic follicular structure that is required for IgG responses. J Exp Med 1997; 185: 2111–20PubMedCrossRefGoogle Scholar
  85. 85.
    Mandik-Nayak L, Seo S, Eaton-Bassiri A, et al. Functional consequences of the developmental arrest and follicular exclusion of anti-double-stranded DNA B cells. J Immunol 2000: 164: 1161–8PubMedGoogle Scholar
  86. 86.
    Campbell IK, O'Donnell K, Lawlor KE, et al. Severe inflammatory arthritis and lymphadenopathy in the absence of TNF. J Clin Invest 2001; 107: 1519–27PubMedCrossRefGoogle Scholar
  87. 87.
    De Rycke L, Kruithof E, Van Damme N, et al. Antinuclear antibodies following infliximab treatment in rheumatoid arthritis and spondyloarthropathy. Arthritis Rheum 2003; 48: 1015–23PubMedCrossRefGoogle Scholar
  88. 88.
    Canete JD, Pablos JL, Sanmarti R, et al. Anti-angiogenic effects of anti-TNF-α therapy with infliximab in posriatic arthritis. Arthritis Rheum 2004; 50: 1636–41PubMedCrossRefGoogle Scholar
  89. 89.
    Vandooren B, Kruithof E, Yu DT, et al. Involvement of matrix metalloproteinases and their inhibitors in peripheral synovitis and down regulation by tumor necrosis factor-α blockade in spondyloarthropathy. Arthritis Rheum 2004; 50: 2942–53CrossRefGoogle Scholar
  90. 90.
    Ritchlin CT, Haas-Smith SA, Li P, et al. Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest 2003; 111: 821–31PubMedGoogle Scholar

Copyright information

© Adis data information BV 2004

Authors and Affiliations

  • Filip De Keyser
    • 1
  • Dominique Baeten
    • 1
  • Filip Van den Bosch
    • 1
  • Elli Kruithof
    • 1
  • Gust Verbruggen
    • 1
  • Herman Mielants
    • 1
  • Eric Veys
    • 1
  1. 1.Department of RheumatologyGhent University HospitalGhentBelgium

Personalised recommendations