Advertisement

Drugs

, Volume 64, Issue 17, pp 1861–1891 | Cite as

Androgen Replacement Therapy

Present and Future
  • Louis J. G. Gooren
  • Mathijs C. M. Bunck
Review Article

Abstract

The major goal of androgen substitution is to replace testosterone at levels as close to physiological levels as is possible. For some androgen-dependent functions testosterone is a pro-hormone, peripherally converted to 5α-dihydrotestosterone (DHT) and 17β-estradiol (E2), of which the levels preferably should be within normal physiological ranges. Furthermore, androgens should have a good safety profile without adverse effects on the prostate, serum lipids, liver or respiratory function, and they must be convenient to use and patient-friendly, with a relative independence from medical services.

Natural testosterone is viewed as the best androgen for substitution in hypogonadal men. The reason behind the selection is that testosterone can be converted to DHT and E2, thus developing the full spectrum of testosterone activities in long-term substitution.

The mainstays of testosterone substitution are parenteral testosterone esters (testosterone enantate and testosterone cipionate) administered every 2–3 weeks. A major disadvantage is the strongly fluctuating levels of plasma testosterone, which are not in the physiological range at least 50% of the time. Also, the generated plasma E2 is usually supraphysiological. A major improvement is parenteral testosterone undecanoate producing normal plasma levels of testosterone for 12 weeks, with normal plasma levels of DHT and E2 also. Subcutaneous testosterone implants provide the patient, depending on the dose of implants, with normal plasma testosterone for 3–6 months. However, their use is not widespread. Oral testosterone undecanoate dissolved in castor oil bypasses the liver via its lymphatic absorption. At a dosage of 80mg twice daily, plasma testosterone levels are largely in the normal range, but plasma DHT tends to be elevated. For two decades transdermal testosterone preparations have been available and have an attractive pharmacokinetic profile. Scrotal testosterone patches generate supraphysiological plasma DHT levels, which is not the case with the nonscrotal testosterone patches. Transdermal testosterone gel produces fewer skin irritations than the patches and offers greater flexibility in dosage. Oromucosal testosterone preparations have recently become available.

Testosterone replacement is usually of long duration and so patient compliance is of utmost importance. Therefore, the patient must be involved in the selection of type of testosterone preparation.

Administration of testosterone to young individuals has almost no adverse effects. With increasing age the risk of adverse effects on the prostate, the cardiovascular system and erythropoiesis increases. Consequently, short-acting testosterone preparations are better suited for aging androgen-deficient men.

Keywords

Testosterone Androgen Androgen Receptor Benign Prostate Hyperplasia Testosterone Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

No funding was received to assist in the preparation of this manuscript. Louis Gooren has been a speaker at scientific meetings sponsored by Organon International, Oss, The Netherlands, manufacturer of oral testosterone undecanoate.

References

  1. 1.
    Nieschlag E, Wang C, Handelsman DJ, et al. Guidelines for the use of androgens: special programme of research, development and research training in human reproduction of the World Health Organization. Geneva: World Health Organization, 1992Google Scholar
  2. 2.
    Gooren LJ. Endocrine aspects of ageing in the male. Mol Cell Endocrinol 1998; 145: 153–9PubMedCrossRefGoogle Scholar
  3. 3.
    Morley JE. Testosterone replacement and the physiologic aspects of aging in men. Mayo Clin Proc 2000; 75 Suppl.: S83–7PubMedCrossRefGoogle Scholar
  4. 4.
    Gooren LJ, Nguyen NT. One and the same androgen for all? Towards designer androgens. Asian J Androl 1999; 1: 21–8PubMedGoogle Scholar
  5. 5.
    Russell DW, Wilson JD. Steroid 5α-reductase: two genes/two enzymes. Annu Rev Biochem 1994; 63: 25–61PubMedCrossRefGoogle Scholar
  6. 6.
    Steers WD. 5α-reductase activity in the prostate. Urology 2001; 58: 17–24PubMedCrossRefGoogle Scholar
  7. 7.
    O’Leary MP, Roehrborn C, Andriole G, et al. Improvements in benign prostatic hyperplasia-specific quality of life with dutasteride, the novel dual 5α-reductase inhibitor. BJU Int 2003; 92: 262–6PubMedCrossRefGoogle Scholar
  8. 8.
    Vermeulen A. Plasma levels and secretion rate of steroids with anabolic activity in man. Environ Qual Saf Suppl 1976; 5: 171–80PubMedGoogle Scholar
  9. 9.
    Pratis K, O’Donnell L, Ooi GT, et al. Enzyme assay for 5α-reductase type 2 activity in the presence of 5α-reductase type 1 activity in rat testis. J Steroid Biochem Mol Biol 2000; 75: 75–82PubMedCrossRefGoogle Scholar
  10. 10.
    Quigley CA. The androgen receptor: physiology and pathyphysiology. In: Nieschlag E, Behre HM, editors. Testosterone: action, deficiency, substitution. Berlin: Springer Verlag, 1998: 33–106CrossRefGoogle Scholar
  11. 11.
    Frick J, Aulitzky W. Physiology of the prostate. Infection 1991; 19 Suppl. 3: S115–8PubMedCrossRefGoogle Scholar
  12. 12.
    Wilson JD. The role of 5α-reduction in steroid hormone physiology. Reprod Fertil Dev 2001; 13: 673–8PubMedCrossRefGoogle Scholar
  13. 13.
    Imperato-McGinley J, Zhu YS. Androgens and male physiology the syndrome of 5α-reductase-2 deficiency. Mol Cell Endocrinol 2002; 198: 51–9PubMedCrossRefGoogle Scholar
  14. 14.
    Uygur MC, Arik AI, Altug U, et al. Effects of the 5α-reductase inhibitor finasteride on serum levels of gonadal, adrenal, and hypophyseal hormones and its clinical significance: a prospective clinical study. Steroids 1998; 63: 208–13PubMedCrossRefGoogle Scholar
  15. 15.
    Wessells H, Roy J, Bannow J, et al. Incidence and severity of sexual adverse experiences in finasteride and placebo-treated men with benign prostatic hyperplasia. Urology 2003; 61: 579–84PubMedCrossRefGoogle Scholar
  16. 16.
    Lowe FC, McConnell JD, Hudson PB, et al. Long-term 6-year experience with finasteride in patients with benign prostatic hyperplasia. Urology 2003; 61: 791–6PubMedCrossRefGoogle Scholar
  17. 17.
    MacDonald PC, Madden JD, Brenner PF, et al. Origin of estrogen in normal men and in women with testicular feminization. J Clin Endocrinol Metab 1979; 49: 905–16PubMedCrossRefGoogle Scholar
  18. 18.
    Vermeulen A, Kaufman JM, Goemaere S, et al. Estradiol in elderly men. Aging Male 2002; 5: 98–102PubMedGoogle Scholar
  19. 19.
    Kaufman JM, Vermeulen A. Declining gonadal function in elderly men. Baillieres Clin Endocrinol Metab 1997; 11: 289–309PubMedCrossRefGoogle Scholar
  20. 20.
    Vermeulen A, Kaufman JM, Giagulli VA. Influence of some biological indexes on sex hormone-binding globulin and androgen levels in aging or obese males. J Clin Endocrinol Metab 1996; 81: 1821–6PubMedCrossRefGoogle Scholar
  21. 21.
    Couse JF, Korach KS. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev 1999; 20: 358–417PubMedCrossRefGoogle Scholar
  22. 22.
    Riggs BL, Khosla S, Melton III LJ. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002; 23: 279–302PubMedCrossRefGoogle Scholar
  23. 23.
    Khosla S, Melton III LJ, Atkinson EJ, et al. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 2001; 86: 3555–61PubMedCrossRefGoogle Scholar
  24. 24.
    Khosla S, Melton III LJ, Riggs BL. Clinical review 144: estrogen and the male skeleton. J Clin Endocrinol Metab 2002; 87: 1443–50PubMedCrossRefGoogle Scholar
  25. 25.
    Sudhir K, Komesaroff PA. Clinical review 110: cardiovascular actions of estrogens in men. J Clin Endocrinol Metab 1999; 84: 3411–5PubMedCrossRefGoogle Scholar
  26. 26.
    Komesaroff PA, Black CV, Westerman RA. A novel, nongenomic action of estrogen on the cardiovascular system. J Clin Endocrinol Metab 1998; 83: 2313–6PubMedCrossRefGoogle Scholar
  27. 27.
    McEwen BS, Alves SE. Estrogen actions in the central nervous system. Endocr Rev 1999; 20: 279–307PubMedCrossRefGoogle Scholar
  28. 28.
    Ekins R. Measurement of free hormones in blood. Endocr Rev 1990; 11: 5–46PubMedCrossRefGoogle Scholar
  29. 29.
    Pardridge WM, Landaw EM. Testosterone transport in brain: primary role of plasma protein-bound hormone. Am J Physiol 1985; 249: E534–42PubMedGoogle Scholar
  30. 30.
    Wheeler MJ. The determination of bio-available testosterone. Ann Clin Biochem 1995; 32: 345–57PubMedGoogle Scholar
  31. 31.
    Pardridge WM. Transport of protein-bound hormones into tissues in vivo. Endocr Rev 1981; 2: 103–23PubMedCrossRefGoogle Scholar
  32. 32.
    Feldman HA, Longcope C, Derby CA, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts Male Aging Study. J Clin Endocrinol Metab 2002; 87: 589–98PubMedCrossRefGoogle Scholar
  33. 33.
    Kumar N, Didolkar AK, Monder C, et al. The biological activity of 7α-methyl-19-nortestosterone is not amplified in male reproductive tract as is that of testosterone. Endocrinology 1992; 130: 3677–83PubMedCrossRefGoogle Scholar
  34. 34.
    Gooren LJ. Androgen levels and sex functions in testosterone-treated hypogonadal men. Arch Sex Behav 1987; 16: 463–73PubMedCrossRefGoogle Scholar
  35. 35.
    Bhasin S, Woodhouse L, Casaburi R, et al. Testosterone dose-response relationships in healthy young men. Am J Physiol Endocrinol Metab 2001; 281: E1172–81PubMedGoogle Scholar
  36. 36.
    Buena F, Swerdloff RS, Steiner BS, et al. Sexual function does not change when serum testosterone levels are pharmacologically varied within the normal male range. Fertil Steril 1993; 59: 1118–23PubMedGoogle Scholar
  37. 37.
    Storer TW, Magliano L, Woodhouse L, et al. Testosterone dose-dependently increases maximal voluntary strength and leg power, but does not affect fatigability or specific tension. J Clin Endocrinol Metab 2003; 88: 1478–85PubMedCrossRefGoogle Scholar
  38. 38.
    Snyder PJ, Peachey H, Hannoush P, et al. Effect of testosterone treatment on bone mineral density in men over 65 years of age. J Clin Endocrinol Metab 1999; 84: 1966–72PubMedCrossRefGoogle Scholar
  39. 39.
    Wang C, Swerdloff RS, Iranmanesh A, et al. Effects of transdermal testosterone gel on bone turnover markers and bone mineral density in hypogonadal men. Clin Endocrinol (Oxf) 2001; 54: 739–50CrossRefGoogle Scholar
  40. 40.
    Nieschlag E, Cuppers HJ, Wickings EJ. Influence of sex, testicular development and liver function on the bioavailability of oral testosterone. Eur J Clin Invest 1977; 7: 145–7PubMedCrossRefGoogle Scholar
  41. 41.
    Nieschlag E, Behre HM. Comparative pharmacokinetics of testosterone esters. In: Nieschlag E, Behre HM, editors. Testosterone: action, deficiency, substitution. Berlin: Springer Verlag, 1998: 294–328CrossRefGoogle Scholar
  42. 42.
    Morales A, Johnston B, Heaton JW, et al. Oral androgens in the treatment of hypogonadal impotent men. J Urol 1994; 152: 1115–8PubMedGoogle Scholar
  43. 43.
    Thompson PD, Cullinane EM, Sady SP, et al. Contrasting effects of testosterone and stanozolol on serum lipoprotein levels. JAMA 1989; 261: 1165–8PubMedCrossRefGoogle Scholar
  44. 44.
    Bagatell CJ, Bremner WJ. Androgen and progestagen effects on plasma lipids. Prog Cardiovasc Dis 1995; 38: 255–71PubMedCrossRefGoogle Scholar
  45. 45.
    Bagatelli CJ, Bremner WJ. Androgens in men: uses and abuses. N Engl J Med 1997; 334: 707–14Google Scholar
  46. 46.
    Coert A, Geelen J, de Visser J, et al. The pharmacology and metabolism of testosterone undecanoate (TU), a new orally active androgen. Acta Endocrinol (Copenh) 1975; 79: 789–800Google Scholar
  47. 47.
    Horst HJ, Holtje WJ, Dennis M, et al. Lymphatic absorption and metabolism of orally administered testosterone undecanoate in man. Klin Wochenschr 1976; 54: 875–9PubMedCrossRefGoogle Scholar
  48. 48.
    Frey H, Aakvaag A, Saanum D, et al. Bioavailability of oral testosterone in males. Eur J Clin Pharmacol 1979; 16: 345–9PubMedCrossRefGoogle Scholar
  49. 49.
    Bagchus WM, Hust R, Maris F, et al. Important effect of food on the bioavailability of oral testosterone undecanoate. Pharmacotherapy 2003; 23: 319–25PubMedCrossRefGoogle Scholar
  50. 50.
    Houwing NS, Maris F, Schnabel PG, et al. Pharmacokinetic study in women of three different doses of a new formulation of oral testosterone undecanoate, Andriol Testocaps. Pharmacotherapy 2003; 23: 1257–65PubMedCrossRefGoogle Scholar
  51. 51.
    Schubert M, Bullmann C, Minnemann T, et al. Osteoporosis in male hypogonadism: responses to androgen substitution differ among men with primary and secondary hypogonadism. Horm Res 2003; 60: 21–8PubMedCrossRefGoogle Scholar
  52. 52.
    Marin P, Holmang S, Jonsson L, et al. The effects of testosterone treatment on body composition and metabolism in middle-aged obese men. Int J Obes Relat Metab Disord 1992; 16: 991–7PubMedGoogle Scholar
  53. 53.
    Bhasin S, Bagatell CJ, Bremner WJ, et al. Issues in testosterone replacement in older men. J Clin Endocrinol Metab 1998; 83: 3435–48PubMedCrossRefGoogle Scholar
  54. 54.
    Gooren LJ. A ten-year safety study of the oral androgen testosterone undecanoate. J Androl 1994; 15: 212–5PubMedGoogle Scholar
  55. 55.
    Butler GE, Sellar RE, Walker RF, et al. Oral testosterone undecanoate in the management of delayed puberty in boys: pharmacokinetics and effects on sexual maturation and growth. J Clin Endocrinol Metab 1992; 75: 37–44PubMedCrossRefGoogle Scholar
  56. 56.
    Gregory JW, Greene SA, Thompson J, et al. Effects of oral testosterone undecanoate on growth, body composition, strength and energy expenditure of adolescent boys. Clin Endocrinol (Oxf) 1992; 37: 207–13CrossRefGoogle Scholar
  57. 57.
    Brown DC, Butler GE, Kelnar CJ, et al. A double blind, placebo controlled study of the effects of low dose testosterone undecanoate on the growth of small for age, prepubertal boys. Arch Dis Child 1995; 73: 131–5PubMedCrossRefGoogle Scholar
  58. 58.
    Schmidt H, Knorr D, Schwarz HP. Oral testosterone undecanoate for the induction of puberty in anorchid boys [letter]. Arch Dis Child 1998; 78: 397PubMedCrossRefGoogle Scholar
  59. 59.
    Gupta MK, Brown DC, Faiman C, et al. Effect of low-dose testosterone treatment on androgen regulated proteins prostate specific antigen and sex hormone binding globulin in short prepubertal boys: lack of initiation of puberty. J Pediatr Endocrinol Metab 2003; 16: 55–62PubMedCrossRefGoogle Scholar
  60. 60.
    Kim S, Snipes W, Hodgen GD, et al. Pharmacokinetics of a single dose of buccal testosterone. Contraception 1995; 52: 313–6PubMedCrossRefGoogle Scholar
  61. 61.
    Dobs AS, Hoover DR, Chen MC, et al. Pharmacokinetic characteristics, efficacy, and safety of buccal testosterone in hypogonadal males: a pilot study. J Clin Endocrinol Metab 1998; 83: 33–9PubMedCrossRefGoogle Scholar
  62. 62.
    Slater CC, Souter I, Zhang C, et al. Pharmacokinetics of testosterone after percutaneous gel or buccal administration. Fertil Steril 2001; 76: 32–7PubMedCrossRefGoogle Scholar
  63. 63.
    Baisley KJ, Boyce MJ, Bukofzer S, et al. Pharmacokinetics, safety and tolerability of three dosage regimens of buccal adhesive testosterone tablets in healthy men suppressed with leuprorelin. J Endocrinol 2002; 175: 813–9PubMedCrossRefGoogle Scholar
  64. 64.
    Korbonits M, Slawik M, Cullen D, et al. A Comparison of a novel testosterone bioadhesive buccal system, striant, with a testosterone adhesive patch in hypogonadal males. J Clin Endocrinol Metab 2004; 89: 2039–43PubMedCrossRefGoogle Scholar
  65. 65.
    Ross RJ, Jabbar A, Jones TH, et al. Pharmacokinetics and tolerability of a bioadhesive buccal testosterone tablet in hypogonadal men. Eur J Endocrinol 2004; 150: 57–63PubMedCrossRefGoogle Scholar
  66. 66.
    Dobs AS, Matsumoto AM, Wang C, et al. Short-term pharmacokinetic comparison of a novel testosterone buccal system and a testosterone gel in testosterone deficient men. Curr Med Res Opin 2004; 20: 729–38PubMedCrossRefGoogle Scholar
  67. 67.
    Stuenkel CA, Dudley RE, Yen SS. Sublingual administration of testosterone-hydroxypropyl-beta-cyclodextrin inclusion complex simulates episodic androgen release in hypogonadal men. J Clin Endocrinol Metab 1991; 72: 1054–9PubMedCrossRefGoogle Scholar
  68. 68.
    Salehian B, Wang C, Alexander G, et al. Pharmacokinetics, bioefficacy, and safety of sublingual testosterone cyclodextrin in hypogonadal men: comparison to testosterone enanthate: a clinical research center study. J Clin Endocrinol Metab 1995; 80: 3567–75PubMedCrossRefGoogle Scholar
  69. 69.
    Wang C, Eyre DR, Clark R, et al. Sublingual testosterone replacement improves muscle mass and strength, decreases bone resorption, and increases bone formation markers in hypogonadal men: a clinical research center study. J Clin Endocrinol Metab 1996; 81: 3654–62PubMedCrossRefGoogle Scholar
  70. 70.
    Atkinson LE, Chang YL, Snyder PJ. Long term testosterone replacement through scrotal skin. In: Nieschlag E, Behre HM, editors. Testosterone: action, deficiency, substitution. Berlin: Springer Verlag, 1998: 365–88CrossRefGoogle Scholar
  71. 71.
    Behre HM, von Eckardstein S, Kliesch S, et al. Long-term substitution therapy of hypogonadal men with transscrotal testosterone over 7–10 years. Clin Endocrinol (Oxf) 1999; 50: 629–35CrossRefGoogle Scholar
  72. 72.
    Meikle AW, Mazer NA, Moellmer JF, et al. Enhanced transdermal delivery of testosterone across nonscrotal skin produces physiological concentrations of testosterone and its metabolites in hypogonadal men. J Clin Endocrinol Metab 1992; 74: 623–8PubMedCrossRefGoogle Scholar
  73. 73.
    Meikle AW. A permeation enhanced non-scrotal testosterone transdermal system for the treatment of male hypogonadism: testosterone: action, deficiency, substitution. Berlin: Springer Verlag, 1998: 389–422Google Scholar
  74. 74.
    Arver S, Dobs AS, Meikle AW, et al. Improvement of sexual function in testosterone deficient men treated for 1 year with a permeation enhanced testosterone transdermal system. J Urol 1996; 155: 1604–8PubMedCrossRefGoogle Scholar
  75. 75.
    McClellan KJ, Goa KL. Transdermal testosterone. Drugs 1998; 55: 253–8PubMedCrossRefGoogle Scholar
  76. 76.
    Wilson DE, Kaidbey K, Boike SC, et al. Use of topical corticosteroid pretreatment to reduce the incidence and severity of skin reactions associated with testosterone transdermal therapy. Clin Ther 1998; 20: 299–306PubMedCrossRefGoogle Scholar
  77. 77.
    Wang C, Berman N, Longstreth JA, et al. Pharmacokinetics of transdermal testosterone gel in hypogonadal men: application of gel at one site versus four sites: a General Clinical Research Center Study. J Clin Endocrinol Metab 2000; 85: 964–9PubMedCrossRefGoogle Scholar
  78. 78.
    Swerdloff RS, Wang C, Cunningham G, et al. Long-term pharmacokinetics of transdermal testosterone gel in hypogonadal men. J Clin Endocrinol Metab 2000; 85: 4500–10PubMedCrossRefGoogle Scholar
  79. 79.
    Wang C, Swedloff RS, Iranmanesh A, et al. Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men: Testosterone Gel Study Group. J Clin Endocrinol Metab 2000; 85: 2839–53PubMedCrossRefGoogle Scholar
  80. 80.
    Rolf C, Knie U, Lemmnitz G, et al. Interpersonal testosterone transfer after topical application of a newly developed testosterone gel preparation. Clin Endocrinol (Oxf) 2002; 56: 637–41CrossRefGoogle Scholar
  81. 81.
    Wang C, Cunningham G, Dobs A, et al. Long-term testosterone gel (AndroGel) treatment maintains beneficial effects on sexual function and mood, lean and fat mass, and bone mineral density in hypogonadal men. J Clin Endocrinol Metab 2004; 89: 2085–98PubMedCrossRefGoogle Scholar
  82. 82.
    Meikle AW, Matthias D, Hoffman AR. Transdermal testosterone gel: pharmacokinetics, efficacy of dosing and application site in hypogonadal men. BJU Int 2004; 93: 789–95PubMedCrossRefGoogle Scholar
  83. 83.
    Marbury T, Hamill E, Bachand R, et al. Evaluation of the pharmacokinetic profiles of the new testosterone topical gel formulation, Testim™, compared to AndroGel®. Biopharm Drug Dispos 2003; 24: 115–20PubMedCrossRefGoogle Scholar
  84. 84.
    McNicholas TA, Dean JD, Mulder H, et al. A novel testosterone gel formulation normalizes androgen levels in hypogonadal men, with improvements in body composition and sexual function. BJU Int 2003; 91: 69–74PubMedCrossRefGoogle Scholar
  85. 85.
    Nieschlag E, Cuppers HJ, Wiegelmann W, et al. Bioavailability and LH-suppressing effect of different testosterone preparations in normal and hypogonadal men. Horm Res 1976; 7: 138–45PubMedCrossRefGoogle Scholar
  86. 86.
    Schurmeyer T, Nieschlag E. Comparative pharmacokinetics of testosterone enanthate and testosterone cyclohexanecarboxylate as assessed by serum and salivary testosterone levels in normal men. Int J Androl 1984; 7: 181–7PubMedCrossRefGoogle Scholar
  87. 87.
    Schulte-Beerbuhl M, Nieschlag E. Comparison of testosterone, dihydrotestosterone, luteinizing hormone, and follicle-stimulating hormone in serum after injection of testosterone enanthate of testosterone cypionate. Fertil Steril 1980; 33: 201–3PubMedGoogle Scholar
  88. 88.
    Sokol RZ, Palacios A, Campfield LA, et al. Comparison of the kinetics of injectable testosterone in eugonadal and hypogonadal men. Fertil Steril 1982; 37: 425–30PubMedGoogle Scholar
  89. 89.
    Snyder PJ, Lawrence DA. Treatment of male hypogonadism with testosterone enanthate. J Clin Endocrinol Metab 1980; 51: 1335–9PubMedCrossRefGoogle Scholar
  90. 90.
    Plymate S. Hypogonadism. Endocrinol Metab Clin North Am 1994; 23: 749–72PubMedGoogle Scholar
  91. 91.
    Mackey MA, Conway AJ, Handelsman DJ. Tolerability of intramuscular injections of testosterone ester in oil vehicle. Hum Reprod 1995; 10: 862–5PubMedGoogle Scholar
  92. 92.
    Matsumoto AM. Hormonal therapy of male hypogonadism. Endocrinol Metab Clin North Am 1994; 23: 857–75PubMedGoogle Scholar
  93. 93.
    Behre HM, Baus S, Kliesch S, et al. Potential of testosterone buciclate for male contraception: endocrine differences between responders and nonresponders. J Clin Endocrinol Metab 1995; 80: 2394–403PubMedCrossRefGoogle Scholar
  94. 94.
    Tschop M, Behre HM, Nieschlag E, et al. A time-resolved fluorescence immunoassay for the measurement of testosterone in saliva: monitoring of testosterone replacement therapy with testosterone buciclate. Clin Chem Lab Med 1998; 36: 223–30PubMedCrossRefGoogle Scholar
  95. 95.
    Behre HM, Nieschlag E. Testosterone buciclate (20 Aet-1) in hypogonadal men: pharmacokinetics and pharmacodynamics of the new long-acting androgen ester. J Clin Endocrinol Metab 1992; 75: 1204–10PubMedCrossRefGoogle Scholar
  96. 96.
    Burris AS, Ewing LL, Sherins RJ. Initial trial of slow-release testosterone microspheres in hypogonadal men. Fertil Steril 1988; 50: 493–7PubMedGoogle Scholar
  97. 97.
    Bhasin S, Swerdloff RS, Steiner B, et al. A biodegradable testosterone microcapsule formulation provides uniform eugonadal levels of testosterone for 10–11 weeks in hypogonadal men. J Clin Endocrinol Metab 1992; 74: 75–83PubMedCrossRefGoogle Scholar
  98. 98.
    Wang LZ. The therapeutic effect of domestically produced testosterone undecanoate in Klinefelter’s syndrome. New Drugs Market 1991; 8: 28–32Google Scholar
  99. 99.
    Behre HM, Abshagen K, Oettel M, et al. Intramuscular injection of testosterone undecanoate for the treatment of male hypogonadism: phase I studies. Eur J Endocrinol 1999; 140: 414–9PubMedCrossRefGoogle Scholar
  100. 100.
    Nieschlag E, Buchter D, von Eckardstein S, et al. Repeated intramuscular injections of testosterone undecanoate for substitution therapy in hypogonadal men. Clin Endocrinol (Oxf) 1999; 51: 757–63CrossRefGoogle Scholar
  101. 101.
    Seftel A. Treatment of male hypogonadism with testosterone undecanoate injected at extended intervals of 12 weeks: a phase II study. J Urol 2002; 168: 2315–6Google Scholar
  102. 102.
    von Eckardstein S, Nieschlag E. Treatment of male hypogonadism with testosterone undecanoate injected at extended intervals of 12 weeks: a phase II study. J Androl 2002; 23: 419–25Google Scholar
  103. 103.
    Handelsman DJ, Conway AJ, Boylan LM. Pharmacokinetics and pharmacodynamics of testosterone pellets in man. J Clin Endocrinol Metab 1990; 71: 216–22PubMedCrossRefGoogle Scholar
  104. 104.
    Cantrill JA, Dewis P, Large DM, et al. Which testosterone replacement therapy? Clin Endocrinol (Oxf) 1984; 21: 97–107CrossRefGoogle Scholar
  105. 105.
    Conway AJ, Boylan LM, Howe C, et al. Randomized clinical trial of testosterone replacement therapy in hypogonadal men. Int J Androl 1988; 11: 247–64PubMedCrossRefGoogle Scholar
  106. 106.
    Jockenhovel F, Vogel E, Kreutzer M, et al. Pharmacokinetics and pharmacodynamics of subcutaneous testosterone implants in hypogonadal men. Clin Endocrinol (Oxf) 1996; 45: 61–71CrossRefGoogle Scholar
  107. 107.
    Nieschlag E. Testosterone replacement therapy: something old, something new. Clin Endocrinol (Oxf) 1996; 45: 261–2CrossRefGoogle Scholar
  108. 108.
    Zacharin MR, Warne GL. Treatment of hypogonadal adolescent boys with long acting subcutaneous testosterone pellets. Arch Dis Child 1997; 76: 495–9PubMedCrossRefGoogle Scholar
  109. 109.
    Kelleher S, Conway AJ, Handelsman DJ. A randomised controlled clinical trial of antibiotic impregnation of testosterone pellet implants to reduce extrusion rate. Eur J Endocrinol 2002; 146: 513–8PubMedCrossRefGoogle Scholar
  110. 110.
    Kelleher S, Conway AJ, Handelsman DJ. Influence of implantation site and track geometry on the extrusion rate and pharmacology of testosterone implants. Clin Endocrinol (Oxf) 2001; 55: 531–6CrossRefGoogle Scholar
  111. 111.
    Kelleher S, Turner L, Howe C, et al. Extrusion of testosterone pellets: a randomized controlled clinical study. Clin Endocrinol (Oxf) 1999; 51: 469–71CrossRefGoogle Scholar
  112. 112.
    Handelsman DJ, Mackey MA, Howe C, et al. An analysis of testosterone implants for androgen replacement therapy. Clin Endocrinol (Oxf) 1997; 47: 311–6CrossRefGoogle Scholar
  113. 113.
    Conway AJ, Handelsman DJ, Lording DW, et al. Use, misuse and abuse of androgens: the Endocrine Society of Australia consensus guidelines for androgen prescribing [published erratum appears in Med J Aust 2000; 172: 334]. Med J Aust 2000; 172: 220–4PubMedGoogle Scholar
  114. 114.
    Wang C, Swerdloff RS. Should the nonaromatizable androgen dihydrotestosterone be considered as an alternative to testosterone in the treatment of the andropause? J Clin Endocrinol Metab 2002; 87: 1462–6PubMedCrossRefGoogle Scholar
  115. 115.
    Swerdloff RS, Wang C. Dihydrotestosterone: a rationale for its use as a non-aromatizable androgen replacement therapeutic agent. Baillieres Clin Endocrinol Metab 1998; 12: 501–6PubMedCrossRefGoogle Scholar
  116. 116.
    de Lignieres B. Transdermal dihydrotestosterone treatment of ‘andropause’ [abstract]. Ann Med 1993; 25: 235PubMedCrossRefGoogle Scholar
  117. 117.
    Schaison G, Nahoul K, Couzinet B. Percutaneous dihydrotestosterone treatment. In: Nieschlag E, Behre HM, editors. Testosterone: action, deficiency, substitution. Berlin: Springer Verlag, 1990: 155–64CrossRefGoogle Scholar
  118. 118.
    Schaison G, Couzinet B. Percutaneous dihydrotestosterone treatment. In: Nieschlag E, Behre HM, editors. Testosterone: action, deficiency, substitution. Berlin: Springer Verlag, 1998: 423–36CrossRefGoogle Scholar
  119. 119.
    Ly LP, Jimenez M, Zhuang TN, et al. A double-blind, placebo-controlled, randomized clinical trial of transdermal dihydrotestosterone gel on muscular strength, mobility, and quality of life in older men with partial androgen deficiency. J Clin Endocrinol Metab 2001; 86: 4078–88PubMedCrossRefGoogle Scholar
  120. 120.
    Kunelius P, Lukkarinen O, Hannuksela ML, et al. The effects of transdermal dihydrotestosterone in the aging male: a prospective, randomized, double blind study. J Clin Endocrinol Metab 2002; 87: 1467–72PubMedCrossRefGoogle Scholar
  121. 121.
    van Kesteren P, Lips P, Gooren LJ, et al. Long-term follow-up of bone mineral density and bone metabolism in transsexuals treated with cross-sex hormones. Clin Endocrinol (Oxf) 1998; 48: 347–54CrossRefGoogle Scholar
  122. 122.
    Deslypere JP, Kaufman JM, Vermeulen T, et al. Influence of age on pulsatile luteinizing hormone release and responsiveness of the gonadotrophs to sex hormone feedback in men. J Clin Endocrinol Metab 1987; 64: 68–73PubMedCrossRefGoogle Scholar
  123. 123.
    van den Beld AW, Huhtaniemi IT, Pettersson KSL, et al. Luteinizing hormone and different genetic variants, as indicators of frailty in healthy elderly men. J Clin Endocrinol Metab 1999; 84: 1334–9PubMedCrossRefGoogle Scholar
  124. 124.
    Cronauer MV, Schulz WA, Burchardt T, et al. The androgen receptor in hormone-refractory prostate cancer: relevance of different mechanisms of androgen receptor signaling. Int J Oncol 2003; 23: 1095–102PubMedGoogle Scholar
  125. 125.
    Zitzmann M, Nieschlag E. The CAG repeat polymorphism within the androgen receptor gene and maleness. Int J Androl 2003; 26: 76–83PubMedCrossRefGoogle Scholar
  126. 126.
    Dejager S, Bry-Gauillard H, Bruckert E, et al. A comprehensive endocrine description of Kennedy’s disease revealing androgen insensitivity linked to CAG repeat length. J Clin Endocrinol Metab 2002; 87: 3893–901PubMedCrossRefGoogle Scholar
  127. 127.
    Zitzmann M, Depenbusch M, Gromoll J, et al. Prostate volume and growth in testosterone-substituted hypogonadal men are dependent on the CAG repeat polymorphism of the androgen receptor gene: a longitudinal pharmacogenetic study. J Clin Endocrinol Metab 2003; 88: 2049–54PubMedCrossRefGoogle Scholar
  128. 128.
    Remes T, Vaisanen SB, Mahonen A, et al. Aerobic exercise and bone mineral density in middle-aged Finnish men: a controlled randomized trial with reference to androgen receptor, aromatase, and estrogen receptor alpha gene polymorphisms small star, filled. Bone 2003; 32: 412–20PubMedCrossRefGoogle Scholar
  129. 129.
    Zitzmann M, Gromoll J, Von Eckardstein A, et al. The CAG repeat polymorphism in the androgen receptor gene modulates body fat mass and serum concentrations of leptin and insulin in men. Diabetologia 2003; 46: 31–9PubMedGoogle Scholar
  130. 130.
    Jin B, Beilin J, Zajac J, et al. Androgen receptor gene polymorphism and prostate zonal volumes in Australian and Chinese men. J Androl 2000; 21: 91–8PubMedGoogle Scholar
  131. 131.
    van Pottelbergh I, Lumbroso S, Goemaere S, et al. Lack of influence of the androgen receptor gene CAG-repeat polymorphism on sex steroid status and bone metabolism in elderly men. Clin Endocrinol (Oxf) 2001; 55: 659–66CrossRefGoogle Scholar
  132. 132.
    Woodhouse LJ, Reisz-Porszasz S, Javanbakht M, et al. Development of models to predict anabolic response to testosterone administration in healthy young men. Am J Physiol Endocrinol Metab 2003; 284: E1009–17PubMedGoogle Scholar
  133. 133.
    Meyerson M. Human genetic variation and disease. Lancet 2003; 362: 259–60PubMedCrossRefGoogle Scholar
  134. 134.
    Wilson JD. Androgen abuse by athletes. Endocr Rev 1988; 9: 181–99PubMedCrossRefGoogle Scholar
  135. 135.
    Pinkerton JV, Santen R. Alternatives to the use of estrogen in postmenopausal women. Endocr Rev 1999; 20: 308–20PubMedCrossRefGoogle Scholar
  136. 136.
    Morello KC, Wurz GT, DeGregorio MW. Pharmacokinetics of selective estrogen receptor modulators. Clin Pharmacokinet 2003; 42(4): 361–72PubMedCrossRefGoogle Scholar
  137. 137.
    Riggs BL, Hartmann LC. Selective estrogen-receptor modulators: mechanisms of action and application to clinical practice. N Engl J Med 2003; 348: 618–29PubMedCrossRefGoogle Scholar
  138. 138.
    Shang Y, Brown M. Molecular determinants for the tissue specificity of SERMs. Science 2002; 295: 2465–8PubMedCrossRefGoogle Scholar
  139. 139.
    Negro-Vilar A. Selective androgen receptor modulators (SARMs): a novel approach to androgen therapy for the new millennium. J Clin Endocrinol Metab 1999; 84: 3459–62PubMedCrossRefGoogle Scholar
  140. 140.
    Yin D, He Y, Perera MA, et al. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor. Mol Pharmacol 2003; 63: 211–23PubMedCrossRefGoogle Scholar
  141. 141.
    Yin D, Gao W, Kearbey JD, et al. Pharmacodynamics of selective androgen receptor modulators. J Pharmacol Exp Ther 2003; 304: 1334–40PubMedCrossRefGoogle Scholar
  142. 142.
    Edwards JP, West SJ, Pooley CL, et al. New nonsteroidal androgen receptor modulators based on 4-(trifluoromethyl)-2 (1H)-pyrrolidino[,2-g] quinolinone. Bioorg Med Chem Lett 1998; 8: 745–50PubMedCrossRefGoogle Scholar
  143. 143.
    Berrevoets CA, Umar A, Brinkmann AO. Antiandrogens: selective androgen receptor modulators. Mol Cell Endocrinol 2002; 198: 97–103PubMedCrossRefGoogle Scholar
  144. 144.
    Hanada K, Furuya K, Yamamoto N, et al. Bone anabolic effects of S-40503, a novel nonsteroidal selective androgen receptor modulator (SARM), in rat models of osteoporosis. Biol Pharm Bull 2003; 26: 1563–9PubMedCrossRefGoogle Scholar
  145. 145.
    Lutz LB, Jamnongjit M, Yang WH, et al. Selective modulation of genomic and nongenomic androgen responses by androgen receptor ligands. Mol Endocrinol 2003; 17: 1106–16PubMedCrossRefGoogle Scholar
  146. 146.
    Cummings DE, Kumar N, Bardin CW, et al. Prostate-sparing effects in primates of the potent androgen 7α-methyl-19-nortestosterone: a potential alternative to testosterone for androgen replacement and male contraception. J Clin Endocrinol Metab 1998; 83: 4212–9PubMedCrossRefGoogle Scholar
  147. 147.
    LaMorte A, Kumar N, Bardin CW, et al. Aromatization of 7 α-methyl-19-nortestosterone by human placental microsomes in vitro. J Steroid Biochem Mol Biol 1994; 2-3: 297–304CrossRefGoogle Scholar
  148. 148.
    Anderson RA, Martin CW, Kung AW, et al. 7α-methyl-19-nortestosterone maintains sexual behavior and mood in hypogonadal men. J Clin Endocrinol Metab 1999; 84: 3556–62PubMedCrossRefGoogle Scholar
  149. 149.
    Kumar N, Suvvisaari J, Tsong YY, et al. Pharmacokinetics of 7α-methyl-19-nortestosterone in men and cynomolgus monkeys. J Androl 1997; 18: 352–8PubMedGoogle Scholar
  150. 150.
    Suvvisaari J, Moo-Young AJ, Juhakoski A, et al. Pharmacokinetics of 7α-methyl-19-nortestosterone (MENT) delivery using subdermal implants in healthy men. Contraception 1999; 60: 299–303CrossRefGoogle Scholar
  151. 151.
    Katznelson L, Finkelstein JS, Schoenfeld DA, et al. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. J Clin Endocrinol Metab 1996; 81: 4358–65PubMedCrossRefGoogle Scholar
  152. 152.
    Behre HM, Kliesch S, Leifke E, et al. Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab 1997; 82: 2386–90PubMedCrossRefGoogle Scholar
  153. 153.
    Rochira V, Balestrieri A, Faustini-Fustini M, et al. Role of estrogen on bone in the human male: insights from the natural models of congenital estrogen deficiency. Mol Cell Endocrinol 2001; 178: 215–20PubMedCrossRefGoogle Scholar
  154. 154.
    Vanderschueren D, Vandenput L, Boonen S, et al. Androgens and bone. Endocr Rev 2004; 25: 389–425PubMedCrossRefGoogle Scholar
  155. 155.
    Khosla S, Bilezikian JP. The role of estrogens in men and androgens in women. Endocrinol Metab Clin North Am 2003; 32: 195–218PubMedCrossRefGoogle Scholar
  156. 156.
    Trueb RM. Molecular mechanisms of androgenetic alopecia. Exp Gerontol 2002; 37: 981–90PubMedCrossRefGoogle Scholar
  157. 157.
    Bayne EK, Flanagan J, Einstein M, et al. Immunohistochemical localization of types 1 and 2 5α-reductase in human scalp. Br J Dermatol 1999; 141: 481–91PubMedCrossRefGoogle Scholar
  158. 158.
    Kaufman KD. Androgens and alopecia. Mol Cell Endocrinol 2002; 198: 89–95PubMedCrossRefGoogle Scholar
  159. 159.
    Imperato-McGinley J, Gautier T, Cai LQ, et al. The androgen control of sebum production: studies of subjects with dihydrotestosterone deficiency and complete androgen insensitivity. J Clin Endocrinol Metab 1993; 76: 524–8PubMedCrossRefGoogle Scholar
  160. 160.
    Munster U, Hammer S, Blume-Peytavi U, et al. Testosterone metabolism in human skin cells in vitro and its interaction with estradiol and dutasteride. Skin Pharmacol Appl Skin Physiol 2003; 16: 356–66PubMedCrossRefGoogle Scholar
  161. 161.
    Schiavi RC. Androgens and sexual function in men. In: Oddens B, Vermeulen A, editors. Androgens and the aging male. New York: Parthenon Publishing Group, 1996: 111–28Google Scholar
  162. 162.
    Bancroft J. Androgens, sexuality and the aging male. In: Labrie F, Proulx L, editors. Endocrinology. Amsterdam: Elsevier, 1984: 913–6Google Scholar
  163. 163.
    Schiavi RC, Schreiner-Engel P, White D, et al. Pituitary-gonadal function during sleep in men with hypoactive sexual desire and in normal controls. Psychosom Med 1988; 50: 304–18PubMedGoogle Scholar
  164. 164.
    Pfeilschifter J, Scheidt-Nave C, Leidig-Bruckner G, et al. Relationship between circulating insulin-like growth factor components and sex hormones in a population-based sample of 50 to 80-year-old men and women. J Clin Endocrinol Metab 1996; 81: 2534–40PubMedCrossRefGoogle Scholar
  165. 165.
    Nilsson PM, Moller L, Solstad K. Adverse effects of psychosocial stress on gonadal function and insulin levels in middle-aged males. J Intern Med 1995; 237: 479–86PubMedCrossRefGoogle Scholar
  166. 166.
    Kraemer HC, Becker HB, Brodie HK, et al. Orgasmic frequency and plasma testosterone levels in normal human males. Arch Sex Behav 1976; 5: 125–32PubMedCrossRefGoogle Scholar
  167. 167.
    Carosa E, Benvenga S, Trimarchi F, et al. Sexual inactivity results in reversible reduction of LH bioavailability. Int J Impot Res 2002; 14: 93–9PubMedCrossRefGoogle Scholar
  168. 168.
    Lugg JA, Rajfer J, Gonzalez-Cadavid NF. Dihydrotestosterone is the active androgen in the maintenance of nitric oxidemediated penile erection in the rat. Endocrinology 1995; 136: 1495–501PubMedCrossRefGoogle Scholar
  169. 169.
    Mills TM, Reilly CM, Lewis RW. Androgens and penile erection: a review. J Androl 1996; 17: 633–8PubMedGoogle Scholar
  170. 170.
    Bagatell CJ, Heiman JR, Rivier JE, et al. Effects of endogenous testosterone and estradiol on sexual behavior in normal young men. J Clin Endocrinol Metab 1994; 78: 711–6PubMedCrossRefGoogle Scholar
  171. 171.
    Schiavi RC, White D, Mandeli J, et al. Hormones and nocturnal penile tumescence in healthy aging men. Arch Sex Behav 1993; 22: 207–15PubMedCrossRefGoogle Scholar
  172. 172.
    Aversa A, Isidori AM, Spera G, et al. Androgens improve cavernous vasodilation and response to sildenafil in patients with erectile dysfunction. Clin Endocrinol (Oxf) 2003; 58: 632–8CrossRefGoogle Scholar
  173. 173.
    Barrett-Connor E, Goodman-Gruen D, Patay B. Endogenous sex hormones and cognitive function in older men. J Clin Endocrinol Metab 1999; 84: 3681–5PubMedCrossRefGoogle Scholar
  174. 174.
    Janowsky JS, Oviatt SK, Orwoll ES. Testosterone influences spatial cognition in older men. Behav Neurosci 1994; 108: 325–32PubMedCrossRefGoogle Scholar
  175. 175.
    McKeever WF, Deyo A. Testosterone, dihydrotestosterone and spatial task performance of males. Bull Psychonomic Soc 1990; 28: 305–6Google Scholar
  176. 176.
    Christiansen K, Knussmann R. Sex hormones and cognitive functioning in men. Neuropsychobiology 1987; 18: 27–36PubMedCrossRefGoogle Scholar
  177. 177.
    Araujo AB, Durante R, Feldman HA, et al. The relationship between depressive symptoms and male erectile dysfunction: cross-sectional results from the Massachusetts Male Aging Study. Psychosom Med 1998; 60: 458–65PubMedGoogle Scholar
  178. 178.
    Seidman SN, Walsh BT. Testosterone and depression in aging men. Am J Geriatr Psychiatry 1999; 7: 18–33PubMedGoogle Scholar
  179. 179.
    Gooren LJ. Human male sexual functions do not require aromatization of testosterone: a study using tamoxifen, testolactone, and dihydrotestosterone. Arch Sex Behav 1985; 14: 539–48PubMedCrossRefGoogle Scholar
  180. 180.
    Carani C, Rochira V, Faustini-Fustini M, et al. Role of oestrogen in male sexual behaviour: insights from the natural model of aromatase deficiency. Clin Endocrinol (Oxf) 1999; 51: 517–24CrossRefGoogle Scholar
  181. 181.
    Schumacher M. Rapid membrane effects of steroid hormones: an emerging concept in neuroendocrinology. Trends Neurosci 1990; 13: 359–62PubMedCrossRefGoogle Scholar
  182. 182.
    Sherwin BB. Estrogen and cognitive functioning in women. Endocr Rev 2003; 24: 133–51PubMedCrossRefGoogle Scholar
  183. 183.
    Shumaker SA, Legault C, Rapp SR, et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women. The Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA 2003; 289: 2651–62Google Scholar
  184. 184.
    Nilsen J, Brinton RD. Impact of progestins on estrogen-induced neuroprotection: synergy by progesterone and 19-norprogesterone and antagonism by medroxyprogesterone acetate. Endocrinology 2002; 143: 205–12PubMedCrossRefGoogle Scholar
  185. 185.
    Gouras GK, Xu H, Gross RS, et al. Testosterone reduces neuronal secretion of Alzheimer’s beta-amyloid peptides. Proc Natl Acad Sci U S A 2000; 97: 1202–5PubMedCrossRefGoogle Scholar
  186. 186.
    Wolf OT, Kirschbaum C. Endogenous estradiol and testosterone levels are associated with cognitive performance in older women and men. Horm Behav 2002; 41: 259–66PubMedCrossRefGoogle Scholar
  187. 187.
    Yaffe K, Lui LY, Zmuda J, et al. Sex hormones and cognitive function in older men. J Am Geriatr Soc 2002; 50: 707–12PubMedCrossRefGoogle Scholar
  188. 188.
    Lathe R. Hormones and the hippocampus. J Endocrinol 2001; 169: 205–31PubMedCrossRefGoogle Scholar
  189. 189.
    Carlson LE, Sherwin BB. Higher levels of plasma estradiol and testosterone in healthy elderly men compared with age-matched women may protect aspects of explicit memory. Menopause 2000; 7: 168–77PubMedCrossRefGoogle Scholar
  190. 190.
    Rochira V, Faustini-Fustini M, Balestrieri A, et al. Estrogen replacement therapy in a man with congenital aromatase deficiency: effects of different doses of transdermal estradiol on bone mineral density and hormonal parameters. J Clin Endocrinol Metab 2000; 85: 1841–5PubMedCrossRefGoogle Scholar
  191. 191.
    Wu FC, Von Eckardstein A. Androgens and coronary artery disease. Endocr Rev 2003; 24: 183–217PubMedCrossRefGoogle Scholar
  192. 192.
    Liu PY, Death AK, Handelsman DJ. Androgens and cardiovascular disease. Endocr Rev 2003; 24: 313–40PubMedCrossRefGoogle Scholar
  193. 193.
    Hak AE, Witteman JC, de Jong FH, et al. Low levels of endogenous androgens increase the risk of atherosclerosis in elderly men: the Rotterdam study. J Clin Endocrinol Metab 2002; 87: 3632–9PubMedCrossRefGoogle Scholar
  194. 194.
    Dubey RK, Oparil S, Imthurn B, et al. Sex hormones and hypertension. Cardiovasc Res 2002; 53: 688–708PubMedCrossRefGoogle Scholar
  195. 195.
    Marin P, Arver S. Androgens and abdominal obesity. Baillieres Clin Endocrinol Metab 1998; 12: 441–51PubMedCrossRefGoogle Scholar
  196. 196.
    Bagatell CJ, Knopp RH, Rivier JE, et al. Physiological levels of estradiol stimulate plasma high density lipoprotein2 cholesterol levels in normal men. J Clin Endocrinol Metab 1994; 78: 855–61PubMedCrossRefGoogle Scholar
  197. 197.
    Frick J, Jungwirth A, Rovan E. Androgens and the prostate. In: Nieschlag E, Behre HM, editors. Testosterone: action, deficiency, substitution. Berlin: Springer Verlag, 1998: 259–91CrossRefGoogle Scholar
  198. 198.
    Bhasin S, Singh AB, Mac RP, et al. Managing the risks of prostate disease during testosterone replacement therapy in older men: recommendations for a standardized monitoring plan. J Androl 2003; 24: 299–311PubMedGoogle Scholar
  199. 199.
    Jin B, Turner L, Walters WA, et al. The effects of chronic high dose androgen or estrogen treatment on the human prostate [published erratum appears in J Clin Metab 1997 Feb; 82 (2): 413]. J Clin Endocrinol Metab 1996 Dec; 81: 4290–5PubMedCrossRefGoogle Scholar
  200. 200.
    Behre HM, Bohmeyer J, Nieschlag E. Prostate volume in testosterone-treated and untreated hypogonadal men in comparison to age-matched controls. Clin Endocrinol (Oxf) 1994; 40: 341–9CrossRefGoogle Scholar
  201. 201.
    Meikle AW. Effects of age and sex hormones on transition and peripheral zone volumes of prostate and benign prostate hyperplasia in twins. J Clin Endocrinol Metab 1997; 82: 571–5PubMedCrossRefGoogle Scholar
  202. 202.
    Gormley GJ, Stoner E, Bruskewitz RC, et al. The effect of finasteride in men with benign prostatic hyperplasia: the Finasteride Study Group. N Engl J Med 1992; 327: 1185–91PubMedCrossRefGoogle Scholar
  203. 203.
    Gray A, Feldman HA, McKinlay JB, et al. Age, disease, and changing sex hormone levels in middle-aged men: results of the Massachusetts Male Aging Study. J Clin Endocrinol Metab 1991; 73: 1016–25PubMedCrossRefGoogle Scholar
  204. 204.
    Hammond GL, Kontturi M, Vihko P, et al. Serum steroids in normal males and patients with prostatic diseases. Clin Endocrinol (Oxf) 1978; 9: 113–21CrossRefGoogle Scholar
  205. 205.
    Thompson IM, Goodman PJ, Tangen CM, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med 2003; 349: 215–24PubMedCrossRefGoogle Scholar
  206. 206.
    Scardino PT. The prevention of prostate cancer: the dilemma continues. N Engl J Med 2003; 349: 297–9PubMedCrossRefGoogle Scholar
  207. 207.
    Cuzick J, Powles T, Veronesi U, et al. Overview of the main outcomes in breast-cancer prevention trials. Lancet 2003; 361: 296–300PubMedCrossRefGoogle Scholar
  208. 208.
    Thomas JA, Keenan EJ. Effects of estrogens on the prostate. J Androl 1994; 15: 97–9PubMedGoogle Scholar
  209. 209.
    Suzuki K, Takezawa Y, Suzuki T, et al. Synergistic effects of estrogen with androgen on the prostate: effects of estrogen on the prostate of androgen-administered rats and 5-alpha-reductase activity. Prostate 1994; 25: 169–76PubMedCrossRefGoogle Scholar
  210. 210.
    Suzuki K, Ito K, Suzuki T, et al. Synergistic effects of estrogen and androgen on the prostate: effects of estrogen on androgen-and estrogen-receptors, BrdU uptake, immunohistochemical study of AR, and responses to antiandrogens. Prostate 1995; 26: 151–63PubMedCrossRefGoogle Scholar
  211. 211.
    Farnsworth WE. Roles of estrogen and SHBG in prostate physiology. Prostate 1996; 28: 17–23PubMedCrossRefGoogle Scholar
  212. 212.
    Gann PH, Hennekens CH, Longcope C, et al. A prospective study of plasma hormone levels, nonhormonal factors, and development of benign prostatic hyperplasia. Prostate 1995; 26: 40–9PubMedCrossRefGoogle Scholar
  213. 213.
    Krieg M, Nass R, Tunn S. Effect of aging on endogenous level of 5α-dihydrotestosterone, testosterone, estradiol, and estrone in epithelium and stroma of normal and hyperplastic human prostate. J Clin Endocrinol Metab 1993; 77: 375–81PubMedCrossRefGoogle Scholar
  214. 214.
    Yeh S, Miyamoto H, Shima H, et al. From estrogen to androgen receptor: a new pathway for sex hormones in prostate. Proc Natl Acad Sci U S A 1998; 95: 5527–32PubMedCrossRefGoogle Scholar
  215. 215.
    Radlmaier A, Eickenberg HU, Fletcher MS, et al. Estrogen reduction by aromatase inhibition for benign prostatic hyperplasia: results of a double-blind, placebo-controlled, randomized clinical trial using two doses of the aromatase-inhibitor atamestane: Atamestane Study Group. Prostate 1996; 29: 199–208PubMedCrossRefGoogle Scholar
  216. 216.
    Schweikert HU, Tunn UW, Habenicht UF. Effects of estrogen deprivation on human benign prostatic hyperplasia. J Steroid Biochem Mol Biol 1993; 44: 573–6PubMedCrossRefGoogle Scholar
  217. 217.
    Cancel-Tassin G, Latil A, Rousseau F, et al. Association study of polymorphisms in the human estrogen receptor alpha gene and prostate cancer risk. Eur Urol 2003; 44: 487–90PubMedCrossRefGoogle Scholar
  218. 218.
    Tanaka Y, Sasaki M, Kaneuchi M, et al. Polymorphisms of estrogen receptor alpha in prostate cancer. Mol Carcinog 2003; 37: 202–8PubMedCrossRefGoogle Scholar
  219. 219.
    Suzuki K, Nakazato H, Matsui H, et al. Genetic polymorphisms of estrogen receptor alpha, CYP19, catechol-O-methyltransferase are associated with familial prostate carcinoma risk in a Japanese population. Cancer 2003; 98: 1411–6PubMedCrossRefGoogle Scholar
  220. 220.
    Risbridger GP, Bianco JJ, Ellem SJ, et al. Oestrogens and prostate cancer. Endocr Relat Cancer 2003; 10: 187–91PubMedCrossRefGoogle Scholar
  221. 221.
    Schatzl G, Reiter WJ, Thurridl T, et al. Endocrine patterns in patients with benign and malignant prostatic diseases. Prostate 2000; 44: 219–24PubMedCrossRefGoogle Scholar
  222. 222.
    McPherson SJ, Wang H, Jones ME, et al. Elevated androgens and prolactin in aromatase-deficient mice cause enlargement, but not malignancy, of the prostate gland. Endocrinology 2001; 142: 2458–67PubMedCrossRefGoogle Scholar
  223. 223.
    Giltay EJ, Gooren LJ. Effects of sex steroid deprivation/administration on hair growth and skin sebum production in transsexual males and females. J Clin Endocrinol Metab 2000; 85: 2913–21PubMedCrossRefGoogle Scholar
  224. 224.
    Vermeulen A. Androgen replacement therapy in the aging male: a critical evaluation. J Clin Endocrinol Metab 2001; 86: 2380–90PubMedCrossRefGoogle Scholar
  225. 225.
    Bachmann G, Bancroft J, Braunstein G, et al. Female androgen insufficiency: the Princeton consensus statement on definition, classification, and assessment. Fertil Steril 2002; 77: 660–5PubMedCrossRefGoogle Scholar
  226. 226.
    Callies F, Fassnacht M, van Vlijmen JC, et al. Dehydroepiandrosterone replacement in women with adrenal insufficiency: effects on body composition, serum leptin, bone turnover, and exercise capacity. J Clin Endocrinol Metab 2001; 86: 1968–72PubMedCrossRefGoogle Scholar
  227. 227.
    Johannsson G, Burman P, Wiren L, et al. Low dose dehydroepiandrosterone affects behavior in hypopituitary androgen-deficient women: a placebo-controlled trial. J Clin Endocrinol Metab 2002; 87: 2046–52PubMedCrossRefGoogle Scholar
  228. 228.
    Arlt W, Allolio B. Adrenal insufficiency. Lancet 2003; 361: 1881–93PubMedCrossRefGoogle Scholar
  229. 229.
    Sherwin BB. Randomized clinical trials of combined estrogen-androgen preparations: effects on sexual functioning. Fertil Steril 2002; 77 Suppl. 4: S49–54PubMedCrossRefGoogle Scholar
  230. 230.
    Davis S. Androgen replacement in women: a commentary. J Clin Endocrinol Metab 1999; 84: 1886–91PubMedCrossRefGoogle Scholar
  231. 231.
    Gooren LJ. Androgen treatment of female-to-male transsexuals. In: Nieschlag E, Behre HM, editors. Testosterone: action, deficiency, substitution. Berlin: Springer Verlag, 1998: 529–44CrossRefGoogle Scholar
  232. 232.
    Legro RS. Polycystic ovary syndrome and cardiovascular disease: a premature association? Endocr Rev 2003; 24: 302–12PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2004

Authors and Affiliations

  1. 1.Department of Endocrinology, Section of AndrologyVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations