, Volume 64, Supplement 2, pp 19–41

Lipaemia, Inflammation and Atherosclerosis: Novel Opportunities in the Understanding and Treatment of Atherosclerosis

  • Antonie J. H. H. M. van Oostrom
  • Jeroen P. H. van Wijk
  • Manuel Castro Cabezas
Review Article


Atherosclerosis is the major cause of death in the world. Fasting and postprandial hyperlipidaemia are important risk factors for coronary heart disease (CHD). Recent developments have undoubtedly indicated that inflammation is pathophysiologically closely linked to atherogenesis and its clinical consequences. Inflammatory markers such as C-reactive protein (CRP), leucocyte count and complement component 3 (C3) have been linked to CHD and to hyperlipidaemia and several other CHD risk factors. Increases in these markers may result from activation of endothelial cells (CRP, leucocytes, C3), disturbances in adipose tissue fatty acid metabolism (CRP, C3), or from direct effects of CHD risk factors (leucocytes). It has been shown that lipoproteins, triglycerides, fatty acids and glucose can activate endothelial cells, most probably as a result of the production of reactive oxygen species. Similar mechanisms may also lead to leucocyte activation. Increases in triglycerides, fatty acids and glucose are common disturbances in the metabolic syndrome and are most prominent in the postprandial phase. People are in a postprandial state most of the day, and this phase is proatherogenic. Inhibition of the activation of leucocytes, endothelial cells, or both, is an interesting target for intervention, as activation is obligatory for adherence of leucocytes to the endothelium, thereby initiating atherogenesis. Potential interventions include the use of unsaturated long-chain fatty acids, polyphenols, antioxidants, angiotensin converting enzyme inhibitors and high-dose aspirin, which have direct anti-inflammatory and antiatherogenic effects. Furthermore, peroxisome proliferator activating receptor gamma (PPARγ) agonists and statins have similar properties, which are in part independent of their lipid-lowering effects.


  1. 1.
    Braunwald E. Shattuck lecture — Cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med 1997; 337: 1360–9PubMedCrossRefGoogle Scholar
  2. 2.
    Calle EE, Thun MJ, Petrelli JM, et al. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med 1999; 341: 1097–105CrossRefGoogle Scholar
  3. 3.
    Despres JP, Moorjani S, Lupien PJ, et al. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 1990; 10: 497–511PubMedCrossRefGoogle Scholar
  4. 4.
    Despres JP, Lamarche B, Mauriege P, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 1996; 334: 952–7PubMedCrossRefGoogle Scholar
  5. 5.
    Kuulasmaa K, Tunstall-Pedoe H, Dobson A, et al. Estimation of contribution of changes in classic risk factors to trends in coronary-event rates across the WHO MONICA Project populations. Lancet 2000; 355: 675–87PubMedCrossRefGoogle Scholar
  6. 6.
    Willeit J, Kiechl S, Oberhollenzer F, et al. Distinct risk profiles of early and advanced atherosclerosis: prospective results from the Bruneck Study. Arterioscler Thromb Vasc Biol 2000; 20: 529–37PubMedCrossRefGoogle Scholar
  7. 7.
    Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595–607PubMedCrossRefGoogle Scholar
  8. 8.
    Mokdad AH, Bowman BA, Ford ES, et al. The continuing epidemics of obesity and diabetes in the United States. JAMA 2001; 286: 1195–200PubMedCrossRefGoogle Scholar
  9. 9.
    Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414: 782–7PubMedCrossRefGoogle Scholar
  10. 10.
    Fontbonne A, Eschwege E, Cambien F, et al. Hypertrigly-ceridaemia as a risk factor of coronary heart disease mortality in subjects with impaired glucose tolerance or diabetes. Results from the 11-year follow-up of the Paris Prospective Study. Diabetologia 1989; 32: 300–4Google Scholar
  11. 11.
    Laakso M, Lehto S, Penttila I, et al. Lipids and lipoproteins predicting coronary heart disease mortality and morbidity in patients with non-insulin-dependent diabetes. Circulation 1993; 88: 1421–30PubMedCrossRefGoogle Scholar
  12. 12.
    Syvanne M, Taskinen MR. Lipids and lipoproteins as coronary risk factors in non-insulin-dependent diabetes mellitus. Lancet 1997; 350 Suppl 1: SI20–3PubMedGoogle Scholar
  13. 13.
    Barter PJ, Brewer HB Jr, Chapman MJ, et al. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23: 160–7PubMedCrossRefGoogle Scholar
  14. 14.
    Kawamura M, Heinecke JW, Chait A. Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway. J Clin Invest 1994; 94: 771–8PubMedCrossRefGoogle Scholar
  15. 15.
    Sniderman AD, Lamarche B, Tilley J, et al. Hypertriglyceridemic hyperapoB in type 2 diabetes. Diabetes Care 2002; 25: 579–82PubMedCrossRefGoogle Scholar
  16. 16.
    Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 2003; 46: 733–49PubMedCrossRefGoogle Scholar
  17. 17.
    Castro Cabezas M, Halkes CJ, Meijssen S, et al. Diurnal triglyceride profiles: a novel approach to study triglyceride changes. Atherosclerosis 2001; 155: 219–28PubMedCrossRefGoogle Scholar
  18. 18.
    Delawi D, Meijssen S, Castro Cabezas M. Intra-individual variations of fasting plasma lipids, apolipoproteins and postprandial lipemia in familial combined hyperlipidemia compared to controls. Clin Chim Acta 2003; 328: 139–45PubMedCrossRefGoogle Scholar
  19. 19.
    van Oostrom AJ, Castro Cabezas M, Ribalta J, et al. Diurnal triglyceride profiles in healthy normolipidemic male subjects are associated to insulin sensitivity, body composition and diet. Eur J Clin Invest 2000; 30: 964–71PubMedCrossRefGoogle Scholar
  20. 20.
    van Wijk JP, Castro Cabezas M, Halkes CJ, et al. Effects of different nutrient intakes on daytime triacylglycerolemia in healthy, normolipemic, free-living men. Am J Clin Nutr 2001; 74: 171–8PubMedGoogle Scholar
  21. 21.
    McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002; 51: 7–18PubMedCrossRefGoogle Scholar
  22. 22.
    Lewis GF, O'Meara NM, Soltys PA, et al. Fasting hypertriglyceridemia in noninsulin-dependent diabetes mellitus is an important predictor of postprandial lipid and lipoprotein abnormalities. J Clin Endocrinol Metab 1991; 72: 934–44PubMedCrossRefGoogle Scholar
  23. 23.
    Genest JJ, McNamara JR, Salem DN, et al. Prevalence of risk factors in men with premature coronary artery disease. Am J Cardiol 1991; 67: 1185–9PubMedCrossRefGoogle Scholar
  24. 24.
    Miller M, Seidler A, Moalemi A, et al. Normal triglyceride levels and coronary artery disease events: the Baltimore Coronary Observational Long-Term Study. J Am Coll Cardiol 1998; 31: 1252–7PubMedCrossRefGoogle Scholar
  25. 25.
    Halkes CJM, van Dijk H, de Jaegere PP, et al. Postprandial increase of complement component 3 in normolipidemic patients with coronary artery disease: effects of expanded-dose simvastatin. Arterioscler Thromb Vasc Biol 2001; 21: 1526–30PubMedCrossRefGoogle Scholar
  26. 26.
    van Wijk JPH, Halkes CJM, Jaegere PPT, et al. Normalization of daytime triglyceridemia by simvastatin in fasting normotriglyceridemic patients with premature coronary sclerosis. Atherosclerosis 2003; 171: 109–16PubMedCrossRefGoogle Scholar
  27. 27.
    Meyer E, Westerveld HT, Ruyter-Meijstek FC, et al. Abnormal postprandial apolipoprotein B-48 and triglyceride responses in normolipidemic women with greater than 70% stenotic coronary artery disease: a case-control study. Atherosclerosis 1996; 124: 221–35PubMedCrossRefGoogle Scholar
  28. 28.
    Patsch JR, Miesenbock G, Hopferwieser T, et al. Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler Thromb 1992; 12: 1336–45CrossRefGoogle Scholar
  29. 29.
    Weintraub MS, Grosskopf I, Rassin T, et al. Clearance of chylomicron remnants in normolipidaemic patients with coronary artery disease: case control study over three years. BMJ 1996; 312: 936–9CrossRefGoogle Scholar
  30. 30.
    Castro Cabezas M, Erkelens DW. The direct way from gut to vessel wall: atheroinitiation. Eur J Clin Invest 1998; 28: 504–5PubMedCrossRefGoogle Scholar
  31. 31.
    Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation 1979; 60: 473–85PubMedCrossRefGoogle Scholar
  32. 32.
    Boquist S, Ruotolo G, Tang R, et al. Alimentary lipemia, postprandial triglyceride-rich lipoproteins, and common carotid intima-media thickness in healthy, middle-aged men. Circulation 1999; 100: 723–8PubMedCrossRefGoogle Scholar
  33. 33.
    Ceriello A. The possible role of postprandial hyperglycaemia in the pathogenesis of diabetic complications. Diabetologia 2003; 46 Suppl 1: M9–16PubMedGoogle Scholar
  34. 34.
    Lefebvre PJ, Scheen AJ. The postprandial state and risk of cardiovascular disease. Diabet Med 1998; 15 Suppl 4: S63–8PubMedCrossRefGoogle Scholar
  35. 35.
    Temelkova-Kurktschiev TS, Koehler C, Henkel E, et al. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care 2000; 23: 1830–4PubMedCrossRefGoogle Scholar
  36. 36.
    Karpe F. Effects of diet on postprandial lipaemia: a suggestion for methodological standardization. Nutr Metab Cardiovasc Dis 1997; 7: 44–55Google Scholar
  37. 37.
    Marcoux C, Tremblay M, Nakajima K, et al. Characterization of remnant-like particles isolated by immunoaffinity gel from the plasma of type III and type IV hyperlipoproteinemic patients. J Lipid Res 1999; 40: 636–47PubMedGoogle Scholar
  38. 38.
    McNamara JR, Shah PK, Nakajima K, et al. Remnant-like particle (RLP) cholesterol is an independent cardiovascular disease risk factor in women: results from the Framingham Heart Study. Atherosclerosis 2001; 154: 229–36PubMedCrossRefGoogle Scholar
  39. 39.
    Karpe F, Boquist S, Tang R, et al. Remnant lipoproteins are related to intima-media thickness of the carotid artery independently of LDL cholesterol and plasma triglycerides. J Lipid Res 2001; 42: 17–21PubMedGoogle Scholar
  40. 40.
    Luley C, Ronquist G, Reuter W, et al. Point-of-care testing of triglycerides: evaluation of the Accutrend triglycerides system. Clin Chem 2000; 46: 287–91PubMedGoogle Scholar
  41. 41.
    van Wijk JP, van Oostrom AJ, Castro Cabezas M. Normal ranges of non-fasting triglycerides in healthy Dutch males and females. Clin Chim Acta 2003; 337: 49–57PubMedCrossRefGoogle Scholar
  42. 42.
    Halkes CJ, Castro Cabezas M., van Wijk JP, et al. Gender differences in diurnal triglyceridemia in lean and overweight subjects. Int J Obes Relat Metab Disord 2001; 25: 1767–74PubMedCrossRefGoogle Scholar
  43. 43.
    van Wijk JP, Halkes CJ, Erkelens DW, et al. Fasting and daylong triglycerides in obesity with and without type 2 diabetes. Metabolism 2003; 52: 1043–9PubMedCrossRefGoogle Scholar
  44. 44.
    Lewis GF, Steiner G. Hypertriglyceridemia and its metabolic consequences as a risk factor for atherosclerotic cardiovascular disease in non-insulin-dependent diabetes mellitus. Diabetes Metab Rev 1996; 12: 37–56PubMedGoogle Scholar
  45. 45.
    Syvanne M, Hilden H, Taskinen MR. Abnormal metabolism of postprandial lipoproteins in patients with noninsulin-dependent diabetes mellitus is not related to coronary artery disease. J Lipid Res 1994; 35: 15–26PubMedGoogle Scholar
  46. 46.
    Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol 1998; 81: 7B-12BCrossRefGoogle Scholar
  47. 47.
    Miller M, Seidler A, Moalemi A, et al. Normal triglyceride levels and coronary artery disease events: the Baltimore Coronary Observational Long-Term Study. J Am Coll Cardiol 1998; 31: 1252–7PubMedCrossRefGoogle Scholar
  48. 48.
    Lusis AJ. Atherosclerosis. Nature 2000; 407: 233–41PubMedCrossRefGoogle Scholar
  49. 49.
    Ross R. Atherosclerosis —an inflammatory disease. N Engl J Med 1999; 340: 115–26PubMedCrossRefGoogle Scholar
  50. 50.
    Naruko T, Ueda M, Haze K, et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 2002; 106: 2894–900PubMedCrossRefGoogle Scholar
  51. 51.
    Osterud B, Bjorklid E. Role of monocytes in atherogenesis. Physiol Rev 2003; 83: 1069–112PubMedGoogle Scholar
  52. 52.
    van der Wal AC, Becker AE. Atherosclerotic plaque rupture — pathologic basis of plaque stability and instability. Cardiovasc Res 1999; 41: 334–44PubMedCrossRefGoogle Scholar
  53. 53.
    Eriksson EE, Xie X, Werr J, et al. Direct viewing of atherosclerosis in vivo: plaque invasion by leukocytes is initiated by the endothelial selectins. FASEB J 2001; 15: 1149–57PubMedCrossRefGoogle Scholar
  54. 54.
    Huo Y, Ley K. Adhesion molecules and atherogenesis. Acta Physiol Scand 2001; 173: 35–43PubMedCrossRefGoogle Scholar
  55. 55.
    Worthylake RA, Burridge K. Leukocyte transendothelial migration: orchestrating the underlying molecular machinery. Curr Opin Cell Biol 2001; 13: 569–77PubMedCrossRefGoogle Scholar
  56. 56.
    Szmitko PE, Wang CH, Weisel RD, et al. Biomarkers of vascular disease linking inflammation to endothelial activation: Part II. Circulation 2003; 108: 2041–8PubMedCrossRefGoogle Scholar
  57. 57.
    Szmitko PE, Wang CH, Weisel RD, et al. New markers of inflammation and endothelial cell activation: Part I. Circulation 2003; 108: 1917–23PubMedCrossRefGoogle Scholar
  58. 58.
    Rifai N, Ridker PM. High-sensitivity C-reactive protein: a novel and promising marker of coronary heart disease. Clin Chem 2001; 47: 403–11PubMedGoogle Scholar
  59. 59.
    Cusack MR, Marber MS, Lambiase PD, et al. Systemic inflammation in unstable angina is the result of myocardial necrosis. J Am Coll Cardiol 2002; 39: 1917–23PubMedCrossRefGoogle Scholar
  60. 60.
    Mueller C, Buettner HJ, Hodgson JM, et al. Inflammation and long-term mortality after non-ST elevation acute coronary syndrome treated with a very early invasive strategy in 1042 consecutive patients. Circulation 2002; 105: 1412–5PubMedCrossRefGoogle Scholar
  61. 61.
    Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000; 102: 2165–8PubMedCrossRefGoogle Scholar
  62. 62.
    Wolbink GJ, Brouwer MC, Buysmann S, et al. CRP-mediated activation of complement in vivo: assessment by measuring circulating complement-C-reactive protein complexes. J Immunol 1996; 157: 473–9PubMedGoogle Scholar
  63. 63.
    Hak AE, Stehouwer CD, Bots ML, et al. Associations of C-reactive protein with measures of obesity, insulin resistance, and subclinical atherosclerosis in healthy, middle-aged women. Arterioscler Thromb Vasc Biol 1999; 19: 1986–91PubMedCrossRefGoogle Scholar
  64. 64.
    Lemieux I, Pascot A, Prud'homme D, et al. Elevated C-reactive protein: another component of the atherothrombotic profile of abdominal obesity. Arterioscler Thromb Vasc Biol 2001; 21: 961–7PubMedCrossRefGoogle Scholar
  65. 65.
    Yudkin JS, Stehouwer CD, Emeis JJ, et al. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 1999; 19: 972–8PubMedCrossRefGoogle Scholar
  66. 66.
    Munford RS. Statins and the acute-phase response. N Engl J Med 2001; 344: 2016–8PubMedCrossRefGoogle Scholar
  67. 67.
    Ridker PM, Rifai N, Stampfer MJ, et al. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000; 101: 1767–72PubMedCrossRefGoogle Scholar
  68. 68.
    Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 1998; 83: 847–50PubMedCrossRefGoogle Scholar
  69. 69.
    Mohamed-Ali V, Goodrick S, Rawesh A, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 1997; 82: 4196–200PubMedCrossRefGoogle Scholar
  70. 70.
    Kern PA, Ranganathan S, Li C, et al. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 2001; 280: E745–51PubMedGoogle Scholar
  71. 71.
    Orban Z, Remaley AT, Sampson M, et al. The differential effect of food intake and beta-adrenergic stimulation on adipose-derived hormones and cytokines in man. J Clin Endocrinol Metab 1999; 84: 2126–33PubMedCrossRefGoogle Scholar
  72. 72.
    van Oostrom AJ, Sijmonsma TP, Verseyden C, et al. Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. J Lipid Res 2003; 44: 576–83PubMedCrossRefGoogle Scholar
  73. 73.
    Vgontzas AN, Papanicolaou DA, Bixler EO, et al. Circadian interleukin-6 secretion and quantity and depth of sleep. J Clin Endocrinol Metab 1999; 84: 2603–7PubMedCrossRefGoogle Scholar
  74. 74.
    Meier-Ewert HK, Ridker PM, Rifai N, et al. Absence of diurnal variation of C-reactive protein concentrations in healthy human subjects. Clin Chem 2001; 47: 426–30PubMedGoogle Scholar
  75. 75.
    Danesh J, Whincup P, Walker M, et al. Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ 2000; 321: 199–204PubMedCrossRefGoogle Scholar
  76. 76.
    Friedman GD, Klatsky AL, Siegelaub AB. The leukocyte count as a predictor of myocardial infarction. N Engl J Med 1974; 290: 1275–8PubMedCrossRefGoogle Scholar
  77. 77.
    Friedman GD, Tekawa I, Grimm RH, et al. The leucocyte count: correlates and relationship to coronary risk factors: the CARDIA study. Int J Epidemiol 1990; 19: 889–93PubMedCrossRefGoogle Scholar
  78. 78.
    Huang Z, Jeng J, Wang C, et al. Correlations between peripheral differential leukocyte counts and carotid atherosclerosis in non-smokers. Atherosclerosis 2001; 158: 431–6PubMedCrossRefGoogle Scholar
  79. 79.
    Schmidt MI, Duncan BB, Sharrett AR, et al. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet 1999; 353: 1649–52PubMedCrossRefGoogle Scholar
  80. 80.
    Wanten GJ, Geijtenbeek TB, Raymakers RA, et al. Medium-chain, triglyceride-containing lipid emulsions increase human neutrophil beta2 integrin expression, adhesion, and degranulation. J Parenter Enteral Nutr 2000; 24: 228–33CrossRefGoogle Scholar
  81. 81.
    Serrano CV Jr, Yoshida VM, Venturinelli ML, et al. Effect of simvastatin on monocyte adhesion molecule expression in patients with hypercholesterolemia. Atherosclerosis 2001; 157:505-12Google Scholar
  82. 82.
    Kelley JL, Rozek MM, Suenram CA, et al. Activation of human peripheral blood monocytes by lipoproteins. Am J Pathol 1988; 130: 223–31PubMedGoogle Scholar
  83. 83.
    Lehr HA, Krombach F, Munzing S, et al. In vitro effects of oxidized low density lipoprotein on CD1 1b/CD18 and L-selectin presentation on neutrophils and monocytes with relevance for the in vivo situation. Am J Pathol 1995; 146: 218–27PubMedGoogle Scholar
  84. 84.
    Guha M, Bai W, Nadler JL, et al. Molecular mechanisms of tumor necrosis factor alpha gene expression in monocytic cells via hyperglycemia-induced oxidant stress-dependent and -independent pathways. J Biol Chem 2000; 275: 17728–39PubMedCrossRefGoogle Scholar
  85. 85.
    Hiramatsu K, Arimori S. Increased superoxide production by mononuclear cells of patients with hypertriglyceridemia and diabetes. Diabetes 1988; 37: 832–7PubMedCrossRefGoogle Scholar
  86. 86.
    Shanmugam N, Reddy MA, Guha M, et al. High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 2003; 52: 1256–64PubMedCrossRefGoogle Scholar
  87. 87.
    Wanten G, Emst-De Vries S, Naber T, et al. Nutritional lipid emulsions modulate cellular signaling and activation of human neutrophils. J Lipid Res 2001; 42: 428–36PubMedGoogle Scholar
  88. 88.
    van Oostrom AJ, Sijmonsma TP, Rabelink TJ, et al. Postprandial leukocyte increase in healthy subjects. Metabolism 2003; 52: 199–202PubMedCrossRefGoogle Scholar
  89. 89.
    Sampson MJ, Davies IR, Brown JC, et al. Monocyte and neutrophil adhesion molecule expression during acute hyperglycemia and after antioxidant treatment in type 2 diabetes and control patients. Arterioscler Thromb Vasc Biol 2002; 22: 1187–93PubMedCrossRefGoogle Scholar
  90. 90.
    de La Puerta Vazquez R, Martinez-Dominguez E, Sanchez Perona J, et al. Effects of different dietary oils on inflammatory mediator generation and fatty acid composition in rat neutrophils. Metabolism 2004; 53: 59–65CrossRefGoogle Scholar
  91. 91.
    de Gruijter M, Hoogerbrugge N, van Rijn MA, et al. Patients with combined hypercholesterolemia-hypertriglyceridemia show an increased monocyte-endothelial cell adhesion in vitro: triglyceride level as a major determinant. Metabolism 1991; 40: 1119–21PubMedCrossRefGoogle Scholar
  92. 92.
    Weber C, Erl W, Weber KS, et al. HMG-CoA reductase inhibitors decrease CD11b expression and CD11b-dependent adhesion of monocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia. J Am Coll Cardiol 1997; 30: 1212–7PubMedCrossRefGoogle Scholar
  93. 93.
    Chello M, Mastroroberto P, Cirillo F, et al. Neutrophil-endothelial cells modulation in diabetic patients undergoing coronary artery bypass grafting. Eur J Cardiothorac Surg 1998; 14: 373–9PubMedCrossRefGoogle Scholar
  94. 94.
    Berliner S, Rogowski O, Rotstein R, et al. Activated polymorphonuclear leukocytes and monocytes in the peripheral blood of patients with ischemic heart and brain conditions correspond to the presence of multiple risk factors for atherothrombosis. Cardiology 2000; 94: 19–25PubMedCrossRefGoogle Scholar
  95. 95.
    Mazzone A, De Servi S, Mazzucchelli I, et al. Increased expression of CD11b/CD18 on phagocytes in ischaemic disease: a bridge between inflammation and coagulation. Eur J Clin Invest 1997; 27: 648–52PubMedCrossRefGoogle Scholar
  96. 96.
    Buffon A, Biasucci LM, Liuzzo G, et al. Widespread coronary inflammation in unstable angina. N Engl J Med 2002; 347: 5–12PubMedCrossRefGoogle Scholar
  97. 97.
    De Servi S, Mazzone A, Ricevuti G, et al. Expression of neutrophil and monocyte CD11B/CD 18 adhesion molecules at different sites of the coronary tree in unstable angina pectoris. Am J Cardiol 1996; 78: 564–8PubMedCrossRefGoogle Scholar
  98. 98.
    De Servi S, Mazzone A, Ricevuti G, et al. Clinical and angiographic correlates of leukocyte activation in unstable angina. J Am Coll Cardiol 1995; 26: 1146–50PubMedCrossRefGoogle Scholar
  99. 99.
    Rahimi P, Wang CY, Stashenko P, et al. Monocyte chemoattractant protein-1 expression and monocyte recruitment in osseous inflammation in the mouse. Endocrinology 1995; 136: 2752–9PubMedCrossRefGoogle Scholar
  100. 100.
    Inoue T, Uchida T, Yaguchi I, et al. Stent-induced expression and activation of the leukocyte integrin Mac-1 is associated with neointimal thickening and restenosis. Circulation 2003; 107: 1757–63PubMedCrossRefGoogle Scholar
  101. 101.
    Murphy RT, Foley JB, Crean P, et al. Reciprocal activation of leukocyte-endothelial adhesion molecules in acute coronary syndromes. Int J Cardiol 2003; 90: 247–52PubMedCrossRefGoogle Scholar
  102. 102.
    Jilma B, Blann A, Pernerstorfer T, et al. Regulation of adhesion molecules during human endotoxemia. No acute effects of aspirin. Am J Respir Crit Care Med 1999; 159: 857–63Google Scholar
  103. 103.
    Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res 1999; 43: 860–78PubMedCrossRefGoogle Scholar
  104. 104.
    Reape TJ, Groot PH. Chemokines and atherosclerosis. Atherosclerosis 1999; 147: 213–25PubMedCrossRefGoogle Scholar
  105. 105.
    Dart AM, Chin-Dusting JP. Lipids and the endothelium. Cardiovasc Res 1999; 43: 308–22PubMedCrossRefGoogle Scholar
  106. 106.
    Erl W, Weber PC, Weber C. Monocytic cell adhesion to endothelial cells stimulated by oxidized low density lipoprotein is mediated by distinct endothelial ligands. Atherosclerosis 1998; 136: 297–303PubMedCrossRefGoogle Scholar
  107. 107.
    Morigi M, Angioletti S, Imberti B, et al. Leukocyteendothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-κB-dependent fashion. J Clin Invest 1998; 101: 1905–15PubMedCrossRefGoogle Scholar
  108. 108.
    Kawakami A, Tanaka A, Nakajima K, et al. Atorvastatin attenuates remnant lipoprotein-induced monocyte adhesion to vascular endothelium under flow conditions. Circ Res 2002; 91: 263–71PubMedCrossRefGoogle Scholar
  109. 109.
    Peschel T, Niebauer J. Role of pro-atherogenic adhesion molecules and inflammatory cytokines in patients with coronary artery disease and diabetes mellitus type 2. Cytometry 2003; 53B: 78–85CrossRefGoogle Scholar
  110. 110.
    Doi H, Kugiyama K, Oka H, et al. Remnant lipoproteins induce proatherothrombogenic molecules in endothelial cells through a redox-sensitive mechanism. Circulation 2000; 102: 670–6PubMedCrossRefGoogle Scholar
  111. 111.
    Moers A, Fenselau S, Schrezenmeir J. Chylomicrons induce E-selectin and VCAM-1 expression in endothelial cells. Exp Clin Endocrinol Diabetes 1997; 105 Suppl 2: 35–7PubMedCrossRefGoogle Scholar
  112. 112.
    Proctor SD, Mamo JC. Intimal retention of cholesterol derived from apolipoprotein b100- and apolipoprotein b48-containing lipoproteins in carotid arteries of watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol 2003; 23: 1595–600PubMedCrossRefGoogle Scholar
  113. 113.
    Brown AA, Hu FB. Dietary modulation of endothelial function: implications for cardiovascular disease. Am J Clin Nutr 2001; 73: 673–86PubMedGoogle Scholar
  114. 114.
    De Caterina R, Liao JK, Libby P. Fatty acid modulation of endothelial activation. Am J Clin Nutr 2000; 71: 213–23SGoogle Scholar
  115. 115.
    Jagla A, Schrezenmeir J. Postprandial triglycerides and endothelial function. Exp Clin Endocrinol Diabetes 2001; 109: S533–47PubMedCrossRefGoogle Scholar
  116. 116.
    Shimokawa H. Primary endothelial dysfunction: atherosclerosis. J Mol Cell Cardiol 1999; 31: 23–37PubMedCrossRefGoogle Scholar
  117. 117.
    Hijmering ML, Stroes ES, Pasterkamp G, et al. Variability of flow mediated dilation: consequences for clinical application. Atherosclerosis 2001; 157: 369–73PubMedCrossRefGoogle Scholar
  118. 118.
    Kanters SD, Algra A, van Leeuwen MS, et al. Reproducibility of in vivo carotid intima-media thickness measurements: a review. Stroke 1997; 28: 665–71PubMedCrossRefGoogle Scholar
  119. 119.
    Anderson TJ, Uehata A, Gerhard MD, et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 1995; 26: 1235–41PubMedCrossRefGoogle Scholar
  120. 120.
    Anderson RA, Evans ML, Ellis GR, et al. The relationships between post-prandial lipaemia, endothelial function and oxidative stress in healthy individuals and patients with type 2 diabetes. Atherosclerosis 2001; 154: 475–83PubMedCrossRefGoogle Scholar
  121. 121.
    Title LM, Cummings PM, Giddens K, et al. Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E. J Am Coll Cardiol 2000; 36: 2185–91PubMedCrossRefGoogle Scholar
  122. 122.
    Tripathy D, Mohanty P, Dhindsa S, et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 2003; 52: 2882–7PubMedCrossRefGoogle Scholar
  123. 123.
    Steinberg HO, Tarshoby M, Monestel R, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest 1997; 100: 1230–9PubMedCrossRefGoogle Scholar
  124. 124.
    Sarabi M, Vessby B, Millgard J, et al. Endothelium-dependent vasodilation is related to the fatty acid composition of serum lipids in healthy subjects. Atherosclerosis 2001; 156: 349–55PubMedCrossRefGoogle Scholar
  125. 125.
    Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404: 787–90PubMedCrossRefGoogle Scholar
  126. 126.
    Du X, Matsumura T, Edelstein D, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 2003; 112: 1049–57PubMedGoogle Scholar
  127. 127.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813–20PubMedCrossRefGoogle Scholar
  128. 128.
    Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation 2003; 108: 1912–6PubMedCrossRefGoogle Scholar
  129. 129.
    Collins T, Cybulsky MI. NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 2001; 107: 255–64PubMedCrossRefGoogle Scholar
  130. 130.
    Bae JH, Bassenge E, Kim KB, et al. Postprandial hypertriglyceridemia impairs endothelial function by enhanced oxidant stress. Atherosclerosis 2001; 155: 517–23PubMedCrossRefGoogle Scholar
  131. 131.
    Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part II: animal and human studies. Circulation 2003; 108: 2034–40PubMedCrossRefGoogle Scholar
  132. 132.
    Moreno JJ, Mitjavila MT. The degree of unsaturation of dietary fatty acids and the development of atherosclerosis (review). J Nutr Biochem 2003; 14: 182–95PubMedCrossRefGoogle Scholar
  133. 133.
    Issemann I, Prince RA, Tugwood JD, et al. The peroxisome proliferator-activated receptor:retinoid X receptor heterodimer is activated by fatty acids and fibrate hypolipidaemic drugs. J Mol Endocrinol 1993; 11: 37–47PubMedCrossRefGoogle Scholar
  134. 134.
    Skrede B, Blomhoff R, Maelandsmo GM, et al. Uptake of chylomicron remnant retinyl esters in human leukocytes in vivo. Eur J Clin Invest 1992; 22: 229–34PubMedCrossRefGoogle Scholar
  135. 135.
    Tertov VV, Kalenich OS, Orekhov AN. Lipid-laden white blood cells in the circulation of patients with coronary heart disease. Exp Mol Pathol 1992; 57: 22–8PubMedCrossRefGoogle Scholar
  136. 136.
    Muscari A, Massarelli G, Bastagli L, et al. Relationship between serum C3 levels and traditional risk factors for myocardial infarction. Acta Cardiol 1998; 53: 345–54PubMedGoogle Scholar
  137. 137.
    Muscari A, Massarelli G, Bastagli L, et al. Relationship of serum C3 to fasting insulin, risk factors and previous ischaemic events in middle-aged men. Eur Heart J 2000; 21: 1081–90PubMedCrossRefGoogle Scholar
  138. 138.
    Cianflone K, Xia Z, Chen LY. Critical review of acylationstimulating protein physiology in humans and rodents. Biochim Biophys Acta 2003; 1609: 127–43PubMedCrossRefGoogle Scholar
  139. 139.
    Meijssen S, van Dijk H, Verseyden C, et al. Delayed and exaggerated postprandial complement component 3 response in familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol 2002; 22: 811–6PubMedCrossRefGoogle Scholar
  140. 140.
    Barnum SR, Volanakis JE. Structure and function of C 3. Year Immunol 1989; 6: 208–28PubMedGoogle Scholar
  141. 141.
    Scantlebury T, Sniderman AD, Cianflone K. Regulation by retinoic acid of acylation-stimulating protein and complement C3 in human adipocytes. Biochem J 2001; 356: 445–52PubMedCrossRefGoogle Scholar
  142. 142.
    Walport MJ. Complement. First of two parts. N Engl J Med 2001; 344: 1058–66Google Scholar
  143. 143.
    Oksjoki R, Kovanen PT, Pentikainen MO. Role of complement activation in atherosclerosis. Curr Opin Lipidol 2003; 14: 477–82PubMedCrossRefGoogle Scholar
  144. 144.
    Torzewski J, Torzewski M, Bowyer DE, et al. C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries. Arterioscler Thromb Vasc Biol 1998; 18: 1386–92PubMedCrossRefGoogle Scholar
  145. 145.
    Griselli M, Herbert J, Hutchinson WL, et al. C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction. J Exp Med 1999; 190: 1733–40PubMedCrossRefGoogle Scholar
  146. 146.
    Germinario R, Sniderman AD, Manuel S, et al. Coordinate regulation of triacylglycerol synthesis and glucose transport by acylation-stimulating protein. Metabolism 1993; 42: 574–80PubMedCrossRefGoogle Scholar
  147. 147.
    Van Harmelen V, Reynisdottir S, Cianflone K, et al. Mechanisms involved in the regulation of free fatty acid release from isolated human fat cells by acylationstimulating protein and insulin. J Biol Chem 1999; 274: 18243–51PubMedCrossRefGoogle Scholar
  148. 148.
    Sniderman AD, Cianflone K, Arner P, et al. The adipocyte, fatty acid trapping, and atherogenesis. Arterioscler Thromb Vasc Biol 1998; 18: 147–51PubMedCrossRefGoogle Scholar
  149. 149.
    Cianflone K, Zakarian R, Couillard C, et al. Fasting acylation stimulating protein is predictive of postprandial triglyceride clearance. J Lipid Res 2003; 45 (Pt 1): 124–31PubMedCrossRefGoogle Scholar
  150. 150.
    Charlesworth JA, Peake PW, Campbell LV, et al. The influence of oral lipid loads on acylation stimulating protein (ASP) in healthy volunteers. Int J Obes 1998; 22: 1096–102CrossRefGoogle Scholar
  151. 151.
    Koistinen HA, Vidal H, Karonen SL, et al. Plasma acylation stimulating protein concentration and subcutaneous adipose tissue C3 mRNA expression in nondiabetic and type 2 diabetic men. Arterioscler Thromb Vasc Biol 2001; 21: 1034–9PubMedCrossRefGoogle Scholar
  152. 152.
    Ylitalo K, Pajukanta P, Meri S, et al. Serum C3 but not plasma acylation-stimulating protein is elevated in Finnish patients with familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol 2001; 21: 838–43PubMedCrossRefGoogle Scholar
  153. 153.
    Saleh J, Summers LK, Cianflone K, et al. Coordinated release of acylation stimulating protein (ASP) and triacylglycerol clearance by human adipose tissue in vivo in the postprandial period. J Lipid Res 1998; 39: 884–91PubMedGoogle Scholar
  154. 154.
    Verseyden C, Meijssen S, van Dijk H, et al. Effects of atorvastatin on fasting and postprandial complement component 3 response in familial combined hyperlipidemia. J Lipid Res 2003; 44: 2100–8PubMedCrossRefGoogle Scholar
  155. 155.
    van Oostrom AJ, van Dijk H, Verseyden C, et al. Addition of glucose to an oral fat load reduces postprandial free fatty acids and prevents the postprandial rise of complement component 3. Am J Clin Nutr 2004; 79 (Pt 3): 510–15PubMedGoogle Scholar
  156. 156.
    Faraj M, Havel PJ, Phelis S, et al. Plasma acylationstimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab 2003; 88: 1594–602PubMedCrossRefGoogle Scholar
  157. 157.
    Matthan NR, Cianflone K, Lichtenstein AH, et al. Hydrogenated fat consumption affects acylation-stimulating protein levels and cholesterol esterification rates in moderately hypercholesterolemic women. J Lipid Res 2001; 42: 1841–8PubMedGoogle Scholar
  158. 158.
    Bruun JM, Verdich C, Toubro S, et al. Association between measures of insulin sensitivity and circulating levels of interleukin-8, interleukin-6 and tumor necrosis factor-alpha. Effect of weight loss in obese men. Eur J Endocrinol 2003; 148: 535–42Google Scholar
  159. 159.
    Busetto L. Visceral obesity and the metabolic syndrome: effects of weight loss. Nutr Metab Cardiovasc Dis 2001; 11: 195–204PubMedGoogle Scholar
  160. 160.
    Heilbronn LK, Noakes M, Clifton PM. Energy restriction and weight loss on very-low-fat diets reduce C-reactive protein concentrations in obese, healthy women. Arterioscler Thromb Vasc Biol 2001; 21: 968–70PubMedCrossRefGoogle Scholar
  161. 161.
    Karason K, Wikstrand J, Sjostrom L, et al. Weight loss and progression of early atherosclerosis in the carotid artery: a four-year controlled study of obese subjects. Int J Obes Relat Metab Disord 1999; 23: 948–56PubMedCrossRefGoogle Scholar
  162. 162.
    Agren JJ, Hanninen O, Julkunen A, et al. Fish diet, fish oil and docosahexaenoic acid rich oil lower fasting and postprandial plasma lipid levels. Eur J Clin Nutr 1996; 50: 765–71PubMedGoogle Scholar
  163. 163.
    Williams CM. Postprandial lipid metabolism: effects of dietary fatty acids. Proc Nutr Soc 1997; 56: 679–92PubMedCrossRefGoogle Scholar
  164. 164.
    Dyerberg J, Bang HO, Hjorne N. Fatty acid composition of the plasma lipids in Greenland Eskimos. Am J Clin Nutr 1975; 28: 958–66PubMedGoogle Scholar
  165. 165.
    Kagawa Y, Nishizawa M, Suzuki M, et al. Eicosapolyenoic acids of serum lipids of Japanese islanders with low incidence of cardiovascular diseases. J Nutr Sci Vitaminol (Tokyo) 1982; 28: 441–53CrossRefGoogle Scholar
  166. 166.
    Newman WP, Middaugh JP, Propst MT, et al. Atherosclerosis in Alaska Natives and non-natives. Lancet 1993; 341: 1056–7PubMedCrossRefGoogle Scholar
  167. 167.
    Daviglus ML, Stamler J, Orencia AJ, et al. Fish consumption and the 30-year risk of fatal myocardial infarction. N Engl J Med 1997; 336: 1046–53PubMedCrossRefGoogle Scholar
  168. 168.
    Hu FB, Willett WC. Optimal diets for prevention of coronary heart disease. JAMA 2002; 288: 2569–78PubMedCrossRefGoogle Scholar
  169. 169.
    Marckmann P, Gronbaek M. Fish consumption and coronary heart disease mortality. A systematic review of prospective cohort studies. Eur J Clin Nutr 1999; 53: 585–90Google Scholar
  170. 170.
    Burr ML, Fehily AM, Gilbert JF, et al. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet 1989; 2: 757–61PubMedCrossRefGoogle Scholar
  171. 171.
    Plotnick GD, Corretti MC, Vogel RA. Effect of antioxidant vitamins on the transient impairment of endothelium-dependent brachial artery vasoactivity following a single high-fat meal. JAMA 1997; 278: 1682–6PubMedCrossRefGoogle Scholar
  172. 172.
    Verhaar MC, Wever RM, Kastelein JJ, et al. Effects of oral folic acid supplementation on endothelial function in familial hypercholesterolemia. A randomized placebo-controlled trial. Circulation 1999; 100: 335–8Google Scholar
  173. 173.
    Carr AC, Zhu BZ, Frei B. Potential antiatherogenic mechanisms of ascorbate (vitamin C) and alpha-tocopherol (vitamin E). Circ Res 2000; 87: 349–54PubMedCrossRefGoogle Scholar
  174. 174.
    Hashimoto M, Kim S, Eto M, et al. Effect of acute intake of red wine on flow-mediated vasodilatation of the brachial artery. Am J Cardiol 2001; 88: 1457–60, A9PubMedCrossRefGoogle Scholar
  175. 175.
    Carluccio MA, Siculella L, Ancora MA, et al. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of mediterranean diet phytochemicals. Arterioscler Thromb Vasc Biol 2003; 23: 622–9PubMedCrossRefGoogle Scholar
  176. 176.
    Morris CD, Carson S. Routine vitamin supplementation to prevent cardiovascular disease: a summary of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 2003; 139: 56–70Google Scholar
  177. 177.
    Keys A, Menotti A, Karvonen MJ, et al. The diet and 15-year death rate in the seven countries study. Am J Epidemiol 1986; 124: 903–15PubMedGoogle Scholar
  178. 178.
    de Lorgeril M, Salen P, Martin JL, et al. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation 1999; 99: 779–85PubMedCrossRefGoogle Scholar
  179. 179.
    D'Acquisto F, May MJ, Ghosh S. Inhibition of nuclear factor kappa B (NF-B): an emerging theme in anti-inflammatory therapies. Mol Interv 2002; 2: 22–35PubMedCrossRefGoogle Scholar
  180. 180.
    Pepine CJ, Hirshfeld JW, Macdonald RG, et al. A controlled trial of corticosteroids to prevent restenosis after coronary angioplasty. M-HEART Group. Circulation 1990; 81: 1753–61Google Scholar
  181. 181.
    Lee CW, Chae JK, Lim HY, et al. Prospective randomized trial of corticosteroids for the prevention of restenosis after intracoronary stent implantation. Am Heart J 1999; 138: 60–3PubMedCrossRefGoogle Scholar
  182. 182.
    Versaci F, Gaspardone A, Tomai F, et al. Immunosuppressive Therapy for the Prevention of Restenosis after Coronary Artery Stent Implantation (IMPRESS Study). J Am Coll Cardiol 2002; 40: 1935–42PubMedCrossRefGoogle Scholar
  183. 183.
    Eisen HJ, Tuzcu EM, Dorent R, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med 2003; 349: 847–58PubMedCrossRefGoogle Scholar
  184. 184.
    Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 2002; 346: 1773–80PubMedCrossRefGoogle Scholar
  185. 185.
    Sehgal SN. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 2003; 35: 7–14SCrossRefGoogle Scholar
  186. 186.
    Kopp E, Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 1994; 265: 956–9PubMedCrossRefGoogle Scholar
  187. 187.
    Pillinger MH, Capodici C, Rosenthal P, et al. Modes of action of aspirin-like drugs: salicylates inhibit erk activation and integrin-dependent neutrophil adhesion. Proc Natl Acad Sci USA 1998; 95: 14540–5PubMedCrossRefGoogle Scholar
  188. 188.
    Voisard R, Fischer R, Osswald M, et al. Aspirin (5 mmol/ L) inhibits leukocyte attack and triggered reactive cell proliferation in a 3D human coronary in vitro model. Circulation 2001; 103: 1688–94PubMedCrossRefGoogle Scholar
  189. 189.
    Azar RR, Klayme S, Germanos M, et al. Effects of aspirin (325 mg/day) on serum high-sensitivity C-reactive protein, cytokines, and adhesion molecules in healthy volunteers. Am J Cardiol 2003; 92: 236–9PubMedCrossRefGoogle Scholar
  190. 190.
    Li N, Hu H, Hjemdahl P. Aspirin treatment does not attenuate platelet or leukocyte activation as monitored by whole blood flow cytometry. Thromb Res 2003; 111: 165–70PubMedCrossRefGoogle Scholar
  191. 191.
    Ridker PM, Cushman M, Stampfer MJ, et al. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 1997; 336: 973–9PubMedCrossRefGoogle Scholar
  192. 192.
    Kennon S, Price CP, Mills PG, et al. The effect of aspirin on C-reactive protein as a marker of risk in unstable angina. J Am Coll Cardiol 2001; 37: 1266–70PubMedCrossRefGoogle Scholar
  193. 193.
    Brasier AR, Recinos A III, Eledrisi MS. Vascular inflammation and the renin—angiotensin system. Arterioscler Thromb Vasc Biol 2002; 22: 1257–66PubMedCrossRefGoogle Scholar
  194. 194.
    Takahashi T, Taniguchi T, Okuda M, et al. Participation of reactive oxygen intermediates in the angiotensin II-activated signaling pathways in vascular smooth muscle cells. Ann N Y Acad Sci 2000; 902: 283–7PubMedCrossRefGoogle Scholar
  195. 195.
    Strawn WB, Ferrario CM. Mechanisms linking angiotensin II and atherogenesis. Curr Opin Lipidol 2002; 13: 505–12PubMedCrossRefGoogle Scholar
  196. 196.
    Dandona P, Kumar V, Aljada A, et al. Angiotensin II receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes, nuclear factor-kappa B in mononuclear cells of normal subjects: evidence of an antiinflammatory action. J Clin Endocrinol Metab 2003; 88: 4496–501PubMedCrossRefGoogle Scholar
  197. 197.
    Takeda T, Hoshida S, Nishino M, et al. Relationship between effects of statins, aspirin and angiotensin II modulators on high-sensitive C-reactive protein levels. Atherosclerosis 2003; 169: 155–8PubMedCrossRefGoogle Scholar
  198. 198.
    Schieffer B, Drexler H. Role of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors, angiotensin-converting enzyme inhibitors, cyclooxygenase-2 inhibitors, and aspirin in anti-inflammatory and immunomodulatory treatment of cardiovascular diseases. Am J Cardiol 2003;91: 12–18HCrossRefGoogle Scholar
  199. 199.
    Bremer J. The biochemistry of hypo- and hyperlipidemic fatty acid derivatives: metabolism and metabolic effects. Prog Lipid Res 2001; 40: 231–68PubMedCrossRefGoogle Scholar
  200. 200.
    Nolte RT, Wisely GB, Westin S, et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 1998; 395: 137–43PubMedCrossRefGoogle Scholar
  201. 201.
    Daynes RA, Jones DC. Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2002; 2: 748–59PubMedCrossRefGoogle Scholar
  202. 202.
    Gurnell M, Savage DB, Chatterjee VK, et al. The metabolic syndrome: peroxisome proliferator-activated receptor gamma and its therapeutic modulation. J Clin Endocrinol Metab 2003; 88: 2412–21PubMedCrossRefGoogle Scholar
  203. 203.
    Lee CH, Olson P, Evans RM. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 2003; 144: 2201–7PubMedCrossRefGoogle Scholar
  204. 204.
    Martens FM, Visseren FL, Lemay J, et al. Metabolic and additional vascular effects of thiazolidinediones. Drugs 2002; 62: 1463–80PubMedCrossRefGoogle Scholar
  205. 205.
    Vosper H, Khoudoli GA, Graham TL, et al. Peroxisome proliferator-activated receptor agonists, hyperlipidaemia, and atherosclerosis. Pharmacol Ther 2002; 95: 47–62PubMedCrossRefGoogle Scholar
  206. 206.
    Marx N, Libby P, Plutzky J. Peroxisome proliferator-activated receptors (PPARs) and their role in the vessel wall: possible mediators of cardiovascular risk? J Cardiovasc Risk 2001; 8: 203–10PubMedCrossRefGoogle Scholar
  207. 207.
    Staels B, Koenig W, Habib A, et al. Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature 1998; 393: 790–3PubMedCrossRefGoogle Scholar
  208. 208.
    Guerin M, Le Goff W, Frisdal E, et al. Action of ciprofibrate in type IIb hyperlipoproteinemia: modulation of the atherogenic lipoprotein phenotype and stimulation of high-density lipoprotein-mediated cellular cholesterol efflux. J Clin Endocrinol Metab 2003; 88: 3738–46PubMedCrossRefGoogle Scholar
  209. 209.
    Ruotolo G, Ericsson CG, Tettamanti C, et al. Treatment effects on serum lipoprotein lipids, apolipoproteins and low density lipoprotein particle size and relationships of lipoprotein variables to progression of coronary artery disease in the Bezafibrate Coronary Atherosclerosis Intervention Trial (BECAIT). J Am Coll Cardiol 1998; 32: 1648–56PubMedCrossRefGoogle Scholar
  210. 210.
    Delerive P, De Bosscher K, Besnard S, et al. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem 1999; 274: 32048–54PubMedCrossRefGoogle Scholar
  211. 211.
    Capell WH, DeSouza CA, Poirier P, et al. Short-term triglyceride lowering with fenofibrate improves vasodilator function in subjects with hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2003; 23: 307–13PubMedCrossRefGoogle Scholar
  212. 212.
    Madej A, Okopien B, Kowalski J, et al. Effects of fenofibrate on plasma cytokine concentrations in patients with atherosclerosis and hyperlipoproteinemia IIb. Int J Clin Pharmacol Ther 1998; 36: 345–9PubMedGoogle Scholar
  213. 213.
    Michalik L, Desvergne B, Tan NS, et al. Impaired skin wound healing in peroxisome proliferator-activated receptor (PPAR)alpha and PPARbeta mutant mice. J Cell Biol 2001; 154:799–814PubMedCrossRefGoogle Scholar
  214. 214.
    Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001; 7: 53–8PubMedCrossRefGoogle Scholar
  215. 215.
    Koeffler HP. Peroxisome proliferator-activated receptor gamma and cancers. Clin Cancer Res 2003; 9: 1–9PubMedGoogle Scholar
  216. 216.
    van Wijk JP, de Koning EJ, Martens EP, et al. Thiazolidinediones and blood lipids in type 2 diabetes. Arterioscler Thromb Vasc Biol 2003; 23: 1744–9PubMedCrossRefGoogle Scholar
  217. 217.
    Collins AR, Meehan WP, Kintscher U, et al. Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2001; 21: 365–71PubMedCrossRefGoogle Scholar
  218. 218.
    Li AC, Brown KK, Silvestre MJ, et al. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000; 106: 523–31PubMedCrossRefGoogle Scholar
  219. 219.
    Takagi T, Akasaka T, Yamamuro A, et al. Troglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with non-insulin dependent diabetes mellitus: a serial intravascular ultrasound study. J Am Coll Cardiol 2000; 36: 1529–35PubMedCrossRefGoogle Scholar
  220. 220.
    Dandona P, Aljada A. A rational approach to pathogenesis and treatment of type 2 diabetes mellitus, insulin resistance, inflammation, and atherosclerosis. Am J Cardiol 2002; 90: 27–33GCrossRefGoogle Scholar
  221. 221.
    Haffner SM, Greenberg AS, Weston WM, et al. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002; 106: 679–84PubMedCrossRefGoogle Scholar
  222. 222.
    Tack CJ, Ong MK, Lutterman JA, et al. Insulin-induced vasodilatation and endothelial function in obesity/insulin resistance. Effects of troglitazone. Diabetologia 1998; 41: 569–76Google Scholar
  223. 223.
    Walker AB, Chattington PD, Buckingham RE, et al. The thiazolidinedione rosiglitazone (BRL-49653) lowers blood pressure and protects against impairment of endothelial function in Zucker fatty rats. Diabetes 1999; 48: 1448–53PubMedCrossRefGoogle Scholar
  224. 224.
    Berger JP, Petro AE, Macnaul KL, et al. Distinct properties and advantages of a novel peroxisome proliferator-activated protein [gamma] selective modulator. Mol Endocrinol 2003; 17: 662–76PubMedCrossRefGoogle Scholar
  225. 225.
    Rocchi S, Picard F, Vamecq J, et al. A unique PPARgamma ligand with potent insulin-sensitizing yet weak adipogenic activity. Mol Cell 2001; 8: 737–47PubMedCrossRefGoogle Scholar
  226. 226.
    Brand CL, Sturis J, Gotfredsen CF, et al. Dual PPARalpha/ gamma activation provides enhanced improvement of insulin sensitivity and glycemic control in ZDF rats. Am J Physiol Endocrinol Metab 2003; 284: E841–54PubMedGoogle Scholar
  227. 227.
    Sauerberg P, Pettersson I, Jeppesen L, et al. Novel tricyclic-alpha-alkyloxyphenylpropionic acids: dual PPARalpha/gamma agonists with hypolipidemic and antidiabetic activity. J Med Chem 2002; 45: 789–804PubMedCrossRefGoogle Scholar
  228. 228.
    Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232: 34–47PubMedCrossRefGoogle Scholar
  229. 229.
    Grundy SM. Consensus statement: role of therapy with ‘statins’ in patients with hypertriglyceridemia. Am J Cardiol 1998; 81: 1–6BCrossRefGoogle Scholar
  230. 230.
    Schoonjans K, Peinado-Onsurbe J, Fruchart JC, et al. 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors reduce serum triglyceride levels through modulation of apolipoprotein C-III and lipoprotein lipase. FEBS Lett 1999; 452: 160–4PubMedCrossRefGoogle Scholar
  231. 231.
    Stein EA, Lane M, Laskarzewski P. Comparison of statins in hypertriglyceridemia. Am J Cardiol 1998; 81: 66–9BCrossRefGoogle Scholar
  232. 232.
    Castro Cabezas M, de Bruin TW, Kock LA, et al. Simvastatin improves chylomicron remnant removal in familial combined hyperlipidemia without changing chylomicron conversion. Metabolism 1993; 42: 497–503CrossRefGoogle Scholar
  233. 233.
    Cianflone K, Bilodeau M, Davignon J, et al. Modulation of chylomicron remnant metabolism by an hepatic hydroxymethylglutaryl coenzyme A reductase inhibitor. Metabolism 1990; 39: 274–80PubMedCrossRefGoogle Scholar
  234. 234.
    O'Keefe JH Jr, Harris WS, Nelson J, et al. Effects of pravastatin with niacin or magnesium on lipid levels and postprandial lipemia. Am J Cardiol 1995; 76: 480–4PubMedCrossRefGoogle Scholar
  235. 235.
    Parhofer KG, Laubach E, Barrett PH. Effect of atorvastatin on postprandial lipoprotein metabolism in hypertriglyceridemic patients. J Lipid Res 2003; 44: 1192–8PubMedCrossRefGoogle Scholar
  236. 236.
    Sheu WH, Jeng CY, Lee WJ, et al. Simvastatin treatment on postprandial hypertriglyceridemia in type 2 diabetes mellitus patients with combined hyperlipidemia. Metabolism 2001; 50: 355–9PubMedCrossRefGoogle Scholar
  237. 237.
    Weintraub MS, Eisenberg S, Breslow JL. Lovastatin reduces postprandial lipoprotein levels in hypercholesterolaemic patients with mild hypertriglyceridaemia. Eur J Clin Invest 1989; 19: 480–5PubMedCrossRefGoogle Scholar
  238. 238.
    Grip O, Janciauskiene S, Lindgren S. Atorvastatin activates PPAR-gamma and attenuates the inflammatory response in human monocytes. Inflamm Res 2002; 51: 58–62PubMedCrossRefGoogle Scholar
  239. 239.
    Kandoussi A, Martin F, Hazzan M, et al. HMG-CoA reductase inhibition and PPAR-alpha activation both inhibit cyclosporin A induced endothelin-I secretion in cultured endothelial cells. Clin Sci (Lond) 2002; 103 Suppl 48: 81–3SGoogle Scholar
  240. 240.
    Chan KK, Oza AM, Siu LL. The statins as anticancer agents. Clin Cancer Res 2003; 9: 10–19PubMedGoogle Scholar
  241. 241.
    Waldman A, Kritharides L. The pleiotropic effects of HMG-CoA reductase inhibitors: their role in osteoporosis and dementia. Drugs 2003; 63: 139–52PubMedCrossRefGoogle Scholar
  242. 242.
    Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation 2000; 101: 207–13PubMedCrossRefGoogle Scholar
  243. 243.
    Palinski W, Napoli C. Unraveling pleiotropic effects of statins on plaque rupture. Arterioscler Thromb Vasc Biol 2002; 22: 1745–50PubMedCrossRefGoogle Scholar
  244. 244.
    Sowers JR. Effects of statins on the vasculature: implications for aggressive lipid management in the cardiovascular metabolic syndrome. Am J Cardiol 2003; 91: 14–22BCrossRefGoogle Scholar
  245. 245.
    Weitz-Schmidt G. Statins as anti-inflammatory agents. Trends Pharmacol Sci 2002; 23: 482–6PubMedCrossRefGoogle Scholar
  246. 246.
    Pruefer D, Scalia R, Lefer AM. Simvastatin inhibits leukocyte-endothelial cell interactions and protects against inflammatory processes in normocholesterolemic rats. Arterioscler Thromb Vasc Biol 1999; 19: 2894–900PubMedCrossRefGoogle Scholar
  247. 247.
    Stalker TJ, Lefer AM, Scalia R. A new HMG-CoA reductase inhibitor, rosuvastatin, exerts anti-inflammatory effects on the microvascular endothelium: the role of mevalonic acid. Br J Pharmacol 2001; 133: 406–12PubMedCrossRefGoogle Scholar
  248. 248.
    Yoshida M, Sawada T, Ishii H, et al. HMG-CoA reductase inhibitor modulates monocyte-endothelial cell interaction under physiological flow conditions in vitro: involvement of Rho GTPase-dependent mechanism. Arterioscler Thromb Vasc Biol 2001; 21: 1165–71PubMedCrossRefGoogle Scholar
  249. 249.
    Luan Z, Chase AJ, Newby AC. Statins inhibit secretion of metalloproteinases-1, -2,-3, and -9 from vascular smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol 2003; 23: 769–75PubMedCrossRefGoogle Scholar
  250. 250.
    Kleemann R, Princen HM, Emeis JJ, et al. Rosuvastatin reduces atherosclerosis development beyond and independent of its plasma cholesterol-lowering effect in APOE*3-Leiden transgenic mice. Evidence for antiinflammatory effects of rosuvastatin. Circulation 2003; 108 (Pt 11): 1368–74Google Scholar
  251. 251.
    Rezaie-Majd A, Maca T, Bucek RA, et al. Simvastatin reduces expression of cytokines interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 in circulating monocytes from hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 2002; 22: 1194–9PubMedCrossRefGoogle Scholar
  252. 252.
    Kwak B, Mulhaupt F, Myit S, et al. Statins as a newly recognized type of immunomodulator. Nat Med 2000; 6: 1399–402PubMedCrossRefGoogle Scholar
  253. 253.
    Ortego M, Bustos C, Hernandez-Presa MA, et al. Atorvastatin reduces NF-kappaB activation and chemokine expression in vascular smooth muscle cells and mononuclear cells. Atherosclerosis 1999; 147: 253–61PubMedCrossRefGoogle Scholar
  254. 254.
    Laufs U. Beyond lipid-lowering: effects of statins on endothelial nitric oxide. Eur J Clin Pharmacol 2003; 58: 719–31PubMedGoogle Scholar
  255. 255.
    Weitz-Schmidt G, Welzenbach K, Brinkmann V, et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med 2001; 7: 687–92PubMedCrossRefGoogle Scholar
  256. 256.
    Waehre T, Damas JK, Gullestad L, et al. Hydroxymethylglutaryl coenzyme a reductase inhibitors down-regulate chemokines and chemokine receptors in patients with coronary artery disease. J Am Coll Cardiol 2003; 41: 1460–7PubMedCrossRefGoogle Scholar
  257. 257.
    Ridker PM, Rifai N, Pfeffer MA, et al. Long-term effects of pravastatin on plasma concentration of C-reactive protein. The Cholesterol and Recurrent Events (CARE) Investigators. Circulation 1999; 100: 230–5Google Scholar
  258. 258.
    Bickel C, Rupprecht HJ, Blankenberg S, et al. Influence of HMG-CoA reductase inhibitors on markers of coagulation, systemic inflammation and soluble cell adhesion. Int J Cardiol 2002; 82: 25–31PubMedCrossRefGoogle Scholar
  259. 259.
    Stulc T, Vrablik M, Kasalova Z, et al. Atorvastatin reduces expression of leukocyte adhesion molecules in patients with hypercholesterolemia. Atherosclerosis 2003; 166: 197–8PubMedCrossRefGoogle Scholar
  260. 260.
    Kobashigawa JA, Katznelson S, Laks H, et al. Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med 1995; 333: 621–7PubMedCrossRefGoogle Scholar
  261. 261.
    Katznelson S, Wilkinson AH, Kobashigawa JA, et al. The effect of pravastatin on acute rejection after kidney transplantation — a pilot study. Transplantation 1996; 61: 1469–74PubMedCrossRefGoogle Scholar
  262. 262.
    MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360: 7-22Google Scholar
  263. 263.
    Sever PS, Dahlof B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial — Lipid Lowering Arm (ASCOTLLA): a multicentre randomised controlled trial. Lancet 2003; 361: 1149–58PubMedCrossRefGoogle Scholar
  264. 264.
    Ridker PM, Rifai N, Clearfield M, et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med 2001; 344: 1959–65PubMedCrossRefGoogle Scholar
  265. 265.
    Walter DH, Rittig K, Bahlmann FH, et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 2002; 105: 3017–24PubMedCrossRefGoogle Scholar
  266. 266.
    Grobbee DE, Bots ML. Statin treatment and progression of atherosclerotic plaque burden. Drugs 2003; 63: 893–911PubMedCrossRefGoogle Scholar
  267. 267.
    Scandinavian Simvastatin Survival Study Investigators. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–9Google Scholar
  268. 268.
    Law MR, Wald NJ, Rudnicka AR. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ 2003; 326: 1423PubMedCrossRefGoogle Scholar
  269. 269.
    Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 1996; 335: 1001–9Google Scholar
  270. 270.
    Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 1995; 333: 1301–7Google Scholar
  271. 271.
    Kereiakes DJ. Adjunctive pharmacotherapy before percutaneous coronary intervention in non-ST-elevation acute coronary syndromes: the role of modulating inflammation. Circulation 2003; 108: III22–7PubMedGoogle Scholar
  272. 272.
    Kereiakes DJ, Runyon JP, Broderick TM, et al. IIbs are not IIbs. Am J Cardiol 2000; 85: 23–31CCrossRefGoogle Scholar
  273. 273.
    Song Xy Torphy TJ, Griswold DE, et al. Coming of age: anti-cytokine therapies. Mol Interv 2002; 2: 36–46PubMedCrossRefGoogle Scholar
  274. 274.
    Horvath C, Welt FG, Nedelman M, et al. Targeting CCR2 or CD18 inhibits experimental in-stent restenosis in primates: inhibitory potential depends on type of injury and leukocytes targeted. Circ Res 2002; 90: 488–94PubMedCrossRefGoogle Scholar
  275. 275.
    Ulbrich H, Eriksson EE, Lindbom L. Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends Pharmacol Sci 2003; 24: 640–7PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2004

Authors and Affiliations

  • Antonie J. H. H. M. van Oostrom
    • 1
  • Jeroen P. H. van Wijk
    • 1
  • Manuel Castro Cabezas
    • 1
  1. 1.Departments of Internal Medicine and Endocrinology F02.126University Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations